blob: 4cbd8fba4b95d20ca587b43025b5564775a44c29 [file] [log] [blame]
/*
* I2C Link Layer for ST21NFCA HCI based Driver
* Copyright (C) 2014 STMicroelectronics SAS. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/crc-ccitt.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/gpio.h>
#include <linux/miscdevice.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/nfc.h>
#include <linux/firmware.h>
#include <linux/unaligned/access_ok.h>
#include <linux/platform_data/st21nfca.h>
#include <net/nfc/hci.h>
#include <net/nfc/llc.h>
#include <net/nfc/nfc.h>
#include "st21nfca.h"
/*
* Every frame starts with ST21NFCA_SOF_EOF and ends with ST21NFCA_SOF_EOF.
* Because ST21NFCA_SOF_EOF is a possible data value, there is a mecanism
* called byte stuffing has been introduced.
*
* if byte == ST21NFCA_SOF_EOF or ST21NFCA_ESCAPE_BYTE_STUFFING
* - insert ST21NFCA_ESCAPE_BYTE_STUFFING (escape byte)
* - xor byte with ST21NFCA_BYTE_STUFFING_MASK
*/
#define ST21NFCA_SOF_EOF 0x7e
#define ST21NFCA_BYTE_STUFFING_MASK 0x20
#define ST21NFCA_ESCAPE_BYTE_STUFFING 0x7d
/* SOF + 00 fill size */
#define ST21NFCA_FRAME_HEADROOM 2
/* 4 bytes crc (worst case byte stuffing) + EOF */
#define ST21NFCA_FRAME_TAILROOM 5
#define ST21NFCA_HCI_I2C_DRIVER_NAME "st21nfca_hci_i2c"
static struct i2c_device_id st21nfca_hci_i2c_id_table[] = {
{ST21NFCA_HCI_DRIVER_NAME, 0},
{}
};
MODULE_DEVICE_TABLE(i2c, st21nfca_hci_i2c_id_table);
struct st21nfca_i2c_phy {
struct i2c_client *i2c_dev;
struct nfc_hci_dev *hdev;
unsigned int gpio_ena;
unsigned int gpio_irq;
unsigned int irq_polarity;
struct sk_buff *pending_skb;
int current_read_len;
/*
* crc might have fail because i2c macro
* is disable due to other interface activity
*/
int crc_trials;
int powered;
int run_mode;
/*
* < 0 if hardware error occured (e.g. i2c err)
* and prevents normal operation.
*/
int hard_fault;
};
static u8 len_seq[] = { 13, 24, 15, 29 };
static u16 wait_tab[] = { 2, 3, 5, 15, 20, 40};
#define I2C_DUMP_SKB(info, skb) \
do { \
pr_debug("%s:\n", info); \
print_hex_dump(KERN_DEBUG, "i2c: ", DUMP_PREFIX_OFFSET, \
16, 1, (skb)->data, (skb)->len, 0); \
} while (0)
static void st21nfca_hci_platform_init(struct st21nfca_i2c_phy *phy)
{
u16 wait_reboot[] = { 50, 300, 1000 };
char reboot_cmd[] = { 0x7E, 0x66, 0x48, 0xF6, 0x7E };
u8 tmp[ST21NFCA_HCI_LLC_MAX_SIZE];
int i, r = -1;
for (i = 0; i < ARRAY_SIZE(wait_reboot) && r < 0; i++)
r = i2c_master_recv(phy->i2c_dev, tmp,
ST21NFCA_HCI_LLC_MAX_SIZE);
r = -1;
for (i = 0; i < ARRAY_SIZE(wait_reboot) && r < 0; i++)
r = i2c_master_send(phy->i2c_dev, reboot_cmd,
sizeof(reboot_cmd));
usleep_range(1000, 1500);
}
static int st21nfca_hci_i2c_enable(void *phy_id)
{
struct st21nfca_i2c_phy *phy = phy_id;
gpio_set_value(phy->gpio_ena, 1);
phy->powered = 1;
phy->run_mode = ST21NFCA_HCI_MODE;
usleep_range(10000, 15000);
return 0;
}
static void st21nfca_hci_i2c_disable(void *phy_id)
{
struct st21nfca_i2c_phy *phy = phy_id;
pr_info("\n");
gpio_set_value(phy->gpio_ena, 0);
phy->powered = 0;
}
static int st21nfca_hci_add_len_crc(struct sk_buff *skb)
{
int ret = 2;
u16 crc;
u8 tmp;
*skb_push(skb, 1) = 0;
crc = crc_ccitt(0xffff, skb->data, skb->len);
crc = ~crc;
tmp = crc & 0x00ff;
*skb_put(skb, 1) = tmp;
tmp = (crc >> 8) & 0x00ff;
*skb_put(skb, 1) = tmp;
return ret;
}
static void st21nfca_hci_remove_len_crc(struct sk_buff *skb, int crc_len)
{
skb_pull(skb, ST21NFCA_FRAME_HEADROOM);
skb_trim(skb, crc_len);
}
/*
* Writing a frame must not return the number of written bytes.
* It must return either zero for success, or <0 for error.
* In addition, it must not alter the skb
*/
static int st21nfca_hci_i2c_write(void *phy_id, struct sk_buff *skb)
{
int r = -1, i, j, len;
struct st21nfca_i2c_phy *phy = phy_id;
struct i2c_client *client = phy->i2c_dev;
u8 tmp[ST21NFCA_HCI_LLC_MAX_SIZE * 2];
I2C_DUMP_SKB("st21nfca_hci_i2c_write", skb);
if (phy->hard_fault != 0)
return phy->hard_fault;
/*
* Compute CRC before byte stuffing computation on frame
* Note st21nfca_hci_add_len_crc is doing a byte stuffing
* on its own value
*/
len = st21nfca_hci_add_len_crc(skb);
/* add ST21NFCA_SOF_EOF on tail */
*skb_put(skb, 1) = ST21NFCA_SOF_EOF;
/* add ST21NFCA_SOF_EOF on head */
*skb_push(skb, 1) = ST21NFCA_SOF_EOF;
/*
* Compute byte stuffing
* if byte == ST21NFCA_SOF_EOF or ST21NFCA_ESCAPE_BYTE_STUFFING
* insert ST21NFCA_ESCAPE_BYTE_STUFFING (escape byte)
* xor byte with ST21NFCA_BYTE_STUFFING_MASK
*/
tmp[0] = skb->data[0];
for (i = 1, j = 1; i < skb->len - 1; i++, j++) {
if (skb->data[i] == ST21NFCA_SOF_EOF
|| skb->data[i] == ST21NFCA_ESCAPE_BYTE_STUFFING) {
tmp[j] = ST21NFCA_ESCAPE_BYTE_STUFFING;
j++;
tmp[j] = skb->data[i] ^ ST21NFCA_BYTE_STUFFING_MASK;
} else {
tmp[j] = skb->data[i];
}
}
tmp[j] = skb->data[i];
j++;
/*
* Manage sleep mode
* Try 3 times to send data with delay between each
*/
for (i = 0; i < ARRAY_SIZE(wait_tab) && r < 0; i++) {
r = i2c_master_send(client, tmp, j);
if (r < 0)
msleep(wait_tab[i]);
}
if (r >= 0) {
if (r != j)
r = -EREMOTEIO;
else
r = 0;
}
st21nfca_hci_remove_len_crc(skb, len);
return r;
}
static int get_frame_size(u8 *buf, int buflen)
{
int len = 0;
if (buf[len + 1] == ST21NFCA_SOF_EOF)
return 0;
for (len = 1; len < buflen && buf[len] != ST21NFCA_SOF_EOF; len++)
;
return len;
}
static int check_crc(u8 *buf, int buflen)
{
u16 crc;
crc = crc_ccitt(0xffff, buf, buflen - 2);
crc = ~crc;
if (buf[buflen - 2] != (crc & 0xff) || buf[buflen - 1] != (crc >> 8)) {
pr_err(ST21NFCA_HCI_DRIVER_NAME
": CRC error 0x%x != 0x%x 0x%x\n", crc, buf[buflen - 1],
buf[buflen - 2]);
pr_info(DRIVER_DESC ": %s : BAD CRC\n", __func__);
print_hex_dump(KERN_DEBUG, "crc: ", DUMP_PREFIX_NONE,
16, 2, buf, buflen, false);
return -EPERM;
}
return 0;
}
/*
* Prepare received data for upper layer.
* Received data include byte stuffing, crc and sof/eof
* which is not usable by hci part.
* returns:
* frame size without sof/eof, header and byte stuffing
* -EBADMSG : frame was incorrect and discarded
*/
static int st21nfca_hci_i2c_repack(struct sk_buff *skb)
{
int i, j, r, size;
if (skb->len < 1 || (skb->len > 1 && skb->data[1] != 0))
return -EBADMSG;
size = get_frame_size(skb->data, skb->len);
if (size > 0) {
skb_trim(skb, size);
/* remove ST21NFCA byte stuffing for upper layer */
for (i = 1, j = 0; i < skb->len; i++) {
if (skb->data[i] ==
(u8) ST21NFCA_ESCAPE_BYTE_STUFFING) {
skb->data[i] =
skb->data[i +
1] | ST21NFCA_BYTE_STUFFING_MASK;
i++;
j++;
}
skb->data[i] = skb->data[i + j];
}
/* remove byte stuffing useless byte */
skb_trim(skb, i - j);
/* remove ST21NFCA_SOF_EOF from head */
skb_pull(skb, 1);
r = check_crc(skb->data, skb->len);
if (r != 0) {
i = 0;
return -EBADMSG;
}
/* remove headbyte */
skb_pull(skb, 1);
/* remove crc. Byte Stuffing is already removed here */
skb_trim(skb, skb->len - 2);
return skb->len;
}
return 0;
}
/*
* Reads an shdlc frame and returns it in a newly allocated sk_buff. Guarantees
* that i2c bus will be flushed and that next read will start on a new frame.
* returned skb contains only LLC header and payload.
* returns:
* frame size : if received frame is complete (find ST21NFCA_SOF_EOF at
* end of read)
* -EAGAIN : if received frame is incomplete (not find ST21NFCA_SOF_EOF
* at end of read)
* -EREMOTEIO : i2c read error (fatal)
* -EBADMSG : frame was incorrect and discarded
* (value returned from st21nfca_hci_i2c_repack)
* -EIO : if no ST21NFCA_SOF_EOF is found after reaching
* the read length end sequence
*/
static int st21nfca_hci_i2c_read(struct st21nfca_i2c_phy *phy,
struct sk_buff *skb)
{
int r, i;
u8 len;
struct i2c_client *client = phy->i2c_dev;
if (phy->current_read_len < ARRAY_SIZE(len_seq)) {
len = len_seq[phy->current_read_len];
/*
* Add retry mecanism
* Operation on I2C interface may fail in case of operation on
* RF or SWP interface
*/
r = 0;
for (i = 0; i < ARRAY_SIZE(wait_tab) && r <= 0; i++) {
r = i2c_master_recv(client, skb_put(skb, len), len);
if (r < 0)
msleep(wait_tab[i]);
}
if (r != len) {
phy->current_read_len = 0;
return -EREMOTEIO;
}
if (memchr(skb->data + 2, ST21NFCA_SOF_EOF,
skb->len - 2) != NULL) {
phy->current_read_len = 0;
return st21nfca_hci_i2c_repack(skb);
}
phy->current_read_len++;
return -EAGAIN;
}
return -EIO;
}
/*
* Reads an shdlc frame from the chip. This is not as straightforward as it
* seems. The frame format is data-crc, and corruption can occur anywhere
* while transiting on i2c bus, such that we could read an invalid data.
* The tricky case is when we read a corrupted data or crc. We must detect
* this here in order to determine that data can be transmitted to the hci
* core. This is the reason why we check the crc here.
* The CLF will repeat a frame until we send a RR on that frame.
*
* On ST21NFCA, IRQ goes in idle when read starts. As no size information are
* available in the incoming data, other IRQ might come. Every IRQ will trigger
* a read sequence with different length and will fill the current frame.
* The reception is complete once we reach a ST21NFCA_SOF_EOF.
*/
static irqreturn_t st21nfca_hci_irq_thread_fn(int irq, void *phy_id)
{
struct st21nfca_i2c_phy *phy = phy_id;
struct i2c_client *client;
int r;
if (!phy || irq != phy->i2c_dev->irq) {
WARN_ON_ONCE(1);
return IRQ_NONE;
}
client = phy->i2c_dev;
dev_dbg(&client->dev, "IRQ\n");
if (phy->hard_fault != 0)
return IRQ_HANDLED;
r = st21nfca_hci_i2c_read(phy, phy->pending_skb);
if (r == -EREMOTEIO) {
phy->hard_fault = r;
nfc_hci_recv_frame(phy->hdev, NULL);
return IRQ_HANDLED;
} else if (r == -EAGAIN || r == -EIO) {
return IRQ_HANDLED;
} else if (r == -EBADMSG && phy->crc_trials < ARRAY_SIZE(wait_tab)) {
/*
* With ST21NFCA, only one interface (I2C, RF or SWP)
* may be active at a time.
* Having incorrect crc is usually due to i2c macrocell
* deactivation in the middle of a transmission.
* It may generate corrupted data on i2c.
* We give sometime to get i2c back.
* The complete frame will be repeated.
*/
msleep(wait_tab[phy->crc_trials]);
phy->crc_trials++;
phy->current_read_len = 0;
} else if (r > 0) {
/*
* We succeeded to read data from the CLF and
* data is valid.
* Reset counter.
*/
nfc_hci_recv_frame(phy->hdev, phy->pending_skb);
phy->crc_trials = 0;
}
phy->pending_skb = alloc_skb(ST21NFCA_HCI_LLC_MAX_SIZE * 2, GFP_KERNEL);
if (phy->pending_skb == NULL) {
phy->hard_fault = -ENOMEM;
nfc_hci_recv_frame(phy->hdev, NULL);
}
return IRQ_HANDLED;
}
static struct nfc_phy_ops i2c_phy_ops = {
.write = st21nfca_hci_i2c_write,
.enable = st21nfca_hci_i2c_enable,
.disable = st21nfca_hci_i2c_disable,
};
static int st21nfca_hci_i2c_request_resources(struct i2c_client *client)
{
struct st21nfca_nfc_platform_data *pdata;
struct st21nfca_i2c_phy *phy = i2c_get_clientdata(client);
int r;
pdata = client->dev.platform_data;
if (pdata == NULL) {
nfc_err(&client->dev, "No platform data\n");
return -EINVAL;
}
/* store for later use */
phy->gpio_irq = pdata->gpio_irq;
phy->gpio_ena = pdata->gpio_ena;
phy->irq_polarity = pdata->irq_polarity;
r = devm_gpio_request(&client->dev, phy->gpio_irq, "wake_up");
if (r) {
pr_err("%s : gpio_request failed\n", __FILE__);
return -ENODEV;
}
r = gpio_direction_input(phy->gpio_irq);
if (r) {
pr_err("%s : gpio_direction_input failed\n", __FILE__);
return -ENODEV;
}
if (phy->gpio_ena > 0) {
r = devm_gpio_request(&client->dev,
phy->gpio_ena, "clf_enable");
if (r) {
pr_err("%s : ena gpio_request failed\n", __FILE__);
return -ENODEV;
}
r = gpio_direction_output(phy->gpio_ena, 1);
if (r) {
pr_err("%s : ena gpio_direction_output failed\n",
__FILE__);
return -ENODEV;
}
}
return 0;
}
static int st21nfca_hci_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct st21nfca_i2c_phy *phy;
struct st21nfca_nfc_platform_data *pdata;
int r;
int irq;
dev_dbg(&client->dev, "%s\n", __func__);
dev_dbg(&client->dev, "IRQ: %d\n", client->irq);
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
nfc_err(&client->dev, "Need I2C_FUNC_I2C\n");
return -ENODEV;
}
phy = devm_kzalloc(&client->dev, sizeof(struct st21nfca_i2c_phy),
GFP_KERNEL);
if (!phy) {
nfc_err(&client->dev,
"Cannot allocate memory for st21nfca i2c phy.\n");
return -ENOMEM;
}
phy->i2c_dev = client;
phy->pending_skb = alloc_skb(ST21NFCA_HCI_LLC_MAX_SIZE * 2, GFP_KERNEL);
if (phy->pending_skb == NULL)
return -ENOMEM;
phy->current_read_len = 0;
phy->crc_trials = 0;
i2c_set_clientdata(client, phy);
pdata = client->dev.platform_data;
if (!pdata) {
nfc_err(&client->dev, "No platform data\n");
return -EINVAL;
}
r = st21nfca_hci_i2c_request_resources(client);
if (r) {
nfc_err(&client->dev, "Cannot get platform resources\n");
return r;
}
/* IRQ */
irq = gpio_to_irq(phy->gpio_irq);
if (irq < 0) {
nfc_err(&client->dev,
"Unable to get irq number for GPIO %d error %d\n",
phy->gpio_irq, r);
return -ENODEV;
}
client->irq = irq;
st21nfca_hci_platform_init(phy);
r = devm_request_threaded_irq(&client->dev, client->irq, NULL,
st21nfca_hci_irq_thread_fn,
phy->irq_polarity | IRQF_ONESHOT,
ST21NFCA_HCI_DRIVER_NAME, phy);
if (r < 0) {
nfc_err(&client->dev, "Unable to register IRQ handler\n");
return r;
}
return st21nfca_hci_probe(phy, &i2c_phy_ops, LLC_SHDLC_NAME,
ST21NFCA_FRAME_HEADROOM, ST21NFCA_FRAME_TAILROOM,
ST21NFCA_HCI_LLC_MAX_PAYLOAD, &phy->hdev);
}
static int st21nfca_hci_i2c_remove(struct i2c_client *client)
{
struct st21nfca_i2c_phy *phy = i2c_get_clientdata(client);
dev_dbg(&client->dev, "%s\n", __func__);
st21nfca_hci_remove(phy->hdev);
if (phy->powered)
st21nfca_hci_i2c_disable(phy);
return 0;
}
static struct i2c_driver st21nfca_hci_i2c_driver = {
.driver = {
.owner = THIS_MODULE,
.name = ST21NFCA_HCI_I2C_DRIVER_NAME,
},
.probe = st21nfca_hci_i2c_probe,
.id_table = st21nfca_hci_i2c_id_table,
.remove = st21nfca_hci_i2c_remove,
};
module_i2c_driver(st21nfca_hci_i2c_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION(DRIVER_DESC);