blob: cb477259a2e232f1b0c84c1d9887d65b1e429010 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2016 Broadcom
*/
/*
* This file works with the SPU2 version of the SPU. SPU2 has different message
* formats than the previous version of the SPU. All SPU message format
* differences should be hidden in the spux.c,h files.
*/
#include <linux/kernel.h>
#include <linux/string.h>
#include "util.h"
#include "spu.h"
#include "spu2.h"
#define SPU2_TX_STATUS_LEN 0 /* SPU2 has no STATUS in input packet */
/*
* Controlled by pkt_stat_cnt field in CRYPTO_SS_SPU0_CORE_SPU2_CONTROL0
* register. Defaults to 2.
*/
#define SPU2_RX_STATUS_LEN 2
enum spu2_proto_sel {
SPU2_PROTO_RESV = 0,
SPU2_MACSEC_SECTAG8_ECB = 1,
SPU2_MACSEC_SECTAG8_SCB = 2,
SPU2_MACSEC_SECTAG16 = 3,
SPU2_MACSEC_SECTAG16_8_XPN = 4,
SPU2_IPSEC = 5,
SPU2_IPSEC_ESN = 6,
SPU2_TLS_CIPHER = 7,
SPU2_TLS_AEAD = 8,
SPU2_DTLS_CIPHER = 9,
SPU2_DTLS_AEAD = 10
};
char *spu2_cipher_type_names[] = { "None", "AES128", "AES192", "AES256",
"DES", "3DES"
};
char *spu2_cipher_mode_names[] = { "ECB", "CBC", "CTR", "CFB", "OFB", "XTS",
"CCM", "GCM"
};
char *spu2_hash_type_names[] = { "None", "AES128", "AES192", "AES256",
"Reserved", "Reserved", "MD5", "SHA1", "SHA224", "SHA256", "SHA384",
"SHA512", "SHA512/224", "SHA512/256", "SHA3-224", "SHA3-256",
"SHA3-384", "SHA3-512"
};
char *spu2_hash_mode_names[] = { "CMAC", "CBC-MAC", "XCBC-MAC", "HMAC",
"Rabin", "CCM", "GCM", "Reserved"
};
static char *spu2_ciph_type_name(enum spu2_cipher_type cipher_type)
{
if (cipher_type >= SPU2_CIPHER_TYPE_LAST)
return "Reserved";
return spu2_cipher_type_names[cipher_type];
}
static char *spu2_ciph_mode_name(enum spu2_cipher_mode cipher_mode)
{
if (cipher_mode >= SPU2_CIPHER_MODE_LAST)
return "Reserved";
return spu2_cipher_mode_names[cipher_mode];
}
static char *spu2_hash_type_name(enum spu2_hash_type hash_type)
{
if (hash_type >= SPU2_HASH_TYPE_LAST)
return "Reserved";
return spu2_hash_type_names[hash_type];
}
static char *spu2_hash_mode_name(enum spu2_hash_mode hash_mode)
{
if (hash_mode >= SPU2_HASH_MODE_LAST)
return "Reserved";
return spu2_hash_mode_names[hash_mode];
}
/*
* Convert from a software cipher mode value to the corresponding value
* for SPU2.
*/
static int spu2_cipher_mode_xlate(enum spu_cipher_mode cipher_mode,
enum spu2_cipher_mode *spu2_mode)
{
switch (cipher_mode) {
case CIPHER_MODE_ECB:
*spu2_mode = SPU2_CIPHER_MODE_ECB;
break;
case CIPHER_MODE_CBC:
*spu2_mode = SPU2_CIPHER_MODE_CBC;
break;
case CIPHER_MODE_OFB:
*spu2_mode = SPU2_CIPHER_MODE_OFB;
break;
case CIPHER_MODE_CFB:
*spu2_mode = SPU2_CIPHER_MODE_CFB;
break;
case CIPHER_MODE_CTR:
*spu2_mode = SPU2_CIPHER_MODE_CTR;
break;
case CIPHER_MODE_CCM:
*spu2_mode = SPU2_CIPHER_MODE_CCM;
break;
case CIPHER_MODE_GCM:
*spu2_mode = SPU2_CIPHER_MODE_GCM;
break;
case CIPHER_MODE_XTS:
*spu2_mode = SPU2_CIPHER_MODE_XTS;
break;
default:
return -EINVAL;
}
return 0;
}
/**
* spu2_cipher_xlate() - Convert a cipher {alg/mode/type} triple to a SPU2
* cipher type and mode.
* @cipher_alg: [in] cipher algorithm value from software enumeration
* @cipher_mode: [in] cipher mode value from software enumeration
* @cipher_type: [in] cipher type value from software enumeration
* @spu2_type: [out] cipher type value used by spu2 hardware
* @spu2_mode: [out] cipher mode value used by spu2 hardware
*
* Return: 0 if successful
*/
static int spu2_cipher_xlate(enum spu_cipher_alg cipher_alg,
enum spu_cipher_mode cipher_mode,
enum spu_cipher_type cipher_type,
enum spu2_cipher_type *spu2_type,
enum spu2_cipher_mode *spu2_mode)
{
int err;
err = spu2_cipher_mode_xlate(cipher_mode, spu2_mode);
if (err) {
flow_log("Invalid cipher mode %d\n", cipher_mode);
return err;
}
switch (cipher_alg) {
case CIPHER_ALG_NONE:
*spu2_type = SPU2_CIPHER_TYPE_NONE;
break;
case CIPHER_ALG_RC4:
/* SPU2 does not support RC4 */
err = -EINVAL;
*spu2_type = SPU2_CIPHER_TYPE_NONE;
break;
case CIPHER_ALG_DES:
*spu2_type = SPU2_CIPHER_TYPE_DES;
break;
case CIPHER_ALG_3DES:
*spu2_type = SPU2_CIPHER_TYPE_3DES;
break;
case CIPHER_ALG_AES:
switch (cipher_type) {
case CIPHER_TYPE_AES128:
*spu2_type = SPU2_CIPHER_TYPE_AES128;
break;
case CIPHER_TYPE_AES192:
*spu2_type = SPU2_CIPHER_TYPE_AES192;
break;
case CIPHER_TYPE_AES256:
*spu2_type = SPU2_CIPHER_TYPE_AES256;
break;
default:
err = -EINVAL;
}
break;
case CIPHER_ALG_LAST:
default:
err = -EINVAL;
break;
}
if (err)
flow_log("Invalid cipher alg %d or type %d\n",
cipher_alg, cipher_type);
return err;
}
/*
* Convert from a software hash mode value to the corresponding value
* for SPU2. Note that HASH_MODE_NONE and HASH_MODE_XCBC have the same value.
*/
static int spu2_hash_mode_xlate(enum hash_mode hash_mode,
enum spu2_hash_mode *spu2_mode)
{
switch (hash_mode) {
case HASH_MODE_XCBC:
*spu2_mode = SPU2_HASH_MODE_XCBC_MAC;
break;
case HASH_MODE_CMAC:
*spu2_mode = SPU2_HASH_MODE_CMAC;
break;
case HASH_MODE_HMAC:
*spu2_mode = SPU2_HASH_MODE_HMAC;
break;
case HASH_MODE_CCM:
*spu2_mode = SPU2_HASH_MODE_CCM;
break;
case HASH_MODE_GCM:
*spu2_mode = SPU2_HASH_MODE_GCM;
break;
default:
return -EINVAL;
}
return 0;
}
/**
* spu2_hash_xlate() - Convert a hash {alg/mode/type} triple to a SPU2 hash type
* and mode.
* @hash_alg: [in] hash algorithm value from software enumeration
* @hash_mode: [in] hash mode value from software enumeration
* @hash_type: [in] hash type value from software enumeration
* @ciph_type: [in] cipher type value from software enumeration
* @spu2_type: [out] hash type value used by SPU2 hardware
* @spu2_mode: [out] hash mode value used by SPU2 hardware
*
* Return: 0 if successful
*/
static int
spu2_hash_xlate(enum hash_alg hash_alg, enum hash_mode hash_mode,
enum hash_type hash_type, enum spu_cipher_type ciph_type,
enum spu2_hash_type *spu2_type, enum spu2_hash_mode *spu2_mode)
{
int err;
err = spu2_hash_mode_xlate(hash_mode, spu2_mode);
if (err) {
flow_log("Invalid hash mode %d\n", hash_mode);
return err;
}
switch (hash_alg) {
case HASH_ALG_NONE:
*spu2_type = SPU2_HASH_TYPE_NONE;
break;
case HASH_ALG_MD5:
*spu2_type = SPU2_HASH_TYPE_MD5;
break;
case HASH_ALG_SHA1:
*spu2_type = SPU2_HASH_TYPE_SHA1;
break;
case HASH_ALG_SHA224:
*spu2_type = SPU2_HASH_TYPE_SHA224;
break;
case HASH_ALG_SHA256:
*spu2_type = SPU2_HASH_TYPE_SHA256;
break;
case HASH_ALG_SHA384:
*spu2_type = SPU2_HASH_TYPE_SHA384;
break;
case HASH_ALG_SHA512:
*spu2_type = SPU2_HASH_TYPE_SHA512;
break;
case HASH_ALG_AES:
switch (ciph_type) {
case CIPHER_TYPE_AES128:
*spu2_type = SPU2_HASH_TYPE_AES128;
break;
case CIPHER_TYPE_AES192:
*spu2_type = SPU2_HASH_TYPE_AES192;
break;
case CIPHER_TYPE_AES256:
*spu2_type = SPU2_HASH_TYPE_AES256;
break;
default:
err = -EINVAL;
}
break;
case HASH_ALG_SHA3_224:
*spu2_type = SPU2_HASH_TYPE_SHA3_224;
break;
case HASH_ALG_SHA3_256:
*spu2_type = SPU2_HASH_TYPE_SHA3_256;
break;
case HASH_ALG_SHA3_384:
*spu2_type = SPU2_HASH_TYPE_SHA3_384;
break;
case HASH_ALG_SHA3_512:
*spu2_type = SPU2_HASH_TYPE_SHA3_512;
break;
case HASH_ALG_LAST:
default:
err = -EINVAL;
break;
}
if (err)
flow_log("Invalid hash alg %d or type %d\n",
hash_alg, hash_type);
return err;
}
/* Dump FMD ctrl0. The ctrl0 input is in host byte order */
static void spu2_dump_fmd_ctrl0(u64 ctrl0)
{
enum spu2_cipher_type ciph_type;
enum spu2_cipher_mode ciph_mode;
enum spu2_hash_type hash_type;
enum spu2_hash_mode hash_mode;
char *ciph_name;
char *ciph_mode_name;
char *hash_name;
char *hash_mode_name;
u8 cfb;
u8 proto;
packet_log(" FMD CTRL0 %#16llx\n", ctrl0);
if (ctrl0 & SPU2_CIPH_ENCRYPT_EN)
packet_log(" encrypt\n");
else
packet_log(" decrypt\n");
ciph_type = (ctrl0 & SPU2_CIPH_TYPE) >> SPU2_CIPH_TYPE_SHIFT;
ciph_name = spu2_ciph_type_name(ciph_type);
packet_log(" Cipher type: %s\n", ciph_name);
if (ciph_type != SPU2_CIPHER_TYPE_NONE) {
ciph_mode = (ctrl0 & SPU2_CIPH_MODE) >> SPU2_CIPH_MODE_SHIFT;
ciph_mode_name = spu2_ciph_mode_name(ciph_mode);
packet_log(" Cipher mode: %s\n", ciph_mode_name);
}
cfb = (ctrl0 & SPU2_CFB_MASK) >> SPU2_CFB_MASK_SHIFT;
packet_log(" CFB %#x\n", cfb);
proto = (ctrl0 & SPU2_PROTO_SEL) >> SPU2_PROTO_SEL_SHIFT;
packet_log(" protocol %#x\n", proto);
if (ctrl0 & SPU2_HASH_FIRST)
packet_log(" hash first\n");
else
packet_log(" cipher first\n");
if (ctrl0 & SPU2_CHK_TAG)
packet_log(" check tag\n");
hash_type = (ctrl0 & SPU2_HASH_TYPE) >> SPU2_HASH_TYPE_SHIFT;
hash_name = spu2_hash_type_name(hash_type);
packet_log(" Hash type: %s\n", hash_name);
if (hash_type != SPU2_HASH_TYPE_NONE) {
hash_mode = (ctrl0 & SPU2_HASH_MODE) >> SPU2_HASH_MODE_SHIFT;
hash_mode_name = spu2_hash_mode_name(hash_mode);
packet_log(" Hash mode: %s\n", hash_mode_name);
}
if (ctrl0 & SPU2_CIPH_PAD_EN) {
packet_log(" Cipher pad: %#2llx\n",
(ctrl0 & SPU2_CIPH_PAD) >> SPU2_CIPH_PAD_SHIFT);
}
}
/* Dump FMD ctrl1. The ctrl1 input is in host byte order */
static void spu2_dump_fmd_ctrl1(u64 ctrl1)
{
u8 hash_key_len;
u8 ciph_key_len;
u8 ret_iv_len;
u8 iv_offset;
u8 iv_len;
u8 hash_tag_len;
u8 ret_md;
packet_log(" FMD CTRL1 %#16llx\n", ctrl1);
if (ctrl1 & SPU2_TAG_LOC)
packet_log(" Tag after payload\n");
packet_log(" Msg includes ");
if (ctrl1 & SPU2_HAS_FR_DATA)
packet_log("FD ");
if (ctrl1 & SPU2_HAS_AAD1)
packet_log("AAD1 ");
if (ctrl1 & SPU2_HAS_NAAD)
packet_log("NAAD ");
if (ctrl1 & SPU2_HAS_AAD2)
packet_log("AAD2 ");
if (ctrl1 & SPU2_HAS_ESN)
packet_log("ESN ");
packet_log("\n");
hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT;
packet_log(" Hash key len %u\n", hash_key_len);
ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT;
packet_log(" Cipher key len %u\n", ciph_key_len);
if (ctrl1 & SPU2_GENIV)
packet_log(" Generate IV\n");
if (ctrl1 & SPU2_HASH_IV)
packet_log(" IV included in hash\n");
if (ctrl1 & SPU2_RET_IV)
packet_log(" Return IV in output before payload\n");
ret_iv_len = (ctrl1 & SPU2_RET_IV_LEN) >> SPU2_RET_IV_LEN_SHIFT;
packet_log(" Length of returned IV %u bytes\n",
ret_iv_len ? ret_iv_len : 16);
iv_offset = (ctrl1 & SPU2_IV_OFFSET) >> SPU2_IV_OFFSET_SHIFT;
packet_log(" IV offset %u\n", iv_offset);
iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT;
packet_log(" Input IV len %u bytes\n", iv_len);
hash_tag_len = (ctrl1 & SPU2_HASH_TAG_LEN) >> SPU2_HASH_TAG_LEN_SHIFT;
packet_log(" Hash tag length %u bytes\n", hash_tag_len);
packet_log(" Return ");
ret_md = (ctrl1 & SPU2_RETURN_MD) >> SPU2_RETURN_MD_SHIFT;
if (ret_md)
packet_log("FMD ");
if (ret_md == SPU2_RET_FMD_OMD)
packet_log("OMD ");
else if (ret_md == SPU2_RET_FMD_OMD_IV)
packet_log("OMD IV ");
if (ctrl1 & SPU2_RETURN_FD)
packet_log("FD ");
if (ctrl1 & SPU2_RETURN_AAD1)
packet_log("AAD1 ");
if (ctrl1 & SPU2_RETURN_NAAD)
packet_log("NAAD ");
if (ctrl1 & SPU2_RETURN_AAD2)
packet_log("AAD2 ");
if (ctrl1 & SPU2_RETURN_PAY)
packet_log("Payload");
packet_log("\n");
}
/* Dump FMD ctrl2. The ctrl2 input is in host byte order */
static void spu2_dump_fmd_ctrl2(u64 ctrl2)
{
packet_log(" FMD CTRL2 %#16llx\n", ctrl2);
packet_log(" AAD1 offset %llu length %llu bytes\n",
ctrl2 & SPU2_AAD1_OFFSET,
(ctrl2 & SPU2_AAD1_LEN) >> SPU2_AAD1_LEN_SHIFT);
packet_log(" AAD2 offset %llu\n",
(ctrl2 & SPU2_AAD2_OFFSET) >> SPU2_AAD2_OFFSET_SHIFT);
packet_log(" Payload offset %llu\n",
(ctrl2 & SPU2_PL_OFFSET) >> SPU2_PL_OFFSET_SHIFT);
}
/* Dump FMD ctrl3. The ctrl3 input is in host byte order */
static void spu2_dump_fmd_ctrl3(u64 ctrl3)
{
packet_log(" FMD CTRL3 %#16llx\n", ctrl3);
packet_log(" Payload length %llu bytes\n", ctrl3 & SPU2_PL_LEN);
packet_log(" TLS length %llu bytes\n",
(ctrl3 & SPU2_TLS_LEN) >> SPU2_TLS_LEN_SHIFT);
}
static void spu2_dump_fmd(struct SPU2_FMD *fmd)
{
spu2_dump_fmd_ctrl0(le64_to_cpu(fmd->ctrl0));
spu2_dump_fmd_ctrl1(le64_to_cpu(fmd->ctrl1));
spu2_dump_fmd_ctrl2(le64_to_cpu(fmd->ctrl2));
spu2_dump_fmd_ctrl3(le64_to_cpu(fmd->ctrl3));
}
static void spu2_dump_omd(u8 *omd, u16 hash_key_len, u16 ciph_key_len,
u16 hash_iv_len, u16 ciph_iv_len)
{
u8 *ptr = omd;
packet_log(" OMD:\n");
if (hash_key_len) {
packet_log(" Hash Key Length %u bytes\n", hash_key_len);
packet_dump(" KEY: ", ptr, hash_key_len);
ptr += hash_key_len;
}
if (ciph_key_len) {
packet_log(" Cipher Key Length %u bytes\n", ciph_key_len);
packet_dump(" KEY: ", ptr, ciph_key_len);
ptr += ciph_key_len;
}
if (hash_iv_len) {
packet_log(" Hash IV Length %u bytes\n", hash_iv_len);
packet_dump(" hash IV: ", ptr, hash_iv_len);
ptr += ciph_key_len;
}
if (ciph_iv_len) {
packet_log(" Cipher IV Length %u bytes\n", ciph_iv_len);
packet_dump(" cipher IV: ", ptr, ciph_iv_len);
}
}
/* Dump a SPU2 header for debug */
void spu2_dump_msg_hdr(u8 *buf, unsigned int buf_len)
{
struct SPU2_FMD *fmd = (struct SPU2_FMD *)buf;
u8 *omd;
u64 ctrl1;
u16 hash_key_len;
u16 ciph_key_len;
u16 hash_iv_len;
u16 ciph_iv_len;
u16 omd_len;
packet_log("\n");
packet_log("SPU2 message header %p len: %u\n", buf, buf_len);
spu2_dump_fmd(fmd);
omd = (u8 *)(fmd + 1);
ctrl1 = le64_to_cpu(fmd->ctrl1);
hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT;
ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT;
hash_iv_len = 0;
ciph_iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT;
spu2_dump_omd(omd, hash_key_len, ciph_key_len, hash_iv_len,
ciph_iv_len);
/* Double check sanity */
omd_len = hash_key_len + ciph_key_len + hash_iv_len + ciph_iv_len;
if (FMD_SIZE + omd_len != buf_len) {
packet_log
(" Packet parsed incorrectly. buf_len %u, sum of MD %zu\n",
buf_len, FMD_SIZE + omd_len);
}
packet_log("\n");
}
/**
* spu2_fmd_init() - At setkey time, initialize the fixed meta data for
* subsequent ablkcipher requests for this context.
* @spu2_cipher_type: Cipher algorithm
* @spu2_mode: Cipher mode
* @cipher_key_len: Length of cipher key, in bytes
* @cipher_iv_len: Length of cipher initialization vector, in bytes
*
* Return: 0 (success)
*/
static int spu2_fmd_init(struct SPU2_FMD *fmd,
enum spu2_cipher_type spu2_type,
enum spu2_cipher_mode spu2_mode,
u32 cipher_key_len, u32 cipher_iv_len)
{
u64 ctrl0;
u64 ctrl1;
u64 ctrl2;
u64 ctrl3;
u32 aad1_offset;
u32 aad2_offset;
u16 aad1_len = 0;
u64 payload_offset;
ctrl0 = (spu2_type << SPU2_CIPH_TYPE_SHIFT) |
(spu2_mode << SPU2_CIPH_MODE_SHIFT);
ctrl1 = (cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) |
((u64)cipher_iv_len << SPU2_IV_LEN_SHIFT) |
((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT) | SPU2_RETURN_PAY;
/*
* AAD1 offset is from start of FD. FD length is always 0 for this
* driver. So AAD1_offset is always 0.
*/
aad1_offset = 0;
aad2_offset = aad1_offset;
payload_offset = 0;
ctrl2 = aad1_offset |
(aad1_len << SPU2_AAD1_LEN_SHIFT) |
(aad2_offset << SPU2_AAD2_OFFSET_SHIFT) |
(payload_offset << SPU2_PL_OFFSET_SHIFT);
ctrl3 = 0;
fmd->ctrl0 = cpu_to_le64(ctrl0);
fmd->ctrl1 = cpu_to_le64(ctrl1);
fmd->ctrl2 = cpu_to_le64(ctrl2);
fmd->ctrl3 = cpu_to_le64(ctrl3);
return 0;
}
/**
* spu2_fmd_ctrl0_write() - Write ctrl0 field in fixed metadata (FMD) field of
* SPU request packet.
* @fmd: Start of FMD field to be written
* @is_inbound: true if decrypting. false if encrypting.
* @authFirst: true if alg authenticates before encrypting
* @protocol: protocol selector
* @cipher_type: cipher algorithm
* @cipher_mode: cipher mode
* @auth_type: authentication type
* @auth_mode: authentication mode
*/
static void spu2_fmd_ctrl0_write(struct SPU2_FMD *fmd,
bool is_inbound, bool auth_first,
enum spu2_proto_sel protocol,
enum spu2_cipher_type cipher_type,
enum spu2_cipher_mode cipher_mode,
enum spu2_hash_type auth_type,
enum spu2_hash_mode auth_mode)
{
u64 ctrl0 = 0;
if ((cipher_type != SPU2_CIPHER_TYPE_NONE) && !is_inbound)
ctrl0 |= SPU2_CIPH_ENCRYPT_EN;
ctrl0 |= ((u64)cipher_type << SPU2_CIPH_TYPE_SHIFT) |
((u64)cipher_mode << SPU2_CIPH_MODE_SHIFT);
if (protocol)
ctrl0 |= (u64)protocol << SPU2_PROTO_SEL_SHIFT;
if (auth_first)
ctrl0 |= SPU2_HASH_FIRST;
if (is_inbound && (auth_type != SPU2_HASH_TYPE_NONE))
ctrl0 |= SPU2_CHK_TAG;
ctrl0 |= (((u64)auth_type << SPU2_HASH_TYPE_SHIFT) |
((u64)auth_mode << SPU2_HASH_MODE_SHIFT));
fmd->ctrl0 = cpu_to_le64(ctrl0);
}
/**
* spu2_fmd_ctrl1_write() - Write ctrl1 field in fixed metadata (FMD) field of
* SPU request packet.
* @fmd: Start of FMD field to be written
* @assoc_size: Length of additional associated data, in bytes
* @auth_key_len: Length of authentication key, in bytes
* @cipher_key_len: Length of cipher key, in bytes
* @gen_iv: If true, hw generates IV and returns in response
* @hash_iv: IV participates in hash. Used for IPSEC and TLS.
* @return_iv: Return IV in output packet before payload
* @ret_iv_len: Length of IV returned from SPU, in bytes
* @ret_iv_offset: Offset into full IV of start of returned IV
* @cipher_iv_len: Length of input cipher IV, in bytes
* @digest_size: Length of digest (aka, hash tag or ICV), in bytes
* @return_payload: Return payload in SPU response
* @return_md : return metadata in SPU response
*
* Packet can have AAD2 w/o AAD1. For algorithms currently supported,
* associated data goes in AAD2.
*/
static void spu2_fmd_ctrl1_write(struct SPU2_FMD *fmd, bool is_inbound,
u64 assoc_size,
u64 auth_key_len, u64 cipher_key_len,
bool gen_iv, bool hash_iv, bool return_iv,
u64 ret_iv_len, u64 ret_iv_offset,
u64 cipher_iv_len, u64 digest_size,
bool return_payload, bool return_md)
{
u64 ctrl1 = 0;
if (is_inbound && digest_size)
ctrl1 |= SPU2_TAG_LOC;
if (assoc_size) {
ctrl1 |= SPU2_HAS_AAD2;
ctrl1 |= SPU2_RETURN_AAD2; /* need aad2 for gcm aes esp */
}
if (auth_key_len)
ctrl1 |= ((auth_key_len << SPU2_HASH_KEY_LEN_SHIFT) &
SPU2_HASH_KEY_LEN);
if (cipher_key_len)
ctrl1 |= ((cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) &
SPU2_CIPH_KEY_LEN);
if (gen_iv)
ctrl1 |= SPU2_GENIV;
if (hash_iv)
ctrl1 |= SPU2_HASH_IV;
if (return_iv) {
ctrl1 |= SPU2_RET_IV;
ctrl1 |= ret_iv_len << SPU2_RET_IV_LEN_SHIFT;
ctrl1 |= ret_iv_offset << SPU2_IV_OFFSET_SHIFT;
}
ctrl1 |= ((cipher_iv_len << SPU2_IV_LEN_SHIFT) & SPU2_IV_LEN);
if (digest_size)
ctrl1 |= ((digest_size << SPU2_HASH_TAG_LEN_SHIFT) &
SPU2_HASH_TAG_LEN);
/* Let's ask for the output pkt to include FMD, but don't need to
* get keys and IVs back in OMD.
*/
if (return_md)
ctrl1 |= ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT);
else
ctrl1 |= ((u64)SPU2_RET_NO_MD << SPU2_RETURN_MD_SHIFT);
/* Crypto API does not get assoc data back. So no need for AAD2. */
if (return_payload)
ctrl1 |= SPU2_RETURN_PAY;
fmd->ctrl1 = cpu_to_le64(ctrl1);
}
/**
* spu2_fmd_ctrl2_write() - Set the ctrl2 field in the fixed metadata field of
* SPU2 header.
* @fmd: Start of FMD field to be written
* @cipher_offset: Number of bytes from Start of Packet (end of FD field) where
* data to be encrypted or decrypted begins
* @auth_key_len: Length of authentication key, in bytes
* @auth_iv_len: Length of authentication initialization vector, in bytes
* @cipher_key_len: Length of cipher key, in bytes
* @cipher_iv_len: Length of cipher IV, in bytes
*/
static void spu2_fmd_ctrl2_write(struct SPU2_FMD *fmd, u64 cipher_offset,
u64 auth_key_len, u64 auth_iv_len,
u64 cipher_key_len, u64 cipher_iv_len)
{
u64 ctrl2;
u64 aad1_offset;
u64 aad2_offset;
u16 aad1_len = 0;
u64 payload_offset;
/* AAD1 offset is from start of FD. FD length always 0. */
aad1_offset = 0;
aad2_offset = aad1_offset;
payload_offset = cipher_offset;
ctrl2 = aad1_offset |
(aad1_len << SPU2_AAD1_LEN_SHIFT) |
(aad2_offset << SPU2_AAD2_OFFSET_SHIFT) |
(payload_offset << SPU2_PL_OFFSET_SHIFT);
fmd->ctrl2 = cpu_to_le64(ctrl2);
}
/**
* spu2_fmd_ctrl3_write() - Set the ctrl3 field in FMD
* @fmd: Fixed meta data. First field in SPU2 msg header.
* @payload_len: Length of payload, in bytes
*/
static void spu2_fmd_ctrl3_write(struct SPU2_FMD *fmd, u64 payload_len)
{
u64 ctrl3;
ctrl3 = payload_len & SPU2_PL_LEN;
fmd->ctrl3 = cpu_to_le64(ctrl3);
}
/**
* spu2_ctx_max_payload() - Determine the maximum length of the payload for a
* SPU message for a given cipher and hash alg context.
* @cipher_alg: The cipher algorithm
* @cipher_mode: The cipher mode
* @blocksize: The size of a block of data for this algo
*
* For SPU2, the hardware generally ignores the PayloadLen field in ctrl3 of
* FMD and just keeps computing until it receives a DMA descriptor with the EOF
* flag set. So we consider the max payload to be infinite. AES CCM is an
* exception.
*
* Return: Max payload length in bytes
*/
u32 spu2_ctx_max_payload(enum spu_cipher_alg cipher_alg,
enum spu_cipher_mode cipher_mode,
unsigned int blocksize)
{
if ((cipher_alg == CIPHER_ALG_AES) &&
(cipher_mode == CIPHER_MODE_CCM)) {
u32 excess = SPU2_MAX_PAYLOAD % blocksize;
return SPU2_MAX_PAYLOAD - excess;
} else {
return SPU_MAX_PAYLOAD_INF;
}
}
/**
* spu_payload_length() - Given a SPU2 message header, extract the payload
* length.
* @spu_hdr: Start of SPU message header (FMD)
*
* Return: payload length, in bytes
*/
u32 spu2_payload_length(u8 *spu_hdr)
{
struct SPU2_FMD *fmd = (struct SPU2_FMD *)spu_hdr;
u32 pl_len;
u64 ctrl3;
ctrl3 = le64_to_cpu(fmd->ctrl3);
pl_len = ctrl3 & SPU2_PL_LEN;
return pl_len;
}
/**
* spu_response_hdr_len() - Determine the expected length of a SPU response
* header.
* @auth_key_len: Length of authentication key, in bytes
* @enc_key_len: Length of encryption key, in bytes
*
* For SPU2, includes just FMD. OMD is never requested.
*
* Return: Length of FMD, in bytes
*/
u16 spu2_response_hdr_len(u16 auth_key_len, u16 enc_key_len, bool is_hash)
{
return FMD_SIZE;
}
/**
* spu_hash_pad_len() - Calculate the length of hash padding required to extend
* data to a full block size.
* @hash_alg: hash algorithm
* @hash_mode: hash mode
* @chunksize: length of data, in bytes
* @hash_block_size: size of a hash block, in bytes
*
* SPU2 hardware does all hash padding
*
* Return: length of hash pad in bytes
*/
u16 spu2_hash_pad_len(enum hash_alg hash_alg, enum hash_mode hash_mode,
u32 chunksize, u16 hash_block_size)
{
return 0;
}
/**
* spu2_gcm_ccm_padlen() - Determine the length of GCM/CCM padding for either
* the AAD field or the data.
*
* Return: 0. Unlike SPU-M, SPU2 hardware does any GCM/CCM padding required.
*/
u32 spu2_gcm_ccm_pad_len(enum spu_cipher_mode cipher_mode,
unsigned int data_size)
{
return 0;
}
/**
* spu_assoc_resp_len() - Determine the size of the AAD2 buffer needed to catch
* associated data in a SPU2 output packet.
* @cipher_mode: cipher mode
* @assoc_len: length of additional associated data, in bytes
* @iv_len: length of initialization vector, in bytes
* @is_encrypt: true if encrypting. false if decrypt.
*
* Return: Length of buffer to catch associated data in response
*/
u32 spu2_assoc_resp_len(enum spu_cipher_mode cipher_mode,
unsigned int assoc_len, unsigned int iv_len,
bool is_encrypt)
{
u32 resp_len = assoc_len;
if (is_encrypt)
/* gcm aes esp has to write 8-byte IV in response */
resp_len += iv_len;
return resp_len;
}
/*
* spu_aead_ivlen() - Calculate the length of the AEAD IV to be included
* in a SPU request after the AAD and before the payload.
* @cipher_mode: cipher mode
* @iv_ctr_len: initialization vector length in bytes
*
* For SPU2, AEAD IV is included in OMD and does not need to be repeated
* prior to the payload.
*
* Return: Length of AEAD IV in bytes
*/
u8 spu2_aead_ivlen(enum spu_cipher_mode cipher_mode, u16 iv_len)
{
return 0;
}
/**
* spu2_hash_type() - Determine the type of hash operation.
* @src_sent: The number of bytes in the current request that have already
* been sent to the SPU to be hashed.
*
* SPU2 always does a FULL hash operation
*/
enum hash_type spu2_hash_type(u32 src_sent)
{
return HASH_TYPE_FULL;
}
/**
* spu2_digest_size() - Determine the size of a hash digest to expect the SPU to
* return.
* alg_digest_size: Number of bytes in the final digest for the given algo
* alg: The hash algorithm
* htype: Type of hash operation (init, update, full, etc)
*
*/
u32 spu2_digest_size(u32 alg_digest_size, enum hash_alg alg,
enum hash_type htype)
{
return alg_digest_size;
}
/**
* spu_create_request() - Build a SPU2 request message header, includint FMD and
* OMD.
* @spu_hdr: Start of buffer where SPU request header is to be written
* @req_opts: SPU request message options
* @cipher_parms: Parameters related to cipher algorithm
* @hash_parms: Parameters related to hash algorithm
* @aead_parms: Parameters related to AEAD operation
* @data_size: Length of data to be encrypted or authenticated. If AEAD, does
* not include length of AAD.
*
* Construct the message starting at spu_hdr. Caller should allocate this buffer
* in DMA-able memory at least SPU_HEADER_ALLOC_LEN bytes long.
*
* Return: the length of the SPU header in bytes. 0 if an error occurs.
*/
u32 spu2_create_request(u8 *spu_hdr,
struct spu_request_opts *req_opts,
struct spu_cipher_parms *cipher_parms,
struct spu_hash_parms *hash_parms,
struct spu_aead_parms *aead_parms,
unsigned int data_size)
{
struct SPU2_FMD *fmd;
u8 *ptr;
unsigned int buf_len;
int err;
enum spu2_cipher_type spu2_ciph_type = SPU2_CIPHER_TYPE_NONE;
enum spu2_cipher_mode spu2_ciph_mode;
enum spu2_hash_type spu2_auth_type = SPU2_HASH_TYPE_NONE;
enum spu2_hash_mode spu2_auth_mode;
bool return_md = true;
enum spu2_proto_sel proto = SPU2_PROTO_RESV;
/* size of the payload */
unsigned int payload_len =
hash_parms->prebuf_len + data_size + hash_parms->pad_len -
((req_opts->is_aead && req_opts->is_inbound) ?
hash_parms->digestsize : 0);
/* offset of prebuf or data from start of AAD2 */
unsigned int cipher_offset = aead_parms->assoc_size +
aead_parms->aad_pad_len + aead_parms->iv_len;
#ifdef DEBUG
/* total size of the data following OMD (without STAT word padding) */
unsigned int real_db_size = spu_real_db_size(aead_parms->assoc_size,
aead_parms->iv_len,
hash_parms->prebuf_len,
data_size,
aead_parms->aad_pad_len,
aead_parms->data_pad_len,
hash_parms->pad_len);
#endif
unsigned int assoc_size = aead_parms->assoc_size;
if (req_opts->is_aead &&
(cipher_parms->alg == CIPHER_ALG_AES) &&
(cipher_parms->mode == CIPHER_MODE_GCM))
/*
* On SPU 2, aes gcm cipher first on encrypt, auth first on
* decrypt
*/
req_opts->auth_first = req_opts->is_inbound;
/* and do opposite for ccm (auth 1st on encrypt) */
if (req_opts->is_aead &&
(cipher_parms->alg == CIPHER_ALG_AES) &&
(cipher_parms->mode == CIPHER_MODE_CCM))
req_opts->auth_first = !req_opts->is_inbound;
flow_log("%s()\n", __func__);
flow_log(" in:%u authFirst:%u\n",
req_opts->is_inbound, req_opts->auth_first);
flow_log(" cipher alg:%u mode:%u type %u\n", cipher_parms->alg,
cipher_parms->mode, cipher_parms->type);
flow_log(" is_esp: %s\n", req_opts->is_esp ? "yes" : "no");
flow_log(" key: %d\n", cipher_parms->key_len);
flow_dump(" key: ", cipher_parms->key_buf, cipher_parms->key_len);
flow_log(" iv: %d\n", cipher_parms->iv_len);
flow_dump(" iv: ", cipher_parms->iv_buf, cipher_parms->iv_len);
flow_log(" auth alg:%u mode:%u type %u\n",
hash_parms->alg, hash_parms->mode, hash_parms->type);
flow_log(" digestsize: %u\n", hash_parms->digestsize);
flow_log(" authkey: %d\n", hash_parms->key_len);
flow_dump(" authkey: ", hash_parms->key_buf, hash_parms->key_len);
flow_log(" assoc_size:%u\n", assoc_size);
flow_log(" prebuf_len:%u\n", hash_parms->prebuf_len);
flow_log(" data_size:%u\n", data_size);
flow_log(" hash_pad_len:%u\n", hash_parms->pad_len);
flow_log(" real_db_size:%u\n", real_db_size);
flow_log(" cipher_offset:%u payload_len:%u\n",
cipher_offset, payload_len);
flow_log(" aead_iv: %u\n", aead_parms->iv_len);
/* Convert to spu2 values for cipher alg, hash alg */
err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode,
cipher_parms->type,
&spu2_ciph_type, &spu2_ciph_mode);
/* If we are doing GCM hashing only - either via rfc4543 transform
* or because we happen to do GCM with AAD only and no payload - we
* need to configure hardware to use hash key rather than cipher key
* and put data into payload. This is because unlike SPU-M, running
* GCM cipher with 0 size payload is not permitted.
*/
if ((req_opts->is_rfc4543) ||
((spu2_ciph_mode == SPU2_CIPHER_MODE_GCM) &&
(payload_len == 0))) {
/* Use hashing (only) and set up hash key */
spu2_ciph_type = SPU2_CIPHER_TYPE_NONE;
hash_parms->key_len = cipher_parms->key_len;
memcpy(hash_parms->key_buf, cipher_parms->key_buf,
cipher_parms->key_len);
cipher_parms->key_len = 0;
if (req_opts->is_rfc4543)
payload_len += assoc_size;
else
payload_len = assoc_size;
cipher_offset = 0;
assoc_size = 0;
}
if (err)
return 0;
flow_log("spu2 cipher type %s, cipher mode %s\n",
spu2_ciph_type_name(spu2_ciph_type),
spu2_ciph_mode_name(spu2_ciph_mode));
err = spu2_hash_xlate(hash_parms->alg, hash_parms->mode,
hash_parms->type,
cipher_parms->type,
&spu2_auth_type, &spu2_auth_mode);
if (err)
return 0;
flow_log("spu2 hash type %s, hash mode %s\n",
spu2_hash_type_name(spu2_auth_type),
spu2_hash_mode_name(spu2_auth_mode));
fmd = (struct SPU2_FMD *)spu_hdr;
spu2_fmd_ctrl0_write(fmd, req_opts->is_inbound, req_opts->auth_first,
proto, spu2_ciph_type, spu2_ciph_mode,
spu2_auth_type, spu2_auth_mode);
spu2_fmd_ctrl1_write(fmd, req_opts->is_inbound, assoc_size,
hash_parms->key_len, cipher_parms->key_len,
false, false,
aead_parms->return_iv, aead_parms->ret_iv_len,
aead_parms->ret_iv_off,
cipher_parms->iv_len, hash_parms->digestsize,
!req_opts->bd_suppress, return_md);
spu2_fmd_ctrl2_write(fmd, cipher_offset, hash_parms->key_len, 0,
cipher_parms->key_len, cipher_parms->iv_len);
spu2_fmd_ctrl3_write(fmd, payload_len);
ptr = (u8 *)(fmd + 1);
buf_len = sizeof(struct SPU2_FMD);
/* Write OMD */
if (hash_parms->key_len) {
memcpy(ptr, hash_parms->key_buf, hash_parms->key_len);
ptr += hash_parms->key_len;
buf_len += hash_parms->key_len;
}
if (cipher_parms->key_len) {
memcpy(ptr, cipher_parms->key_buf, cipher_parms->key_len);
ptr += cipher_parms->key_len;
buf_len += cipher_parms->key_len;
}
if (cipher_parms->iv_len) {
memcpy(ptr, cipher_parms->iv_buf, cipher_parms->iv_len);
ptr += cipher_parms->iv_len;
buf_len += cipher_parms->iv_len;
}
packet_dump(" SPU request header: ", spu_hdr, buf_len);
return buf_len;
}
/**
* spu_cipher_req_init() - Build an ablkcipher SPU2 request message header,
* including FMD and OMD.
* @spu_hdr: Location of start of SPU request (FMD field)
* @cipher_parms: Parameters describing cipher request
*
* Called at setkey time to initialize a msg header that can be reused for all
* subsequent ablkcipher requests. Construct the message starting at spu_hdr.
* Caller should allocate this buffer in DMA-able memory at least
* SPU_HEADER_ALLOC_LEN bytes long.
*
* Return: the total length of the SPU header (FMD and OMD) in bytes. 0 if an
* error occurs.
*/
u16 spu2_cipher_req_init(u8 *spu_hdr, struct spu_cipher_parms *cipher_parms)
{
struct SPU2_FMD *fmd;
u8 *omd;
enum spu2_cipher_type spu2_type = SPU2_CIPHER_TYPE_NONE;
enum spu2_cipher_mode spu2_mode;
int err;
flow_log("%s()\n", __func__);
flow_log(" cipher alg:%u mode:%u type %u\n", cipher_parms->alg,
cipher_parms->mode, cipher_parms->type);
flow_log(" cipher_iv_len: %u\n", cipher_parms->iv_len);
flow_log(" key: %d\n", cipher_parms->key_len);
flow_dump(" key: ", cipher_parms->key_buf, cipher_parms->key_len);
/* Convert to spu2 values */
err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode,
cipher_parms->type, &spu2_type, &spu2_mode);
if (err)
return 0;
flow_log("spu2 cipher type %s, cipher mode %s\n",
spu2_ciph_type_name(spu2_type),
spu2_ciph_mode_name(spu2_mode));
/* Construct the FMD header */
fmd = (struct SPU2_FMD *)spu_hdr;
err = spu2_fmd_init(fmd, spu2_type, spu2_mode, cipher_parms->key_len,
cipher_parms->iv_len);
if (err)
return 0;
/* Write cipher key to OMD */
omd = (u8 *)(fmd + 1);
if (cipher_parms->key_buf && cipher_parms->key_len)
memcpy(omd, cipher_parms->key_buf, cipher_parms->key_len);
packet_dump(" SPU request header: ", spu_hdr,
FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len);
return FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len;
}
/**
* spu_cipher_req_finish() - Finish building a SPU request message header for a
* block cipher request.
* @spu_hdr: Start of the request message header (MH field)
* @spu_req_hdr_len: Length in bytes of the SPU request header
* @isInbound: 0 encrypt, 1 decrypt
* @cipher_parms: Parameters describing cipher operation to be performed
* @update_key: If true, rewrite the cipher key in SCTX
* @data_size: Length of the data in the BD field
*
* Assumes much of the header was already filled in at setkey() time in
* spu_cipher_req_init().
* spu_cipher_req_init() fills in the encryption key. For RC4, when submitting a
* request for a non-first chunk, we use the 260-byte SUPDT field from the
* previous response as the key. update_key is true for this case. Unused in all
* other cases.
*/
void spu2_cipher_req_finish(u8 *spu_hdr,
u16 spu_req_hdr_len,
unsigned int is_inbound,
struct spu_cipher_parms *cipher_parms,
bool update_key,
unsigned int data_size)
{
struct SPU2_FMD *fmd;
u8 *omd; /* start of optional metadata */
u64 ctrl0;
u64 ctrl3;
flow_log("%s()\n", __func__);
flow_log(" in: %u\n", is_inbound);
flow_log(" cipher alg: %u, cipher_type: %u\n", cipher_parms->alg,
cipher_parms->type);
if (update_key) {
flow_log(" cipher key len: %u\n", cipher_parms->key_len);
flow_dump(" key: ", cipher_parms->key_buf,
cipher_parms->key_len);
}
flow_log(" iv len: %d\n", cipher_parms->iv_len);
flow_dump(" iv: ", cipher_parms->iv_buf, cipher_parms->iv_len);
flow_log(" data_size: %u\n", data_size);
fmd = (struct SPU2_FMD *)spu_hdr;
omd = (u8 *)(fmd + 1);
/*
* FMD ctrl0 was initialized at setkey time. update it to indicate
* whether we are encrypting or decrypting.
*/
ctrl0 = le64_to_cpu(fmd->ctrl0);
if (is_inbound)
ctrl0 &= ~SPU2_CIPH_ENCRYPT_EN; /* decrypt */
else
ctrl0 |= SPU2_CIPH_ENCRYPT_EN; /* encrypt */
fmd->ctrl0 = cpu_to_le64(ctrl0);
if (cipher_parms->alg && cipher_parms->iv_buf && cipher_parms->iv_len) {
/* cipher iv provided so put it in here */
memcpy(omd + cipher_parms->key_len, cipher_parms->iv_buf,
cipher_parms->iv_len);
}
ctrl3 = le64_to_cpu(fmd->ctrl3);
data_size &= SPU2_PL_LEN;
ctrl3 |= data_size;
fmd->ctrl3 = cpu_to_le64(ctrl3);
packet_dump(" SPU request header: ", spu_hdr, spu_req_hdr_len);
}
/**
* spu_request_pad() - Create pad bytes at the end of the data.
* @pad_start: Start of buffer where pad bytes are to be written
* @gcm_padding: Length of GCM padding, in bytes
* @hash_pad_len: Number of bytes of padding extend data to full block
* @auth_alg: Authentication algorithm
* @auth_mode: Authentication mode
* @total_sent: Length inserted at end of hash pad
* @status_padding: Number of bytes of padding to align STATUS word
*
* There may be three forms of pad:
* 1. GCM pad - for GCM mode ciphers, pad to 16-byte alignment
* 2. hash pad - pad to a block length, with 0x80 data terminator and
* size at the end
* 3. STAT pad - to ensure the STAT field is 4-byte aligned
*/
void spu2_request_pad(u8 *pad_start, u32 gcm_padding, u32 hash_pad_len,
enum hash_alg auth_alg, enum hash_mode auth_mode,
unsigned int total_sent, u32 status_padding)
{
u8 *ptr = pad_start;
/* fix data alignent for GCM */
if (gcm_padding > 0) {
flow_log(" GCM: padding to 16 byte alignment: %u bytes\n",
gcm_padding);
memset(ptr, 0, gcm_padding);
ptr += gcm_padding;
}
if (hash_pad_len > 0) {
/* clear the padding section */
memset(ptr, 0, hash_pad_len);
/* terminate the data */
*ptr = 0x80;
ptr += (hash_pad_len - sizeof(u64));
/* add the size at the end as required per alg */
if (auth_alg == HASH_ALG_MD5)
*(u64 *)ptr = cpu_to_le64((u64)total_sent * 8);
else /* SHA1, SHA2-224, SHA2-256 */
*(u64 *)ptr = cpu_to_be64((u64)total_sent * 8);
ptr += sizeof(u64);
}
/* pad to a 4byte alignment for STAT */
if (status_padding > 0) {
flow_log(" STAT: padding to 4 byte alignment: %u bytes\n",
status_padding);
memset(ptr, 0, status_padding);
ptr += status_padding;
}
}
/**
* spu2_xts_tweak_in_payload() - Indicate that SPU2 does NOT place the XTS
* tweak field in the packet payload (it uses IV instead)
*
* Return: 0
*/
u8 spu2_xts_tweak_in_payload(void)
{
return 0;
}
/**
* spu2_tx_status_len() - Return the length of the STATUS field in a SPU
* response message.
*
* Return: Length of STATUS field in bytes.
*/
u8 spu2_tx_status_len(void)
{
return SPU2_TX_STATUS_LEN;
}
/**
* spu2_rx_status_len() - Return the length of the STATUS field in a SPU
* response message.
*
* Return: Length of STATUS field in bytes.
*/
u8 spu2_rx_status_len(void)
{
return SPU2_RX_STATUS_LEN;
}
/**
* spu_status_process() - Process the status from a SPU response message.
* @statp: start of STATUS word
*
* Return: 0 - if status is good and response should be processed
* !0 - status indicates an error and response is invalid
*/
int spu2_status_process(u8 *statp)
{
/* SPU2 status is 2 bytes by default - SPU_RX_STATUS_LEN */
u16 status = le16_to_cpu(*(__le16 *)statp);
if (status == 0)
return 0;
flow_log("rx status is %#x\n", status);
if (status == SPU2_INVALID_ICV)
return SPU_INVALID_ICV;
return -EBADMSG;
}
/**
* spu2_ccm_update_iv() - Update the IV as per the requirements for CCM mode.
*
* @digestsize: Digest size of this request
* @cipher_parms: (pointer to) cipher parmaeters, includes IV buf & IV len
* @assoclen: Length of AAD data
* @chunksize: length of input data to be sent in this req
* @is_encrypt: true if this is an output/encrypt operation
* @is_esp: true if this is an ESP / RFC4309 operation
*
*/
void spu2_ccm_update_iv(unsigned int digestsize,
struct spu_cipher_parms *cipher_parms,
unsigned int assoclen, unsigned int chunksize,
bool is_encrypt, bool is_esp)
{
int L; /* size of length field, in bytes */
/*
* In RFC4309 mode, L is fixed at 4 bytes; otherwise, IV from
* testmgr contains (L-1) in bottom 3 bits of first byte,
* per RFC 3610.
*/
if (is_esp)
L = CCM_ESP_L_VALUE;
else
L = ((cipher_parms->iv_buf[0] & CCM_B0_L_PRIME) >>
CCM_B0_L_PRIME_SHIFT) + 1;
/* SPU2 doesn't want these length bytes nor the first byte... */
cipher_parms->iv_len -= (1 + L);
memmove(cipher_parms->iv_buf, &cipher_parms->iv_buf[1],
cipher_parms->iv_len);
}
/**
* spu2_wordalign_padlen() - SPU2 does not require padding.
* @data_size: length of data field in bytes
*
* Return: length of status field padding, in bytes (always 0 on SPU2)
*/
u32 spu2_wordalign_padlen(u32 data_size)
{
return 0;
}