| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_types.h" |
| #include "xfs_bit.h" |
| #include "xfs_log.h" |
| #include "xfs_inum.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_dir2.h" |
| #include "xfs_dmapi.h" |
| #include "xfs_mount.h" |
| #include "xfs_da_btree.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_dir2_sf.h" |
| #include "xfs_attr_sf.h" |
| #include "xfs_dinode.h" |
| #include "xfs_inode.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_btree.h" |
| #include "xfs_alloc.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_quota.h" |
| #include "xfs_error.h" |
| #include "xfs_bmap.h" |
| #include "xfs_rw.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_log_priv.h" |
| #include "xfs_dir2_trace.h" |
| #include "xfs_extfree_item.h" |
| #include "xfs_acl.h" |
| #include "xfs_attr.h" |
| #include "xfs_clnt.h" |
| #include "xfs_mru_cache.h" |
| #include "xfs_filestream.h" |
| #include "xfs_fsops.h" |
| #include "xfs_vnodeops.h" |
| #include "xfs_vfsops.h" |
| #include "xfs_utils.h" |
| |
| |
| int __init |
| xfs_init(void) |
| { |
| #ifdef XFS_DABUF_DEBUG |
| extern spinlock_t xfs_dabuf_global_lock; |
| spin_lock_init(&xfs_dabuf_global_lock); |
| #endif |
| |
| /* |
| * Initialize all of the zone allocators we use. |
| */ |
| xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t), |
| "xfs_log_ticket"); |
| xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t), |
| "xfs_bmap_free_item"); |
| xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t), |
| "xfs_btree_cur"); |
| xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t), |
| "xfs_da_state"); |
| xfs_dabuf_zone = kmem_zone_init(sizeof(xfs_dabuf_t), "xfs_dabuf"); |
| xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork"); |
| xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans"); |
| xfs_acl_zone_init(xfs_acl_zone, "xfs_acl"); |
| xfs_mru_cache_init(); |
| xfs_filestream_init(); |
| |
| /* |
| * The size of the zone allocated buf log item is the maximum |
| * size possible under XFS. This wastes a little bit of memory, |
| * but it is much faster. |
| */ |
| xfs_buf_item_zone = |
| kmem_zone_init((sizeof(xfs_buf_log_item_t) + |
| (((XFS_MAX_BLOCKSIZE / XFS_BLI_CHUNK) / |
| NBWORD) * sizeof(int))), |
| "xfs_buf_item"); |
| xfs_efd_zone = |
| kmem_zone_init((sizeof(xfs_efd_log_item_t) + |
| ((XFS_EFD_MAX_FAST_EXTENTS - 1) * |
| sizeof(xfs_extent_t))), |
| "xfs_efd_item"); |
| xfs_efi_zone = |
| kmem_zone_init((sizeof(xfs_efi_log_item_t) + |
| ((XFS_EFI_MAX_FAST_EXTENTS - 1) * |
| sizeof(xfs_extent_t))), |
| "xfs_efi_item"); |
| |
| /* |
| * These zones warrant special memory allocator hints |
| */ |
| xfs_inode_zone = |
| kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode", |
| KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | |
| KM_ZONE_SPREAD, NULL); |
| xfs_ili_zone = |
| kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili", |
| KM_ZONE_SPREAD, NULL); |
| |
| /* |
| * Allocate global trace buffers. |
| */ |
| #ifdef XFS_ALLOC_TRACE |
| xfs_alloc_trace_buf = ktrace_alloc(XFS_ALLOC_TRACE_SIZE, KM_SLEEP); |
| #endif |
| #ifdef XFS_BMAP_TRACE |
| xfs_bmap_trace_buf = ktrace_alloc(XFS_BMAP_TRACE_SIZE, KM_SLEEP); |
| #endif |
| #ifdef XFS_BMBT_TRACE |
| xfs_bmbt_trace_buf = ktrace_alloc(XFS_BMBT_TRACE_SIZE, KM_SLEEP); |
| #endif |
| #ifdef XFS_ATTR_TRACE |
| xfs_attr_trace_buf = ktrace_alloc(XFS_ATTR_TRACE_SIZE, KM_SLEEP); |
| #endif |
| #ifdef XFS_DIR2_TRACE |
| xfs_dir2_trace_buf = ktrace_alloc(XFS_DIR2_GTRACE_SIZE, KM_SLEEP); |
| #endif |
| |
| xfs_dir_startup(); |
| |
| #if (defined(DEBUG) || defined(INDUCE_IO_ERROR)) |
| xfs_error_test_init(); |
| #endif /* DEBUG || INDUCE_IO_ERROR */ |
| |
| xfs_init_procfs(); |
| xfs_sysctl_register(); |
| return 0; |
| } |
| |
| void __exit |
| xfs_cleanup(void) |
| { |
| extern kmem_zone_t *xfs_inode_zone; |
| extern kmem_zone_t *xfs_efd_zone; |
| extern kmem_zone_t *xfs_efi_zone; |
| |
| xfs_cleanup_procfs(); |
| xfs_sysctl_unregister(); |
| xfs_filestream_uninit(); |
| xfs_mru_cache_uninit(); |
| xfs_acl_zone_destroy(xfs_acl_zone); |
| |
| #ifdef XFS_DIR2_TRACE |
| ktrace_free(xfs_dir2_trace_buf); |
| #endif |
| #ifdef XFS_ATTR_TRACE |
| ktrace_free(xfs_attr_trace_buf); |
| #endif |
| #ifdef XFS_BMBT_TRACE |
| ktrace_free(xfs_bmbt_trace_buf); |
| #endif |
| #ifdef XFS_BMAP_TRACE |
| ktrace_free(xfs_bmap_trace_buf); |
| #endif |
| #ifdef XFS_ALLOC_TRACE |
| ktrace_free(xfs_alloc_trace_buf); |
| #endif |
| |
| kmem_zone_destroy(xfs_bmap_free_item_zone); |
| kmem_zone_destroy(xfs_btree_cur_zone); |
| kmem_zone_destroy(xfs_inode_zone); |
| kmem_zone_destroy(xfs_trans_zone); |
| kmem_zone_destroy(xfs_da_state_zone); |
| kmem_zone_destroy(xfs_dabuf_zone); |
| kmem_zone_destroy(xfs_buf_item_zone); |
| kmem_zone_destroy(xfs_efd_zone); |
| kmem_zone_destroy(xfs_efi_zone); |
| kmem_zone_destroy(xfs_ifork_zone); |
| kmem_zone_destroy(xfs_ili_zone); |
| } |
| |
| /* |
| * xfs_start_flags |
| * |
| * This function fills in xfs_mount_t fields based on mount args. |
| * Note: the superblock has _not_ yet been read in. |
| */ |
| STATIC int |
| xfs_start_flags( |
| struct xfs_mount_args *ap, |
| struct xfs_mount *mp) |
| { |
| /* Values are in BBs */ |
| if ((ap->flags & XFSMNT_NOALIGN) != XFSMNT_NOALIGN) { |
| /* |
| * At this point the superblock has not been read |
| * in, therefore we do not know the block size. |
| * Before the mount call ends we will convert |
| * these to FSBs. |
| */ |
| mp->m_dalign = ap->sunit; |
| mp->m_swidth = ap->swidth; |
| } |
| |
| if (ap->logbufs != -1 && |
| ap->logbufs != 0 && |
| (ap->logbufs < XLOG_MIN_ICLOGS || |
| ap->logbufs > XLOG_MAX_ICLOGS)) { |
| cmn_err(CE_WARN, |
| "XFS: invalid logbufs value: %d [not %d-%d]", |
| ap->logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_logbufs = ap->logbufs; |
| if (ap->logbufsize != -1 && |
| ap->logbufsize != 0 && |
| (ap->logbufsize < XLOG_MIN_RECORD_BSIZE || |
| ap->logbufsize > XLOG_MAX_RECORD_BSIZE || |
| !is_power_of_2(ap->logbufsize))) { |
| cmn_err(CE_WARN, |
| "XFS: invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]", |
| ap->logbufsize); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_logbsize = ap->logbufsize; |
| mp->m_fsname_len = strlen(ap->fsname) + 1; |
| mp->m_fsname = kmem_alloc(mp->m_fsname_len, KM_SLEEP); |
| strcpy(mp->m_fsname, ap->fsname); |
| if (ap->rtname[0]) { |
| mp->m_rtname = kmem_alloc(strlen(ap->rtname) + 1, KM_SLEEP); |
| strcpy(mp->m_rtname, ap->rtname); |
| } |
| if (ap->logname[0]) { |
| mp->m_logname = kmem_alloc(strlen(ap->logname) + 1, KM_SLEEP); |
| strcpy(mp->m_logname, ap->logname); |
| } |
| |
| if (ap->flags & XFSMNT_WSYNC) |
| mp->m_flags |= XFS_MOUNT_WSYNC; |
| #if XFS_BIG_INUMS |
| if (ap->flags & XFSMNT_INO64) { |
| mp->m_flags |= XFS_MOUNT_INO64; |
| mp->m_inoadd = XFS_INO64_OFFSET; |
| } |
| #endif |
| if (ap->flags & XFSMNT_RETERR) |
| mp->m_flags |= XFS_MOUNT_RETERR; |
| if (ap->flags & XFSMNT_NOALIGN) |
| mp->m_flags |= XFS_MOUNT_NOALIGN; |
| if (ap->flags & XFSMNT_SWALLOC) |
| mp->m_flags |= XFS_MOUNT_SWALLOC; |
| if (ap->flags & XFSMNT_OSYNCISOSYNC) |
| mp->m_flags |= XFS_MOUNT_OSYNCISOSYNC; |
| if (ap->flags & XFSMNT_32BITINODES) |
| mp->m_flags |= XFS_MOUNT_32BITINODES; |
| |
| if (ap->flags & XFSMNT_IOSIZE) { |
| if (ap->iosizelog > XFS_MAX_IO_LOG || |
| ap->iosizelog < XFS_MIN_IO_LOG) { |
| cmn_err(CE_WARN, |
| "XFS: invalid log iosize: %d [not %d-%d]", |
| ap->iosizelog, XFS_MIN_IO_LOG, |
| XFS_MAX_IO_LOG); |
| return XFS_ERROR(EINVAL); |
| } |
| |
| mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE; |
| mp->m_readio_log = mp->m_writeio_log = ap->iosizelog; |
| } |
| |
| if (ap->flags & XFSMNT_IKEEP) |
| mp->m_flags |= XFS_MOUNT_IKEEP; |
| if (ap->flags & XFSMNT_DIRSYNC) |
| mp->m_flags |= XFS_MOUNT_DIRSYNC; |
| if (ap->flags & XFSMNT_ATTR2) |
| mp->m_flags |= XFS_MOUNT_ATTR2; |
| |
| if (ap->flags2 & XFSMNT2_COMPAT_IOSIZE) |
| mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE; |
| |
| /* |
| * no recovery flag requires a read-only mount |
| */ |
| if (ap->flags & XFSMNT_NORECOVERY) { |
| if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { |
| cmn_err(CE_WARN, |
| "XFS: tried to mount a FS read-write without recovery!"); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_flags |= XFS_MOUNT_NORECOVERY; |
| } |
| |
| if (ap->flags & XFSMNT_NOUUID) |
| mp->m_flags |= XFS_MOUNT_NOUUID; |
| if (ap->flags & XFSMNT_BARRIER) |
| mp->m_flags |= XFS_MOUNT_BARRIER; |
| else |
| mp->m_flags &= ~XFS_MOUNT_BARRIER; |
| |
| if (ap->flags2 & XFSMNT2_FILESTREAMS) |
| mp->m_flags |= XFS_MOUNT_FILESTREAMS; |
| |
| if (ap->flags & XFSMNT_DMAPI) |
| mp->m_flags |= XFS_MOUNT_DMAPI; |
| return 0; |
| } |
| |
| /* |
| * This function fills in xfs_mount_t fields based on mount args. |
| * Note: the superblock _has_ now been read in. |
| */ |
| STATIC int |
| xfs_finish_flags( |
| struct xfs_mount_args *ap, |
| struct xfs_mount *mp) |
| { |
| int ronly = (mp->m_flags & XFS_MOUNT_RDONLY); |
| |
| /* Fail a mount where the logbuf is smaller then the log stripe */ |
| if (xfs_sb_version_haslogv2(&mp->m_sb)) { |
| if ((ap->logbufsize <= 0) && |
| (mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE)) { |
| mp->m_logbsize = mp->m_sb.sb_logsunit; |
| } else if (ap->logbufsize > 0 && |
| ap->logbufsize < mp->m_sb.sb_logsunit) { |
| cmn_err(CE_WARN, |
| "XFS: logbuf size must be greater than or equal to log stripe size"); |
| return XFS_ERROR(EINVAL); |
| } |
| } else { |
| /* Fail a mount if the logbuf is larger than 32K */ |
| if (ap->logbufsize > XLOG_BIG_RECORD_BSIZE) { |
| cmn_err(CE_WARN, |
| "XFS: logbuf size for version 1 logs must be 16K or 32K"); |
| return XFS_ERROR(EINVAL); |
| } |
| } |
| |
| if (xfs_sb_version_hasattr2(&mp->m_sb)) |
| mp->m_flags |= XFS_MOUNT_ATTR2; |
| |
| /* |
| * prohibit r/w mounts of read-only filesystems |
| */ |
| if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) { |
| cmn_err(CE_WARN, |
| "XFS: cannot mount a read-only filesystem as read-write"); |
| return XFS_ERROR(EROFS); |
| } |
| |
| /* |
| * check for shared mount. |
| */ |
| if (ap->flags & XFSMNT_SHARED) { |
| if (!xfs_sb_version_hasshared(&mp->m_sb)) |
| return XFS_ERROR(EINVAL); |
| |
| /* |
| * For IRIX 6.5, shared mounts must have the shared |
| * version bit set, have the persistent readonly |
| * field set, must be version 0 and can only be mounted |
| * read-only. |
| */ |
| if (!ronly || !(mp->m_sb.sb_flags & XFS_SBF_READONLY) || |
| (mp->m_sb.sb_shared_vn != 0)) |
| return XFS_ERROR(EINVAL); |
| |
| mp->m_flags |= XFS_MOUNT_SHARED; |
| |
| /* |
| * Shared XFS V0 can't deal with DMI. Return EINVAL. |
| */ |
| if (mp->m_sb.sb_shared_vn == 0 && (ap->flags & XFSMNT_DMAPI)) |
| return XFS_ERROR(EINVAL); |
| } |
| |
| if (ap->flags & XFSMNT_UQUOTA) { |
| mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE); |
| if (ap->flags & XFSMNT_UQUOTAENF) |
| mp->m_qflags |= XFS_UQUOTA_ENFD; |
| } |
| |
| if (ap->flags & XFSMNT_GQUOTA) { |
| mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE); |
| if (ap->flags & XFSMNT_GQUOTAENF) |
| mp->m_qflags |= XFS_OQUOTA_ENFD; |
| } else if (ap->flags & XFSMNT_PQUOTA) { |
| mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE); |
| if (ap->flags & XFSMNT_PQUOTAENF) |
| mp->m_qflags |= XFS_OQUOTA_ENFD; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * xfs_mount |
| * |
| * The file system configurations are: |
| * (1) device (partition) with data and internal log |
| * (2) logical volume with data and log subvolumes. |
| * (3) logical volume with data, log, and realtime subvolumes. |
| * |
| * We only have to handle opening the log and realtime volumes here if |
| * they are present. The data subvolume has already been opened by |
| * get_sb_bdev() and is stored in vfsp->vfs_super->s_bdev. |
| */ |
| int |
| xfs_mount( |
| struct xfs_mount *mp, |
| struct xfs_mount_args *args, |
| cred_t *credp) |
| { |
| struct block_device *ddev, *logdev, *rtdev; |
| int flags = 0, error; |
| |
| ddev = mp->m_super->s_bdev; |
| logdev = rtdev = NULL; |
| |
| error = xfs_dmops_get(mp, args); |
| if (error) |
| return error; |
| error = xfs_qmops_get(mp, args); |
| if (error) |
| return error; |
| |
| if (args->flags & XFSMNT_QUIET) |
| flags |= XFS_MFSI_QUIET; |
| |
| /* |
| * Open real time and log devices - order is important. |
| */ |
| if (args->logname[0]) { |
| error = xfs_blkdev_get(mp, args->logname, &logdev); |
| if (error) |
| return error; |
| } |
| if (args->rtname[0]) { |
| error = xfs_blkdev_get(mp, args->rtname, &rtdev); |
| if (error) { |
| xfs_blkdev_put(logdev); |
| return error; |
| } |
| |
| if (rtdev == ddev || rtdev == logdev) { |
| cmn_err(CE_WARN, |
| "XFS: Cannot mount filesystem with identical rtdev and ddev/logdev."); |
| xfs_blkdev_put(logdev); |
| xfs_blkdev_put(rtdev); |
| return EINVAL; |
| } |
| } |
| |
| /* |
| * Setup xfs_mount buffer target pointers |
| */ |
| error = ENOMEM; |
| mp->m_ddev_targp = xfs_alloc_buftarg(ddev, 0); |
| if (!mp->m_ddev_targp) { |
| xfs_blkdev_put(logdev); |
| xfs_blkdev_put(rtdev); |
| return error; |
| } |
| if (rtdev) { |
| mp->m_rtdev_targp = xfs_alloc_buftarg(rtdev, 1); |
| if (!mp->m_rtdev_targp) { |
| xfs_blkdev_put(logdev); |
| xfs_blkdev_put(rtdev); |
| goto error0; |
| } |
| } |
| mp->m_logdev_targp = (logdev && logdev != ddev) ? |
| xfs_alloc_buftarg(logdev, 1) : mp->m_ddev_targp; |
| if (!mp->m_logdev_targp) { |
| xfs_blkdev_put(logdev); |
| xfs_blkdev_put(rtdev); |
| goto error0; |
| } |
| |
| /* |
| * Setup flags based on mount(2) options and then the superblock |
| */ |
| error = xfs_start_flags(args, mp); |
| if (error) |
| goto error1; |
| error = xfs_readsb(mp, flags); |
| if (error) |
| goto error1; |
| error = xfs_finish_flags(args, mp); |
| if (error) |
| goto error2; |
| |
| /* |
| * Setup xfs_mount buffer target pointers based on superblock |
| */ |
| error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize, |
| mp->m_sb.sb_sectsize); |
| if (!error && logdev && logdev != ddev) { |
| unsigned int log_sector_size = BBSIZE; |
| |
| if (xfs_sb_version_hassector(&mp->m_sb)) |
| log_sector_size = mp->m_sb.sb_logsectsize; |
| error = xfs_setsize_buftarg(mp->m_logdev_targp, |
| mp->m_sb.sb_blocksize, |
| log_sector_size); |
| } |
| if (!error && rtdev) |
| error = xfs_setsize_buftarg(mp->m_rtdev_targp, |
| mp->m_sb.sb_blocksize, |
| mp->m_sb.sb_sectsize); |
| if (error) |
| goto error2; |
| |
| if (mp->m_flags & XFS_MOUNT_BARRIER) |
| xfs_mountfs_check_barriers(mp); |
| |
| if ((error = xfs_filestream_mount(mp))) |
| goto error2; |
| |
| error = xfs_mountfs(mp, flags); |
| if (error) |
| goto error2; |
| |
| XFS_SEND_MOUNT(mp, DM_RIGHT_NULL, args->mtpt, args->fsname); |
| |
| return 0; |
| |
| error2: |
| if (mp->m_sb_bp) |
| xfs_freesb(mp); |
| error1: |
| xfs_binval(mp->m_ddev_targp); |
| if (logdev && logdev != ddev) |
| xfs_binval(mp->m_logdev_targp); |
| if (rtdev) |
| xfs_binval(mp->m_rtdev_targp); |
| error0: |
| xfs_unmountfs_close(mp, credp); |
| xfs_qmops_put(mp); |
| xfs_dmops_put(mp); |
| return error; |
| } |
| |
| int |
| xfs_unmount( |
| xfs_mount_t *mp, |
| int flags, |
| cred_t *credp) |
| { |
| xfs_inode_t *rip; |
| bhv_vnode_t *rvp; |
| int unmount_event_wanted = 0; |
| int unmount_event_flags = 0; |
| int xfs_unmountfs_needed = 0; |
| int error; |
| |
| rip = mp->m_rootip; |
| rvp = XFS_ITOV(rip); |
| |
| #ifdef HAVE_DMAPI |
| if (mp->m_flags & XFS_MOUNT_DMAPI) { |
| error = XFS_SEND_PREUNMOUNT(mp, |
| rip, DM_RIGHT_NULL, rip, DM_RIGHT_NULL, |
| NULL, NULL, 0, 0, |
| (mp->m_dmevmask & (1<<DM_EVENT_PREUNMOUNT))? |
| 0:DM_FLAGS_UNWANTED); |
| if (error) |
| return XFS_ERROR(error); |
| unmount_event_wanted = 1; |
| unmount_event_flags = (mp->m_dmevmask & (1<<DM_EVENT_UNMOUNT))? |
| 0 : DM_FLAGS_UNWANTED; |
| } |
| #endif |
| |
| /* |
| * Blow away any referenced inode in the filestreams cache. |
| * This can and will cause log traffic as inodes go inactive |
| * here. |
| */ |
| xfs_filestream_unmount(mp); |
| |
| XFS_bflush(mp->m_ddev_targp); |
| error = xfs_unmount_flush(mp, 0); |
| if (error) |
| goto out; |
| |
| ASSERT(vn_count(rvp) == 1); |
| |
| /* |
| * Drop the reference count |
| */ |
| IRELE(rip); |
| |
| /* |
| * If we're forcing a shutdown, typically because of a media error, |
| * we want to make sure we invalidate dirty pages that belong to |
| * referenced vnodes as well. |
| */ |
| if (XFS_FORCED_SHUTDOWN(mp)) { |
| error = xfs_sync(mp, SYNC_WAIT | SYNC_CLOSE); |
| ASSERT(error != EFSCORRUPTED); |
| } |
| xfs_unmountfs_needed = 1; |
| |
| out: |
| /* Send DMAPI event, if required. |
| * Then do xfs_unmountfs() if needed. |
| * Then return error (or zero). |
| */ |
| if (unmount_event_wanted) { |
| /* Note: mp structure must still exist for |
| * XFS_SEND_UNMOUNT() call. |
| */ |
| XFS_SEND_UNMOUNT(mp, error == 0 ? rip : NULL, |
| DM_RIGHT_NULL, 0, error, unmount_event_flags); |
| } |
| if (xfs_unmountfs_needed) { |
| /* |
| * Call common unmount function to flush to disk |
| * and free the super block buffer & mount structures. |
| */ |
| xfs_unmountfs(mp, credp); |
| xfs_qmops_put(mp); |
| xfs_dmops_put(mp); |
| kmem_free(mp, sizeof(xfs_mount_t)); |
| } |
| |
| return XFS_ERROR(error); |
| } |
| |
| STATIC int |
| xfs_quiesce_fs( |
| xfs_mount_t *mp) |
| { |
| int count = 0, pincount; |
| |
| xfs_flush_buftarg(mp->m_ddev_targp, 0); |
| xfs_finish_reclaim_all(mp, 0); |
| |
| /* This loop must run at least twice. |
| * The first instance of the loop will flush |
| * most meta data but that will generate more |
| * meta data (typically directory updates). |
| * Which then must be flushed and logged before |
| * we can write the unmount record. |
| */ |
| do { |
| xfs_syncsub(mp, SYNC_INODE_QUIESCE, NULL); |
| pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1); |
| if (!pincount) { |
| delay(50); |
| count++; |
| } |
| } while (count < 2); |
| |
| return 0; |
| } |
| |
| /* |
| * Second stage of a quiesce. The data is already synced, now we have to take |
| * care of the metadata. New transactions are already blocked, so we need to |
| * wait for any remaining transactions to drain out before proceding. |
| */ |
| void |
| xfs_attr_quiesce( |
| xfs_mount_t *mp) |
| { |
| /* wait for all modifications to complete */ |
| while (atomic_read(&mp->m_active_trans) > 0) |
| delay(100); |
| |
| /* flush inodes and push all remaining buffers out to disk */ |
| xfs_quiesce_fs(mp); |
| |
| ASSERT_ALWAYS(atomic_read(&mp->m_active_trans) == 0); |
| |
| /* Push the superblock and write an unmount record */ |
| xfs_log_sbcount(mp, 1); |
| xfs_log_unmount_write(mp); |
| xfs_unmountfs_writesb(mp); |
| } |
| |
| int |
| xfs_mntupdate( |
| struct xfs_mount *mp, |
| int *flags, |
| struct xfs_mount_args *args) |
| { |
| if (!(*flags & MS_RDONLY)) { /* rw/ro -> rw */ |
| if (mp->m_flags & XFS_MOUNT_RDONLY) |
| mp->m_flags &= ~XFS_MOUNT_RDONLY; |
| if (args->flags & XFSMNT_BARRIER) { |
| mp->m_flags |= XFS_MOUNT_BARRIER; |
| xfs_mountfs_check_barriers(mp); |
| } else { |
| mp->m_flags &= ~XFS_MOUNT_BARRIER; |
| } |
| } else if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { /* rw -> ro */ |
| xfs_filestream_flush(mp); |
| xfs_sync(mp, SYNC_DATA_QUIESCE); |
| xfs_attr_quiesce(mp); |
| mp->m_flags |= XFS_MOUNT_RDONLY; |
| } |
| return 0; |
| } |
| |
| /* |
| * xfs_unmount_flush implements a set of flush operation on special |
| * inodes, which are needed as a separate set of operations so that |
| * they can be called as part of relocation process. |
| */ |
| int |
| xfs_unmount_flush( |
| xfs_mount_t *mp, /* Mount structure we are getting |
| rid of. */ |
| int relocation) /* Called from vfs relocation. */ |
| { |
| xfs_inode_t *rip = mp->m_rootip; |
| xfs_inode_t *rbmip; |
| xfs_inode_t *rsumip = NULL; |
| bhv_vnode_t *rvp = XFS_ITOV(rip); |
| int error; |
| |
| xfs_ilock(rip, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); |
| xfs_iflock(rip); |
| |
| /* |
| * Flush out the real time inodes. |
| */ |
| if ((rbmip = mp->m_rbmip) != NULL) { |
| xfs_ilock(rbmip, XFS_ILOCK_EXCL); |
| xfs_iflock(rbmip); |
| error = xfs_iflush(rbmip, XFS_IFLUSH_SYNC); |
| xfs_iunlock(rbmip, XFS_ILOCK_EXCL); |
| |
| if (error == EFSCORRUPTED) |
| goto fscorrupt_out; |
| |
| ASSERT(vn_count(XFS_ITOV(rbmip)) == 1); |
| |
| rsumip = mp->m_rsumip; |
| xfs_ilock(rsumip, XFS_ILOCK_EXCL); |
| xfs_iflock(rsumip); |
| error = xfs_iflush(rsumip, XFS_IFLUSH_SYNC); |
| xfs_iunlock(rsumip, XFS_ILOCK_EXCL); |
| |
| if (error == EFSCORRUPTED) |
| goto fscorrupt_out; |
| |
| ASSERT(vn_count(XFS_ITOV(rsumip)) == 1); |
| } |
| |
| /* |
| * Synchronously flush root inode to disk |
| */ |
| error = xfs_iflush(rip, XFS_IFLUSH_SYNC); |
| if (error == EFSCORRUPTED) |
| goto fscorrupt_out2; |
| |
| if (vn_count(rvp) != 1 && !relocation) { |
| xfs_iunlock(rip, XFS_ILOCK_EXCL); |
| return XFS_ERROR(EBUSY); |
| } |
| |
| /* |
| * Release dquot that rootinode, rbmino and rsumino might be holding, |
| * flush and purge the quota inodes. |
| */ |
| error = XFS_QM_UNMOUNT(mp); |
| if (error == EFSCORRUPTED) |
| goto fscorrupt_out2; |
| |
| if (rbmip) { |
| IRELE(rbmip); |
| IRELE(rsumip); |
| } |
| |
| xfs_iunlock(rip, XFS_ILOCK_EXCL); |
| return 0; |
| |
| fscorrupt_out: |
| xfs_ifunlock(rip); |
| |
| fscorrupt_out2: |
| xfs_iunlock(rip, XFS_ILOCK_EXCL); |
| |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| |
| /* |
| * xfs_sync flushes any pending I/O to file system vfsp. |
| * |
| * This routine is called by vfs_sync() to make sure that things make it |
| * out to disk eventually, on sync() system calls to flush out everything, |
| * and when the file system is unmounted. For the vfs_sync() case, all |
| * we really need to do is sync out the log to make all of our meta-data |
| * updates permanent (except for timestamps). For calls from pflushd(), |
| * dirty pages are kept moving by calling pdflush() on the inodes |
| * containing them. We also flush the inodes that we can lock without |
| * sleeping and the superblock if we can lock it without sleeping from |
| * vfs_sync() so that items at the tail of the log are always moving out. |
| * |
| * Flags: |
| * SYNC_BDFLUSH - We're being called from vfs_sync() so we don't want |
| * to sleep if we can help it. All we really need |
| * to do is ensure that the log is synced at least |
| * periodically. We also push the inodes and |
| * superblock if we can lock them without sleeping |
| * and they are not pinned. |
| * SYNC_ATTR - We need to flush the inodes. If SYNC_BDFLUSH is not |
| * set, then we really want to lock each inode and flush |
| * it. |
| * SYNC_WAIT - All the flushes that take place in this call should |
| * be synchronous. |
| * SYNC_DELWRI - This tells us to push dirty pages associated with |
| * inodes. SYNC_WAIT and SYNC_BDFLUSH are used to |
| * determine if they should be flushed sync, async, or |
| * delwri. |
| * SYNC_CLOSE - This flag is passed when the system is being |
| * unmounted. We should sync and invalidate everything. |
| * SYNC_FSDATA - This indicates that the caller would like to make |
| * sure the superblock is safe on disk. We can ensure |
| * this by simply making sure the log gets flushed |
| * if SYNC_BDFLUSH is set, and by actually writing it |
| * out otherwise. |
| * SYNC_IOWAIT - The caller wants us to wait for all data I/O to complete |
| * before we return (including direct I/O). Forms the drain |
| * side of the write barrier needed to safely quiesce the |
| * filesystem. |
| * |
| */ |
| int |
| xfs_sync( |
| xfs_mount_t *mp, |
| int flags) |
| { |
| int error; |
| |
| /* |
| * Get the Quota Manager to flush the dquots. |
| * |
| * If XFS quota support is not enabled or this filesystem |
| * instance does not use quotas XFS_QM_DQSYNC will always |
| * return zero. |
| */ |
| error = XFS_QM_DQSYNC(mp, flags); |
| if (error) { |
| /* |
| * If we got an IO error, we will be shutting down. |
| * So, there's nothing more for us to do here. |
| */ |
| ASSERT(error != EIO || XFS_FORCED_SHUTDOWN(mp)); |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| return XFS_ERROR(error); |
| } |
| |
| if (flags & SYNC_IOWAIT) |
| xfs_filestream_flush(mp); |
| |
| return xfs_syncsub(mp, flags, NULL); |
| } |
| |
| /* |
| * xfs sync routine for internal use |
| * |
| * This routine supports all of the flags defined for the generic vfs_sync |
| * interface as explained above under xfs_sync. |
| * |
| */ |
| int |
| xfs_sync_inodes( |
| xfs_mount_t *mp, |
| int flags, |
| int *bypassed) |
| { |
| xfs_inode_t *ip = NULL; |
| bhv_vnode_t *vp = NULL; |
| int error; |
| int last_error; |
| uint64_t fflag; |
| uint lock_flags; |
| uint base_lock_flags; |
| boolean_t mount_locked; |
| boolean_t vnode_refed; |
| int preempt; |
| xfs_iptr_t *ipointer; |
| #ifdef DEBUG |
| boolean_t ipointer_in = B_FALSE; |
| |
| #define IPOINTER_SET ipointer_in = B_TRUE |
| #define IPOINTER_CLR ipointer_in = B_FALSE |
| #else |
| #define IPOINTER_SET |
| #define IPOINTER_CLR |
| #endif |
| |
| |
| /* Insert a marker record into the inode list after inode ip. The list |
| * must be locked when this is called. After the call the list will no |
| * longer be locked. |
| */ |
| #define IPOINTER_INSERT(ip, mp) { \ |
| ASSERT(ipointer_in == B_FALSE); \ |
| ipointer->ip_mnext = ip->i_mnext; \ |
| ipointer->ip_mprev = ip; \ |
| ip->i_mnext = (xfs_inode_t *)ipointer; \ |
| ipointer->ip_mnext->i_mprev = (xfs_inode_t *)ipointer; \ |
| preempt = 0; \ |
| XFS_MOUNT_IUNLOCK(mp); \ |
| mount_locked = B_FALSE; \ |
| IPOINTER_SET; \ |
| } |
| |
| /* Remove the marker from the inode list. If the marker was the only item |
| * in the list then there are no remaining inodes and we should zero out |
| * the whole list. If we are the current head of the list then move the head |
| * past us. |
| */ |
| #define IPOINTER_REMOVE(ip, mp) { \ |
| ASSERT(ipointer_in == B_TRUE); \ |
| if (ipointer->ip_mnext != (xfs_inode_t *)ipointer) { \ |
| ip = ipointer->ip_mnext; \ |
| ip->i_mprev = ipointer->ip_mprev; \ |
| ipointer->ip_mprev->i_mnext = ip; \ |
| if (mp->m_inodes == (xfs_inode_t *)ipointer) { \ |
| mp->m_inodes = ip; \ |
| } \ |
| } else { \ |
| ASSERT(mp->m_inodes == (xfs_inode_t *)ipointer); \ |
| mp->m_inodes = NULL; \ |
| ip = NULL; \ |
| } \ |
| IPOINTER_CLR; \ |
| } |
| |
| #define XFS_PREEMPT_MASK 0x7f |
| |
| ASSERT(!(flags & SYNC_BDFLUSH)); |
| |
| if (bypassed) |
| *bypassed = 0; |
| if (mp->m_flags & XFS_MOUNT_RDONLY) |
| return 0; |
| error = 0; |
| last_error = 0; |
| preempt = 0; |
| |
| /* Allocate a reference marker */ |
| ipointer = (xfs_iptr_t *)kmem_zalloc(sizeof(xfs_iptr_t), KM_SLEEP); |
| |
| fflag = XFS_B_ASYNC; /* default is don't wait */ |
| if (flags & SYNC_DELWRI) |
| fflag = XFS_B_DELWRI; |
| if (flags & SYNC_WAIT) |
| fflag = 0; /* synchronous overrides all */ |
| |
| base_lock_flags = XFS_ILOCK_SHARED; |
| if (flags & (SYNC_DELWRI | SYNC_CLOSE)) { |
| /* |
| * We need the I/O lock if we're going to call any of |
| * the flush/inval routines. |
| */ |
| base_lock_flags |= XFS_IOLOCK_SHARED; |
| } |
| |
| XFS_MOUNT_ILOCK(mp); |
| |
| ip = mp->m_inodes; |
| |
| mount_locked = B_TRUE; |
| vnode_refed = B_FALSE; |
| |
| IPOINTER_CLR; |
| |
| do { |
| ASSERT(ipointer_in == B_FALSE); |
| ASSERT(vnode_refed == B_FALSE); |
| |
| lock_flags = base_lock_flags; |
| |
| /* |
| * There were no inodes in the list, just break out |
| * of the loop. |
| */ |
| if (ip == NULL) { |
| break; |
| } |
| |
| /* |
| * We found another sync thread marker - skip it |
| */ |
| if (ip->i_mount == NULL) { |
| ip = ip->i_mnext; |
| continue; |
| } |
| |
| vp = XFS_ITOV_NULL(ip); |
| |
| /* |
| * If the vnode is gone then this is being torn down, |
| * call reclaim if it is flushed, else let regular flush |
| * code deal with it later in the loop. |
| */ |
| |
| if (vp == NULL) { |
| /* Skip ones already in reclaim */ |
| if (ip->i_flags & XFS_IRECLAIM) { |
| ip = ip->i_mnext; |
| continue; |
| } |
| if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL) == 0) { |
| ip = ip->i_mnext; |
| } else if ((xfs_ipincount(ip) == 0) && |
| xfs_iflock_nowait(ip)) { |
| IPOINTER_INSERT(ip, mp); |
| |
| xfs_finish_reclaim(ip, 1, |
| XFS_IFLUSH_DELWRI_ELSE_ASYNC); |
| |
| XFS_MOUNT_ILOCK(mp); |
| mount_locked = B_TRUE; |
| IPOINTER_REMOVE(ip, mp); |
| } else { |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| ip = ip->i_mnext; |
| } |
| continue; |
| } |
| |
| if (VN_BAD(vp)) { |
| ip = ip->i_mnext; |
| continue; |
| } |
| |
| if (XFS_FORCED_SHUTDOWN(mp) && !(flags & SYNC_CLOSE)) { |
| XFS_MOUNT_IUNLOCK(mp); |
| kmem_free(ipointer, sizeof(xfs_iptr_t)); |
| return 0; |
| } |
| |
| /* |
| * Try to lock without sleeping. We're out of order with |
| * the inode list lock here, so if we fail we need to drop |
| * the mount lock and try again. If we're called from |
| * bdflush() here, then don't bother. |
| * |
| * The inode lock here actually coordinates with the |
| * almost spurious inode lock in xfs_ireclaim() to prevent |
| * the vnode we handle here without a reference from |
| * being freed while we reference it. If we lock the inode |
| * while it's on the mount list here, then the spurious inode |
| * lock in xfs_ireclaim() after the inode is pulled from |
| * the mount list will sleep until we release it here. |
| * This keeps the vnode from being freed while we reference |
| * it. |
| */ |
| if (xfs_ilock_nowait(ip, lock_flags) == 0) { |
| if (vp == NULL) { |
| ip = ip->i_mnext; |
| continue; |
| } |
| |
| vp = vn_grab(vp); |
| if (vp == NULL) { |
| ip = ip->i_mnext; |
| continue; |
| } |
| |
| IPOINTER_INSERT(ip, mp); |
| xfs_ilock(ip, lock_flags); |
| |
| ASSERT(vp == XFS_ITOV(ip)); |
| ASSERT(ip->i_mount == mp); |
| |
| vnode_refed = B_TRUE; |
| } |
| |
| /* From here on in the loop we may have a marker record |
| * in the inode list. |
| */ |
| |
| /* |
| * If we have to flush data or wait for I/O completion |
| * we need to drop the ilock that we currently hold. |
| * If we need to drop the lock, insert a marker if we |
| * have not already done so. |
| */ |
| if ((flags & (SYNC_CLOSE|SYNC_IOWAIT)) || |
| ((flags & SYNC_DELWRI) && VN_DIRTY(vp))) { |
| if (mount_locked) { |
| IPOINTER_INSERT(ip, mp); |
| } |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| |
| if (flags & SYNC_CLOSE) { |
| /* Shutdown case. Flush and invalidate. */ |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| xfs_tosspages(ip, 0, -1, |
| FI_REMAPF); |
| else |
| error = xfs_flushinval_pages(ip, |
| 0, -1, FI_REMAPF); |
| } else if ((flags & SYNC_DELWRI) && VN_DIRTY(vp)) { |
| error = xfs_flush_pages(ip, 0, |
| -1, fflag, FI_NONE); |
| } |
| |
| /* |
| * When freezing, we need to wait ensure all I/O (including direct |
| * I/O) is complete to ensure no further data modification can take |
| * place after this point |
| */ |
| if (flags & SYNC_IOWAIT) |
| vn_iowait(ip); |
| |
| xfs_ilock(ip, XFS_ILOCK_SHARED); |
| } |
| |
| if ((flags & SYNC_ATTR) && |
| (ip->i_update_core || |
| (ip->i_itemp && ip->i_itemp->ili_format.ilf_fields))) { |
| if (mount_locked) |
| IPOINTER_INSERT(ip, mp); |
| |
| if (flags & SYNC_WAIT) { |
| xfs_iflock(ip); |
| error = xfs_iflush(ip, XFS_IFLUSH_SYNC); |
| |
| /* |
| * If we can't acquire the flush lock, then the inode |
| * is already being flushed so don't bother waiting. |
| * |
| * If we can lock it then do a delwri flush so we can |
| * combine multiple inode flushes in each disk write. |
| */ |
| } else if (xfs_iflock_nowait(ip)) { |
| error = xfs_iflush(ip, XFS_IFLUSH_DELWRI); |
| } else if (bypassed) { |
| (*bypassed)++; |
| } |
| } |
| |
| if (lock_flags != 0) { |
| xfs_iunlock(ip, lock_flags); |
| } |
| |
| if (vnode_refed) { |
| /* |
| * If we had to take a reference on the vnode |
| * above, then wait until after we've unlocked |
| * the inode to release the reference. This is |
| * because we can be already holding the inode |
| * lock when IRELE() calls xfs_inactive(). |
| * |
| * Make sure to drop the mount lock before calling |
| * IRELE() so that we don't trip over ourselves if |
| * we have to go for the mount lock again in the |
| * inactive code. |
| */ |
| if (mount_locked) { |
| IPOINTER_INSERT(ip, mp); |
| } |
| |
| IRELE(ip); |
| |
| vnode_refed = B_FALSE; |
| } |
| |
| if (error) { |
| last_error = error; |
| } |
| |
| /* |
| * bail out if the filesystem is corrupted. |
| */ |
| if (error == EFSCORRUPTED) { |
| if (!mount_locked) { |
| XFS_MOUNT_ILOCK(mp); |
| IPOINTER_REMOVE(ip, mp); |
| } |
| XFS_MOUNT_IUNLOCK(mp); |
| ASSERT(ipointer_in == B_FALSE); |
| kmem_free(ipointer, sizeof(xfs_iptr_t)); |
| return XFS_ERROR(error); |
| } |
| |
| /* Let other threads have a chance at the mount lock |
| * if we have looped many times without dropping the |
| * lock. |
| */ |
| if ((++preempt & XFS_PREEMPT_MASK) == 0) { |
| if (mount_locked) { |
| IPOINTER_INSERT(ip, mp); |
| } |
| } |
| |
| if (mount_locked == B_FALSE) { |
| XFS_MOUNT_ILOCK(mp); |
| mount_locked = B_TRUE; |
| IPOINTER_REMOVE(ip, mp); |
| continue; |
| } |
| |
| ASSERT(ipointer_in == B_FALSE); |
| ip = ip->i_mnext; |
| |
| } while (ip != mp->m_inodes); |
| |
| XFS_MOUNT_IUNLOCK(mp); |
| |
| ASSERT(ipointer_in == B_FALSE); |
| |
| kmem_free(ipointer, sizeof(xfs_iptr_t)); |
| return XFS_ERROR(last_error); |
| } |
| |
| /* |
| * xfs sync routine for internal use |
| * |
| * This routine supports all of the flags defined for the generic vfs_sync |
| * interface as explained above under xfs_sync. |
| * |
| */ |
| int |
| xfs_syncsub( |
| xfs_mount_t *mp, |
| int flags, |
| int *bypassed) |
| { |
| int error = 0; |
| int last_error = 0; |
| uint log_flags = XFS_LOG_FORCE; |
| xfs_buf_t *bp; |
| xfs_buf_log_item_t *bip; |
| |
| /* |
| * Sync out the log. This ensures that the log is periodically |
| * flushed even if there is not enough activity to fill it up. |
| */ |
| if (flags & SYNC_WAIT) |
| log_flags |= XFS_LOG_SYNC; |
| |
| xfs_log_force(mp, (xfs_lsn_t)0, log_flags); |
| |
| if (flags & (SYNC_ATTR|SYNC_DELWRI)) { |
| if (flags & SYNC_BDFLUSH) |
| xfs_finish_reclaim_all(mp, 1); |
| else |
| error = xfs_sync_inodes(mp, flags, bypassed); |
| } |
| |
| /* |
| * Flushing out dirty data above probably generated more |
| * log activity, so if this isn't vfs_sync() then flush |
| * the log again. |
| */ |
| if (flags & SYNC_DELWRI) { |
| xfs_log_force(mp, (xfs_lsn_t)0, log_flags); |
| } |
| |
| if (flags & SYNC_FSDATA) { |
| /* |
| * If this is vfs_sync() then only sync the superblock |
| * if we can lock it without sleeping and it is not pinned. |
| */ |
| if (flags & SYNC_BDFLUSH) { |
| bp = xfs_getsb(mp, XFS_BUF_TRYLOCK); |
| if (bp != NULL) { |
| bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*); |
| if ((bip != NULL) && |
| xfs_buf_item_dirty(bip)) { |
| if (!(XFS_BUF_ISPINNED(bp))) { |
| XFS_BUF_ASYNC(bp); |
| error = xfs_bwrite(mp, bp); |
| } else { |
| xfs_buf_relse(bp); |
| } |
| } else { |
| xfs_buf_relse(bp); |
| } |
| } |
| } else { |
| bp = xfs_getsb(mp, 0); |
| /* |
| * If the buffer is pinned then push on the log so |
| * we won't get stuck waiting in the write for |
| * someone, maybe ourselves, to flush the log. |
| * Even though we just pushed the log above, we |
| * did not have the superblock buffer locked at |
| * that point so it can become pinned in between |
| * there and here. |
| */ |
| if (XFS_BUF_ISPINNED(bp)) |
| xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); |
| if (flags & SYNC_WAIT) |
| XFS_BUF_UNASYNC(bp); |
| else |
| XFS_BUF_ASYNC(bp); |
| error = xfs_bwrite(mp, bp); |
| } |
| if (error) { |
| last_error = error; |
| } |
| } |
| |
| /* |
| * If asked, update the disk superblock with incore counter values if we |
| * are using non-persistent counters so that they don't get too far out |
| * of sync if we crash or get a forced shutdown. We don't want to force |
| * this to disk, just get a transaction into the iclogs.... |
| */ |
| if (flags & SYNC_SUPER) |
| xfs_log_sbcount(mp, 0); |
| |
| /* |
| * Now check to see if the log needs a "dummy" transaction. |
| */ |
| |
| if (!(flags & SYNC_REMOUNT) && xfs_log_need_covered(mp)) { |
| xfs_trans_t *tp; |
| xfs_inode_t *ip; |
| |
| /* |
| * Put a dummy transaction in the log to tell |
| * recovery that all others are OK. |
| */ |
| tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1); |
| if ((error = xfs_trans_reserve(tp, 0, |
| XFS_ICHANGE_LOG_RES(mp), |
| 0, 0, 0))) { |
| xfs_trans_cancel(tp, 0); |
| return error; |
| } |
| |
| ip = mp->m_rootip; |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| |
| xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| xfs_trans_ihold(tp, ip); |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| error = xfs_trans_commit(tp, 0); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| xfs_log_force(mp, (xfs_lsn_t)0, log_flags); |
| } |
| |
| /* |
| * When shutting down, we need to insure that the AIL is pushed |
| * to disk or the filesystem can appear corrupt from the PROM. |
| */ |
| if ((flags & (SYNC_CLOSE|SYNC_WAIT)) == (SYNC_CLOSE|SYNC_WAIT)) { |
| XFS_bflush(mp->m_ddev_targp); |
| if (mp->m_rtdev_targp) { |
| XFS_bflush(mp->m_rtdev_targp); |
| } |
| } |
| |
| return XFS_ERROR(last_error); |
| } |