| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * KVM/MIPS: MIPS specific KVM APIs |
| * |
| * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. |
| * Authors: Sanjay Lal <sanjayl@kymasys.com> |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/errno.h> |
| #include <linux/err.h> |
| #include <linux/kdebug.h> |
| #include <linux/module.h> |
| #include <linux/uaccess.h> |
| #include <linux/vmalloc.h> |
| #include <linux/fs.h> |
| #include <linux/bootmem.h> |
| #include <asm/fpu.h> |
| #include <asm/page.h> |
| #include <asm/cacheflush.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pgtable.h> |
| |
| #include <linux/kvm_host.h> |
| |
| #include "interrupt.h" |
| #include "commpage.h" |
| |
| #define CREATE_TRACE_POINTS |
| #include "trace.h" |
| |
| #ifndef VECTORSPACING |
| #define VECTORSPACING 0x100 /* for EI/VI mode */ |
| #endif |
| |
| #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x) |
| struct kvm_stats_debugfs_item debugfs_entries[] = { |
| { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU }, |
| { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU }, |
| { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU }, |
| { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU }, |
| { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU }, |
| { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU }, |
| { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU }, |
| { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU }, |
| { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU }, |
| { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU }, |
| { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU }, |
| { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU }, |
| { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU }, |
| { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU }, |
| { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU }, |
| { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU }, |
| { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU }, |
| { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU }, |
| { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU }, |
| { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU }, |
| { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU }, |
| { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU }, |
| {NULL} |
| }; |
| |
| /* |
| * XXXKYMA: We are simulatoring a processor that has the WII bit set in |
| * Config7, so we are "runnable" if interrupts are pending |
| */ |
| int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) |
| { |
| return !!(vcpu->arch.pending_exceptions); |
| } |
| |
| int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) |
| { |
| return 1; |
| } |
| |
| int kvm_arch_hardware_enable(void) |
| { |
| return 0; |
| } |
| |
| int kvm_arch_hardware_setup(void) |
| { |
| return 0; |
| } |
| |
| void kvm_arch_check_processor_compat(void *rtn) |
| { |
| *(int *)rtn = 0; |
| } |
| |
| int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) |
| { |
| /* Allocate page table to map GPA -> RPA */ |
| kvm->arch.gpa_mm.pgd = kvm_pgd_alloc(); |
| if (!kvm->arch.gpa_mm.pgd) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| bool kvm_arch_has_vcpu_debugfs(void) |
| { |
| return false; |
| } |
| |
| int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) |
| { |
| return 0; |
| } |
| |
| void kvm_mips_free_vcpus(struct kvm *kvm) |
| { |
| unsigned int i; |
| struct kvm_vcpu *vcpu; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| kvm_arch_vcpu_free(vcpu); |
| } |
| |
| mutex_lock(&kvm->lock); |
| |
| for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) |
| kvm->vcpus[i] = NULL; |
| |
| atomic_set(&kvm->online_vcpus, 0); |
| |
| mutex_unlock(&kvm->lock); |
| } |
| |
| static void kvm_mips_free_gpa_pt(struct kvm *kvm) |
| { |
| /* It should always be safe to remove after flushing the whole range */ |
| WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0)); |
| pgd_free(NULL, kvm->arch.gpa_mm.pgd); |
| } |
| |
| void kvm_arch_destroy_vm(struct kvm *kvm) |
| { |
| kvm_mips_free_vcpus(kvm); |
| kvm_mips_free_gpa_pt(kvm); |
| } |
| |
| long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, |
| unsigned long arg) |
| { |
| return -ENOIOCTLCMD; |
| } |
| |
| int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, |
| unsigned long npages) |
| { |
| return 0; |
| } |
| |
| void kvm_arch_flush_shadow_all(struct kvm *kvm) |
| { |
| /* Flush whole GPA */ |
| kvm_mips_flush_gpa_pt(kvm, 0, ~0); |
| |
| /* Let implementation do the rest */ |
| kvm_mips_callbacks->flush_shadow_all(kvm); |
| } |
| |
| void kvm_arch_flush_shadow_memslot(struct kvm *kvm, |
| struct kvm_memory_slot *slot) |
| { |
| /* |
| * The slot has been made invalid (ready for moving or deletion), so we |
| * need to ensure that it can no longer be accessed by any guest VCPUs. |
| */ |
| |
| spin_lock(&kvm->mmu_lock); |
| /* Flush slot from GPA */ |
| kvm_mips_flush_gpa_pt(kvm, slot->base_gfn, |
| slot->base_gfn + slot->npages - 1); |
| /* Let implementation do the rest */ |
| kvm_mips_callbacks->flush_shadow_memslot(kvm, slot); |
| spin_unlock(&kvm->mmu_lock); |
| } |
| |
| int kvm_arch_prepare_memory_region(struct kvm *kvm, |
| struct kvm_memory_slot *memslot, |
| const struct kvm_userspace_memory_region *mem, |
| enum kvm_mr_change change) |
| { |
| return 0; |
| } |
| |
| void kvm_arch_commit_memory_region(struct kvm *kvm, |
| const struct kvm_userspace_memory_region *mem, |
| const struct kvm_memory_slot *old, |
| const struct kvm_memory_slot *new, |
| enum kvm_mr_change change) |
| { |
| kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n", |
| __func__, kvm, mem->slot, mem->guest_phys_addr, |
| mem->memory_size, mem->userspace_addr); |
| } |
| |
| static inline void dump_handler(const char *symbol, void *start, void *end) |
| { |
| u32 *p; |
| |
| pr_debug("LEAF(%s)\n", symbol); |
| |
| pr_debug("\t.set push\n"); |
| pr_debug("\t.set noreorder\n"); |
| |
| for (p = start; p < (u32 *)end; ++p) |
| pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p); |
| |
| pr_debug("\t.set\tpop\n"); |
| |
| pr_debug("\tEND(%s)\n", symbol); |
| } |
| |
| struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) |
| { |
| int err, size; |
| void *gebase, *p, *handler, *refill_start, *refill_end; |
| int i; |
| |
| struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL); |
| |
| if (!vcpu) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| err = kvm_vcpu_init(vcpu, kvm, id); |
| |
| if (err) |
| goto out_free_cpu; |
| |
| kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu); |
| |
| /* |
| * Allocate space for host mode exception handlers that handle |
| * guest mode exits |
| */ |
| if (cpu_has_veic || cpu_has_vint) |
| size = 0x200 + VECTORSPACING * 64; |
| else |
| size = 0x4000; |
| |
| gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL); |
| |
| if (!gebase) { |
| err = -ENOMEM; |
| goto out_uninit_cpu; |
| } |
| kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n", |
| ALIGN(size, PAGE_SIZE), gebase); |
| |
| /* |
| * Check new ebase actually fits in CP0_EBase. The lack of a write gate |
| * limits us to the low 512MB of physical address space. If the memory |
| * we allocate is out of range, just give up now. |
| */ |
| if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) { |
| kvm_err("CP0_EBase.WG required for guest exception base %pK\n", |
| gebase); |
| err = -ENOMEM; |
| goto out_free_gebase; |
| } |
| |
| /* Save new ebase */ |
| vcpu->arch.guest_ebase = gebase; |
| |
| /* Build guest exception vectors dynamically in unmapped memory */ |
| handler = gebase + 0x2000; |
| |
| /* TLB refill */ |
| refill_start = gebase; |
| refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler); |
| |
| /* General Exception Entry point */ |
| kvm_mips_build_exception(gebase + 0x180, handler); |
| |
| /* For vectored interrupts poke the exception code @ all offsets 0-7 */ |
| for (i = 0; i < 8; i++) { |
| kvm_debug("L1 Vectored handler @ %p\n", |
| gebase + 0x200 + (i * VECTORSPACING)); |
| kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING, |
| handler); |
| } |
| |
| /* General exit handler */ |
| p = handler; |
| p = kvm_mips_build_exit(p); |
| |
| /* Guest entry routine */ |
| vcpu->arch.vcpu_run = p; |
| p = kvm_mips_build_vcpu_run(p); |
| |
| /* Dump the generated code */ |
| pr_debug("#include <asm/asm.h>\n"); |
| pr_debug("#include <asm/regdef.h>\n"); |
| pr_debug("\n"); |
| dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p); |
| dump_handler("kvm_tlb_refill", refill_start, refill_end); |
| dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200); |
| dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run); |
| |
| /* Invalidate the icache for these ranges */ |
| flush_icache_range((unsigned long)gebase, |
| (unsigned long)gebase + ALIGN(size, PAGE_SIZE)); |
| |
| /* |
| * Allocate comm page for guest kernel, a TLB will be reserved for |
| * mapping GVA @ 0xFFFF8000 to this page |
| */ |
| vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL); |
| |
| if (!vcpu->arch.kseg0_commpage) { |
| err = -ENOMEM; |
| goto out_free_gebase; |
| } |
| |
| kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage); |
| kvm_mips_commpage_init(vcpu); |
| |
| /* Init */ |
| vcpu->arch.last_sched_cpu = -1; |
| |
| /* Start off the timer */ |
| kvm_mips_init_count(vcpu); |
| |
| return vcpu; |
| |
| out_free_gebase: |
| kfree(gebase); |
| |
| out_uninit_cpu: |
| kvm_vcpu_uninit(vcpu); |
| |
| out_free_cpu: |
| kfree(vcpu); |
| |
| out: |
| return ERR_PTR(err); |
| } |
| |
| void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) |
| { |
| hrtimer_cancel(&vcpu->arch.comparecount_timer); |
| |
| kvm_vcpu_uninit(vcpu); |
| |
| kvm_mips_dump_stats(vcpu); |
| |
| kvm_mmu_free_memory_caches(vcpu); |
| kfree(vcpu->arch.guest_ebase); |
| kfree(vcpu->arch.kseg0_commpage); |
| kfree(vcpu); |
| } |
| |
| void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
| { |
| kvm_arch_vcpu_free(vcpu); |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, |
| struct kvm_guest_debug *dbg) |
| { |
| return -ENOIOCTLCMD; |
| } |
| |
| int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| int r = 0; |
| sigset_t sigsaved; |
| |
| if (vcpu->sigset_active) |
| sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); |
| |
| if (vcpu->mmio_needed) { |
| if (!vcpu->mmio_is_write) |
| kvm_mips_complete_mmio_load(vcpu, run); |
| vcpu->mmio_needed = 0; |
| } |
| |
| lose_fpu(1); |
| |
| local_irq_disable(); |
| guest_enter_irqoff(); |
| trace_kvm_enter(vcpu); |
| |
| /* |
| * Make sure the read of VCPU requests in vcpu_run() callback is not |
| * reordered ahead of the write to vcpu->mode, or we could miss a TLB |
| * flush request while the requester sees the VCPU as outside of guest |
| * mode and not needing an IPI. |
| */ |
| smp_store_mb(vcpu->mode, IN_GUEST_MODE); |
| |
| r = kvm_mips_callbacks->vcpu_run(run, vcpu); |
| |
| trace_kvm_out(vcpu); |
| guest_exit_irqoff(); |
| local_irq_enable(); |
| |
| if (vcpu->sigset_active) |
| sigprocmask(SIG_SETMASK, &sigsaved, NULL); |
| |
| return r; |
| } |
| |
| int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, |
| struct kvm_mips_interrupt *irq) |
| { |
| int intr = (int)irq->irq; |
| struct kvm_vcpu *dvcpu = NULL; |
| |
| if (intr == 3 || intr == -3 || intr == 4 || intr == -4) |
| kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu, |
| (int)intr); |
| |
| if (irq->cpu == -1) |
| dvcpu = vcpu; |
| else |
| dvcpu = vcpu->kvm->vcpus[irq->cpu]; |
| |
| if (intr == 2 || intr == 3 || intr == 4) { |
| kvm_mips_callbacks->queue_io_int(dvcpu, irq); |
| |
| } else if (intr == -2 || intr == -3 || intr == -4) { |
| kvm_mips_callbacks->dequeue_io_int(dvcpu, irq); |
| } else { |
| kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__, |
| irq->cpu, irq->irq); |
| return -EINVAL; |
| } |
| |
| dvcpu->arch.wait = 0; |
| |
| if (swait_active(&dvcpu->wq)) |
| swake_up(&dvcpu->wq); |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| return -ENOIOCTLCMD; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| return -ENOIOCTLCMD; |
| } |
| |
| static u64 kvm_mips_get_one_regs[] = { |
| KVM_REG_MIPS_R0, |
| KVM_REG_MIPS_R1, |
| KVM_REG_MIPS_R2, |
| KVM_REG_MIPS_R3, |
| KVM_REG_MIPS_R4, |
| KVM_REG_MIPS_R5, |
| KVM_REG_MIPS_R6, |
| KVM_REG_MIPS_R7, |
| KVM_REG_MIPS_R8, |
| KVM_REG_MIPS_R9, |
| KVM_REG_MIPS_R10, |
| KVM_REG_MIPS_R11, |
| KVM_REG_MIPS_R12, |
| KVM_REG_MIPS_R13, |
| KVM_REG_MIPS_R14, |
| KVM_REG_MIPS_R15, |
| KVM_REG_MIPS_R16, |
| KVM_REG_MIPS_R17, |
| KVM_REG_MIPS_R18, |
| KVM_REG_MIPS_R19, |
| KVM_REG_MIPS_R20, |
| KVM_REG_MIPS_R21, |
| KVM_REG_MIPS_R22, |
| KVM_REG_MIPS_R23, |
| KVM_REG_MIPS_R24, |
| KVM_REG_MIPS_R25, |
| KVM_REG_MIPS_R26, |
| KVM_REG_MIPS_R27, |
| KVM_REG_MIPS_R28, |
| KVM_REG_MIPS_R29, |
| KVM_REG_MIPS_R30, |
| KVM_REG_MIPS_R31, |
| |
| #ifndef CONFIG_CPU_MIPSR6 |
| KVM_REG_MIPS_HI, |
| KVM_REG_MIPS_LO, |
| #endif |
| KVM_REG_MIPS_PC, |
| |
| KVM_REG_MIPS_CP0_INDEX, |
| KVM_REG_MIPS_CP0_CONTEXT, |
| KVM_REG_MIPS_CP0_USERLOCAL, |
| KVM_REG_MIPS_CP0_PAGEMASK, |
| KVM_REG_MIPS_CP0_WIRED, |
| KVM_REG_MIPS_CP0_HWRENA, |
| KVM_REG_MIPS_CP0_BADVADDR, |
| KVM_REG_MIPS_CP0_COUNT, |
| KVM_REG_MIPS_CP0_ENTRYHI, |
| KVM_REG_MIPS_CP0_COMPARE, |
| KVM_REG_MIPS_CP0_STATUS, |
| KVM_REG_MIPS_CP0_CAUSE, |
| KVM_REG_MIPS_CP0_EPC, |
| KVM_REG_MIPS_CP0_PRID, |
| KVM_REG_MIPS_CP0_CONFIG, |
| KVM_REG_MIPS_CP0_CONFIG1, |
| KVM_REG_MIPS_CP0_CONFIG2, |
| KVM_REG_MIPS_CP0_CONFIG3, |
| KVM_REG_MIPS_CP0_CONFIG4, |
| KVM_REG_MIPS_CP0_CONFIG5, |
| KVM_REG_MIPS_CP0_CONFIG7, |
| KVM_REG_MIPS_CP0_ERROREPC, |
| |
| KVM_REG_MIPS_COUNT_CTL, |
| KVM_REG_MIPS_COUNT_RESUME, |
| KVM_REG_MIPS_COUNT_HZ, |
| }; |
| |
| static u64 kvm_mips_get_one_regs_fpu[] = { |
| KVM_REG_MIPS_FCR_IR, |
| KVM_REG_MIPS_FCR_CSR, |
| }; |
| |
| static u64 kvm_mips_get_one_regs_msa[] = { |
| KVM_REG_MIPS_MSA_IR, |
| KVM_REG_MIPS_MSA_CSR, |
| }; |
| |
| static u64 kvm_mips_get_one_regs_kscratch[] = { |
| KVM_REG_MIPS_CP0_KSCRATCH1, |
| KVM_REG_MIPS_CP0_KSCRATCH2, |
| KVM_REG_MIPS_CP0_KSCRATCH3, |
| KVM_REG_MIPS_CP0_KSCRATCH4, |
| KVM_REG_MIPS_CP0_KSCRATCH5, |
| KVM_REG_MIPS_CP0_KSCRATCH6, |
| }; |
| |
| static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu) |
| { |
| unsigned long ret; |
| |
| ret = ARRAY_SIZE(kvm_mips_get_one_regs); |
| if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) { |
| ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48; |
| /* odd doubles */ |
| if (boot_cpu_data.fpu_id & MIPS_FPIR_F64) |
| ret += 16; |
| } |
| if (kvm_mips_guest_can_have_msa(&vcpu->arch)) |
| ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32; |
| ret += __arch_hweight8(vcpu->arch.kscratch_enabled); |
| ret += kvm_mips_callbacks->num_regs(vcpu); |
| |
| return ret; |
| } |
| |
| static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices) |
| { |
| u64 index; |
| unsigned int i; |
| |
| if (copy_to_user(indices, kvm_mips_get_one_regs, |
| sizeof(kvm_mips_get_one_regs))) |
| return -EFAULT; |
| indices += ARRAY_SIZE(kvm_mips_get_one_regs); |
| |
| if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) { |
| if (copy_to_user(indices, kvm_mips_get_one_regs_fpu, |
| sizeof(kvm_mips_get_one_regs_fpu))) |
| return -EFAULT; |
| indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu); |
| |
| for (i = 0; i < 32; ++i) { |
| index = KVM_REG_MIPS_FPR_32(i); |
| if (copy_to_user(indices, &index, sizeof(index))) |
| return -EFAULT; |
| ++indices; |
| |
| /* skip odd doubles if no F64 */ |
| if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64)) |
| continue; |
| |
| index = KVM_REG_MIPS_FPR_64(i); |
| if (copy_to_user(indices, &index, sizeof(index))) |
| return -EFAULT; |
| ++indices; |
| } |
| } |
| |
| if (kvm_mips_guest_can_have_msa(&vcpu->arch)) { |
| if (copy_to_user(indices, kvm_mips_get_one_regs_msa, |
| sizeof(kvm_mips_get_one_regs_msa))) |
| return -EFAULT; |
| indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa); |
| |
| for (i = 0; i < 32; ++i) { |
| index = KVM_REG_MIPS_VEC_128(i); |
| if (copy_to_user(indices, &index, sizeof(index))) |
| return -EFAULT; |
| ++indices; |
| } |
| } |
| |
| for (i = 0; i < 6; ++i) { |
| if (!(vcpu->arch.kscratch_enabled & BIT(i + 2))) |
| continue; |
| |
| if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i], |
| sizeof(kvm_mips_get_one_regs_kscratch[i]))) |
| return -EFAULT; |
| ++indices; |
| } |
| |
| return kvm_mips_callbacks->copy_reg_indices(vcpu, indices); |
| } |
| |
| static int kvm_mips_get_reg(struct kvm_vcpu *vcpu, |
| const struct kvm_one_reg *reg) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| struct mips_fpu_struct *fpu = &vcpu->arch.fpu; |
| int ret; |
| s64 v; |
| s64 vs[2]; |
| unsigned int idx; |
| |
| switch (reg->id) { |
| /* General purpose registers */ |
| case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31: |
| v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0]; |
| break; |
| #ifndef CONFIG_CPU_MIPSR6 |
| case KVM_REG_MIPS_HI: |
| v = (long)vcpu->arch.hi; |
| break; |
| case KVM_REG_MIPS_LO: |
| v = (long)vcpu->arch.lo; |
| break; |
| #endif |
| case KVM_REG_MIPS_PC: |
| v = (long)vcpu->arch.pc; |
| break; |
| |
| /* Floating point registers */ |
| case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31): |
| if (!kvm_mips_guest_has_fpu(&vcpu->arch)) |
| return -EINVAL; |
| idx = reg->id - KVM_REG_MIPS_FPR_32(0); |
| /* Odd singles in top of even double when FR=0 */ |
| if (kvm_read_c0_guest_status(cop0) & ST0_FR) |
| v = get_fpr32(&fpu->fpr[idx], 0); |
| else |
| v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1); |
| break; |
| case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31): |
| if (!kvm_mips_guest_has_fpu(&vcpu->arch)) |
| return -EINVAL; |
| idx = reg->id - KVM_REG_MIPS_FPR_64(0); |
| /* Can't access odd doubles in FR=0 mode */ |
| if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR)) |
| return -EINVAL; |
| v = get_fpr64(&fpu->fpr[idx], 0); |
| break; |
| case KVM_REG_MIPS_FCR_IR: |
| if (!kvm_mips_guest_has_fpu(&vcpu->arch)) |
| return -EINVAL; |
| v = boot_cpu_data.fpu_id; |
| break; |
| case KVM_REG_MIPS_FCR_CSR: |
| if (!kvm_mips_guest_has_fpu(&vcpu->arch)) |
| return -EINVAL; |
| v = fpu->fcr31; |
| break; |
| |
| /* MIPS SIMD Architecture (MSA) registers */ |
| case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31): |
| if (!kvm_mips_guest_has_msa(&vcpu->arch)) |
| return -EINVAL; |
| /* Can't access MSA registers in FR=0 mode */ |
| if (!(kvm_read_c0_guest_status(cop0) & ST0_FR)) |
| return -EINVAL; |
| idx = reg->id - KVM_REG_MIPS_VEC_128(0); |
| #ifdef CONFIG_CPU_LITTLE_ENDIAN |
| /* least significant byte first */ |
| vs[0] = get_fpr64(&fpu->fpr[idx], 0); |
| vs[1] = get_fpr64(&fpu->fpr[idx], 1); |
| #else |
| /* most significant byte first */ |
| vs[0] = get_fpr64(&fpu->fpr[idx], 1); |
| vs[1] = get_fpr64(&fpu->fpr[idx], 0); |
| #endif |
| break; |
| case KVM_REG_MIPS_MSA_IR: |
| if (!kvm_mips_guest_has_msa(&vcpu->arch)) |
| return -EINVAL; |
| v = boot_cpu_data.msa_id; |
| break; |
| case KVM_REG_MIPS_MSA_CSR: |
| if (!kvm_mips_guest_has_msa(&vcpu->arch)) |
| return -EINVAL; |
| v = fpu->msacsr; |
| break; |
| |
| /* Co-processor 0 registers */ |
| case KVM_REG_MIPS_CP0_INDEX: |
| v = (long)kvm_read_c0_guest_index(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_CONTEXT: |
| v = (long)kvm_read_c0_guest_context(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_USERLOCAL: |
| v = (long)kvm_read_c0_guest_userlocal(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_PAGEMASK: |
| v = (long)kvm_read_c0_guest_pagemask(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_WIRED: |
| v = (long)kvm_read_c0_guest_wired(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_HWRENA: |
| v = (long)kvm_read_c0_guest_hwrena(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_BADVADDR: |
| v = (long)kvm_read_c0_guest_badvaddr(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_ENTRYHI: |
| v = (long)kvm_read_c0_guest_entryhi(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_COMPARE: |
| v = (long)kvm_read_c0_guest_compare(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_STATUS: |
| v = (long)kvm_read_c0_guest_status(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_CAUSE: |
| v = (long)kvm_read_c0_guest_cause(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_EPC: |
| v = (long)kvm_read_c0_guest_epc(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_PRID: |
| v = (long)kvm_read_c0_guest_prid(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG: |
| v = (long)kvm_read_c0_guest_config(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG1: |
| v = (long)kvm_read_c0_guest_config1(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG2: |
| v = (long)kvm_read_c0_guest_config2(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG3: |
| v = (long)kvm_read_c0_guest_config3(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG4: |
| v = (long)kvm_read_c0_guest_config4(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG5: |
| v = (long)kvm_read_c0_guest_config5(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG7: |
| v = (long)kvm_read_c0_guest_config7(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_ERROREPC: |
| v = (long)kvm_read_c0_guest_errorepc(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6: |
| idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2; |
| if (!(vcpu->arch.kscratch_enabled & BIT(idx))) |
| return -EINVAL; |
| switch (idx) { |
| case 2: |
| v = (long)kvm_read_c0_guest_kscratch1(cop0); |
| break; |
| case 3: |
| v = (long)kvm_read_c0_guest_kscratch2(cop0); |
| break; |
| case 4: |
| v = (long)kvm_read_c0_guest_kscratch3(cop0); |
| break; |
| case 5: |
| v = (long)kvm_read_c0_guest_kscratch4(cop0); |
| break; |
| case 6: |
| v = (long)kvm_read_c0_guest_kscratch5(cop0); |
| break; |
| case 7: |
| v = (long)kvm_read_c0_guest_kscratch6(cop0); |
| break; |
| } |
| break; |
| /* registers to be handled specially */ |
| default: |
| ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v); |
| if (ret) |
| return ret; |
| break; |
| } |
| if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) { |
| u64 __user *uaddr64 = (u64 __user *)(long)reg->addr; |
| |
| return put_user(v, uaddr64); |
| } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) { |
| u32 __user *uaddr32 = (u32 __user *)(long)reg->addr; |
| u32 v32 = (u32)v; |
| |
| return put_user(v32, uaddr32); |
| } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) { |
| void __user *uaddr = (void __user *)(long)reg->addr; |
| |
| return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0; |
| } else { |
| return -EINVAL; |
| } |
| } |
| |
| static int kvm_mips_set_reg(struct kvm_vcpu *vcpu, |
| const struct kvm_one_reg *reg) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| struct mips_fpu_struct *fpu = &vcpu->arch.fpu; |
| s64 v; |
| s64 vs[2]; |
| unsigned int idx; |
| |
| if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) { |
| u64 __user *uaddr64 = (u64 __user *)(long)reg->addr; |
| |
| if (get_user(v, uaddr64) != 0) |
| return -EFAULT; |
| } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) { |
| u32 __user *uaddr32 = (u32 __user *)(long)reg->addr; |
| s32 v32; |
| |
| if (get_user(v32, uaddr32) != 0) |
| return -EFAULT; |
| v = (s64)v32; |
| } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) { |
| void __user *uaddr = (void __user *)(long)reg->addr; |
| |
| return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0; |
| } else { |
| return -EINVAL; |
| } |
| |
| switch (reg->id) { |
| /* General purpose registers */ |
| case KVM_REG_MIPS_R0: |
| /* Silently ignore requests to set $0 */ |
| break; |
| case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31: |
| vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v; |
| break; |
| #ifndef CONFIG_CPU_MIPSR6 |
| case KVM_REG_MIPS_HI: |
| vcpu->arch.hi = v; |
| break; |
| case KVM_REG_MIPS_LO: |
| vcpu->arch.lo = v; |
| break; |
| #endif |
| case KVM_REG_MIPS_PC: |
| vcpu->arch.pc = v; |
| break; |
| |
| /* Floating point registers */ |
| case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31): |
| if (!kvm_mips_guest_has_fpu(&vcpu->arch)) |
| return -EINVAL; |
| idx = reg->id - KVM_REG_MIPS_FPR_32(0); |
| /* Odd singles in top of even double when FR=0 */ |
| if (kvm_read_c0_guest_status(cop0) & ST0_FR) |
| set_fpr32(&fpu->fpr[idx], 0, v); |
| else |
| set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v); |
| break; |
| case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31): |
| if (!kvm_mips_guest_has_fpu(&vcpu->arch)) |
| return -EINVAL; |
| idx = reg->id - KVM_REG_MIPS_FPR_64(0); |
| /* Can't access odd doubles in FR=0 mode */ |
| if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR)) |
| return -EINVAL; |
| set_fpr64(&fpu->fpr[idx], 0, v); |
| break; |
| case KVM_REG_MIPS_FCR_IR: |
| if (!kvm_mips_guest_has_fpu(&vcpu->arch)) |
| return -EINVAL; |
| /* Read-only */ |
| break; |
| case KVM_REG_MIPS_FCR_CSR: |
| if (!kvm_mips_guest_has_fpu(&vcpu->arch)) |
| return -EINVAL; |
| fpu->fcr31 = v; |
| break; |
| |
| /* MIPS SIMD Architecture (MSA) registers */ |
| case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31): |
| if (!kvm_mips_guest_has_msa(&vcpu->arch)) |
| return -EINVAL; |
| idx = reg->id - KVM_REG_MIPS_VEC_128(0); |
| #ifdef CONFIG_CPU_LITTLE_ENDIAN |
| /* least significant byte first */ |
| set_fpr64(&fpu->fpr[idx], 0, vs[0]); |
| set_fpr64(&fpu->fpr[idx], 1, vs[1]); |
| #else |
| /* most significant byte first */ |
| set_fpr64(&fpu->fpr[idx], 1, vs[0]); |
| set_fpr64(&fpu->fpr[idx], 0, vs[1]); |
| #endif |
| break; |
| case KVM_REG_MIPS_MSA_IR: |
| if (!kvm_mips_guest_has_msa(&vcpu->arch)) |
| return -EINVAL; |
| /* Read-only */ |
| break; |
| case KVM_REG_MIPS_MSA_CSR: |
| if (!kvm_mips_guest_has_msa(&vcpu->arch)) |
| return -EINVAL; |
| fpu->msacsr = v; |
| break; |
| |
| /* Co-processor 0 registers */ |
| case KVM_REG_MIPS_CP0_INDEX: |
| kvm_write_c0_guest_index(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_CONTEXT: |
| kvm_write_c0_guest_context(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_USERLOCAL: |
| kvm_write_c0_guest_userlocal(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_PAGEMASK: |
| kvm_write_c0_guest_pagemask(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_WIRED: |
| kvm_write_c0_guest_wired(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_HWRENA: |
| kvm_write_c0_guest_hwrena(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_BADVADDR: |
| kvm_write_c0_guest_badvaddr(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_ENTRYHI: |
| kvm_write_c0_guest_entryhi(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_STATUS: |
| kvm_write_c0_guest_status(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_EPC: |
| kvm_write_c0_guest_epc(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_PRID: |
| kvm_write_c0_guest_prid(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_ERROREPC: |
| kvm_write_c0_guest_errorepc(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6: |
| idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2; |
| if (!(vcpu->arch.kscratch_enabled & BIT(idx))) |
| return -EINVAL; |
| switch (idx) { |
| case 2: |
| kvm_write_c0_guest_kscratch1(cop0, v); |
| break; |
| case 3: |
| kvm_write_c0_guest_kscratch2(cop0, v); |
| break; |
| case 4: |
| kvm_write_c0_guest_kscratch3(cop0, v); |
| break; |
| case 5: |
| kvm_write_c0_guest_kscratch4(cop0, v); |
| break; |
| case 6: |
| kvm_write_c0_guest_kscratch5(cop0, v); |
| break; |
| case 7: |
| kvm_write_c0_guest_kscratch6(cop0, v); |
| break; |
| } |
| break; |
| /* registers to be handled specially */ |
| default: |
| return kvm_mips_callbacks->set_one_reg(vcpu, reg, v); |
| } |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, |
| struct kvm_enable_cap *cap) |
| { |
| int r = 0; |
| |
| if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap)) |
| return -EINVAL; |
| if (cap->flags) |
| return -EINVAL; |
| if (cap->args[0]) |
| return -EINVAL; |
| |
| switch (cap->cap) { |
| case KVM_CAP_MIPS_FPU: |
| vcpu->arch.fpu_enabled = true; |
| break; |
| case KVM_CAP_MIPS_MSA: |
| vcpu->arch.msa_enabled = true; |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| |
| return r; |
| } |
| |
| long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, |
| unsigned long arg) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| long r; |
| |
| switch (ioctl) { |
| case KVM_SET_ONE_REG: |
| case KVM_GET_ONE_REG: { |
| struct kvm_one_reg reg; |
| |
| if (copy_from_user(®, argp, sizeof(reg))) |
| return -EFAULT; |
| if (ioctl == KVM_SET_ONE_REG) |
| return kvm_mips_set_reg(vcpu, ®); |
| else |
| return kvm_mips_get_reg(vcpu, ®); |
| } |
| case KVM_GET_REG_LIST: { |
| struct kvm_reg_list __user *user_list = argp; |
| struct kvm_reg_list reg_list; |
| unsigned n; |
| |
| if (copy_from_user(®_list, user_list, sizeof(reg_list))) |
| return -EFAULT; |
| n = reg_list.n; |
| reg_list.n = kvm_mips_num_regs(vcpu); |
| if (copy_to_user(user_list, ®_list, sizeof(reg_list))) |
| return -EFAULT; |
| if (n < reg_list.n) |
| return -E2BIG; |
| return kvm_mips_copy_reg_indices(vcpu, user_list->reg); |
| } |
| case KVM_INTERRUPT: |
| { |
| struct kvm_mips_interrupt irq; |
| |
| if (copy_from_user(&irq, argp, sizeof(irq))) |
| return -EFAULT; |
| kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__, |
| irq.irq); |
| |
| r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); |
| break; |
| } |
| case KVM_ENABLE_CAP: { |
| struct kvm_enable_cap cap; |
| |
| if (copy_from_user(&cap, argp, sizeof(cap))) |
| return -EFAULT; |
| r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); |
| break; |
| } |
| default: |
| r = -ENOIOCTLCMD; |
| } |
| return r; |
| } |
| |
| /** |
| * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot |
| * @kvm: kvm instance |
| * @log: slot id and address to which we copy the log |
| * |
| * Steps 1-4 below provide general overview of dirty page logging. See |
| * kvm_get_dirty_log_protect() function description for additional details. |
| * |
| * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we |
| * always flush the TLB (step 4) even if previous step failed and the dirty |
| * bitmap may be corrupt. Regardless of previous outcome the KVM logging API |
| * does not preclude user space subsequent dirty log read. Flushing TLB ensures |
| * writes will be marked dirty for next log read. |
| * |
| * 1. Take a snapshot of the bit and clear it if needed. |
| * 2. Write protect the corresponding page. |
| * 3. Copy the snapshot to the userspace. |
| * 4. Flush TLB's if needed. |
| */ |
| int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) |
| { |
| struct kvm_memslots *slots; |
| struct kvm_memory_slot *memslot; |
| bool is_dirty = false; |
| int r; |
| |
| mutex_lock(&kvm->slots_lock); |
| |
| r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); |
| |
| if (is_dirty) { |
| slots = kvm_memslots(kvm); |
| memslot = id_to_memslot(slots, log->slot); |
| |
| /* Let implementation handle TLB/GVA invalidation */ |
| kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot); |
| } |
| |
| mutex_unlock(&kvm->slots_lock); |
| return r; |
| } |
| |
| long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) |
| { |
| long r; |
| |
| switch (ioctl) { |
| default: |
| r = -ENOIOCTLCMD; |
| } |
| |
| return r; |
| } |
| |
| int kvm_arch_init(void *opaque) |
| { |
| if (kvm_mips_callbacks) { |
| kvm_err("kvm: module already exists\n"); |
| return -EEXIST; |
| } |
| |
| return kvm_mips_emulation_init(&kvm_mips_callbacks); |
| } |
| |
| void kvm_arch_exit(void) |
| { |
| kvm_mips_callbacks = NULL; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| return -ENOIOCTLCMD; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| return -ENOIOCTLCMD; |
| } |
| |
| void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) |
| { |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
| { |
| return -ENOIOCTLCMD; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
| { |
| return -ENOIOCTLCMD; |
| } |
| |
| int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) |
| { |
| return VM_FAULT_SIGBUS; |
| } |
| |
| int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) |
| { |
| int r; |
| |
| switch (ext) { |
| case KVM_CAP_ONE_REG: |
| case KVM_CAP_ENABLE_CAP: |
| r = 1; |
| break; |
| case KVM_CAP_COALESCED_MMIO: |
| r = KVM_COALESCED_MMIO_PAGE_OFFSET; |
| break; |
| case KVM_CAP_MIPS_FPU: |
| /* We don't handle systems with inconsistent cpu_has_fpu */ |
| r = !!raw_cpu_has_fpu; |
| break; |
| case KVM_CAP_MIPS_MSA: |
| /* |
| * We don't support MSA vector partitioning yet: |
| * 1) It would require explicit support which can't be tested |
| * yet due to lack of support in current hardware. |
| * 2) It extends the state that would need to be saved/restored |
| * by e.g. QEMU for migration. |
| * |
| * When vector partitioning hardware becomes available, support |
| * could be added by requiring a flag when enabling |
| * KVM_CAP_MIPS_MSA capability to indicate that userland knows |
| * to save/restore the appropriate extra state. |
| */ |
| r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF); |
| break; |
| default: |
| r = 0; |
| break; |
| } |
| return r; |
| } |
| |
| int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) |
| { |
| return kvm_mips_pending_timer(vcpu); |
| } |
| |
| int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| struct mips_coproc *cop0; |
| |
| if (!vcpu) |
| return -1; |
| |
| kvm_debug("VCPU Register Dump:\n"); |
| kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc); |
| kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions); |
| |
| for (i = 0; i < 32; i += 4) { |
| kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i, |
| vcpu->arch.gprs[i], |
| vcpu->arch.gprs[i + 1], |
| vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]); |
| } |
| kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi); |
| kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo); |
| |
| cop0 = vcpu->arch.cop0; |
| kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n", |
| kvm_read_c0_guest_status(cop0), |
| kvm_read_c0_guest_cause(cop0)); |
| |
| kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0)); |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
| { |
| int i; |
| |
| for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++) |
| vcpu->arch.gprs[i] = regs->gpr[i]; |
| vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */ |
| vcpu->arch.hi = regs->hi; |
| vcpu->arch.lo = regs->lo; |
| vcpu->arch.pc = regs->pc; |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++) |
| regs->gpr[i] = vcpu->arch.gprs[i]; |
| |
| regs->hi = vcpu->arch.hi; |
| regs->lo = vcpu->arch.lo; |
| regs->pc = vcpu->arch.pc; |
| |
| return 0; |
| } |
| |
| static void kvm_mips_comparecount_func(unsigned long data) |
| { |
| struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data; |
| |
| kvm_mips_callbacks->queue_timer_int(vcpu); |
| |
| vcpu->arch.wait = 0; |
| if (swait_active(&vcpu->wq)) |
| swake_up(&vcpu->wq); |
| } |
| |
| /* low level hrtimer wake routine */ |
| static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer) |
| { |
| struct kvm_vcpu *vcpu; |
| |
| vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer); |
| kvm_mips_comparecount_func((unsigned long) vcpu); |
| return kvm_mips_count_timeout(vcpu); |
| } |
| |
| int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) |
| { |
| int err; |
| |
| err = kvm_mips_callbacks->vcpu_init(vcpu); |
| if (err) |
| return err; |
| |
| hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC, |
| HRTIMER_MODE_REL); |
| vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup; |
| return 0; |
| } |
| |
| void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) |
| { |
| kvm_mips_callbacks->vcpu_uninit(vcpu); |
| } |
| |
| int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, |
| struct kvm_translation *tr) |
| { |
| return 0; |
| } |
| |
| /* Initial guest state */ |
| int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) |
| { |
| return kvm_mips_callbacks->vcpu_setup(vcpu); |
| } |
| |
| static void kvm_mips_set_c0_status(void) |
| { |
| u32 status = read_c0_status(); |
| |
| if (cpu_has_dsp) |
| status |= (ST0_MX); |
| |
| write_c0_status(status); |
| ehb(); |
| } |
| |
| /* |
| * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV) |
| */ |
| int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu) |
| { |
| u32 cause = vcpu->arch.host_cp0_cause; |
| u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; |
| u32 __user *opc = (u32 __user *) vcpu->arch.pc; |
| unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; |
| enum emulation_result er = EMULATE_DONE; |
| u32 inst; |
| int ret = RESUME_GUEST; |
| |
| vcpu->mode = OUTSIDE_GUEST_MODE; |
| |
| /* re-enable HTW before enabling interrupts */ |
| htw_start(); |
| |
| /* Set a default exit reason */ |
| run->exit_reason = KVM_EXIT_UNKNOWN; |
| run->ready_for_interrupt_injection = 1; |
| |
| /* |
| * Set the appropriate status bits based on host CPU features, |
| * before we hit the scheduler |
| */ |
| kvm_mips_set_c0_status(); |
| |
| local_irq_enable(); |
| |
| kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n", |
| cause, opc, run, vcpu); |
| trace_kvm_exit(vcpu, exccode); |
| |
| /* |
| * Do a privilege check, if in UM most of these exit conditions end up |
| * causing an exception to be delivered to the Guest Kernel |
| */ |
| er = kvm_mips_check_privilege(cause, opc, run, vcpu); |
| if (er == EMULATE_PRIV_FAIL) { |
| goto skip_emul; |
| } else if (er == EMULATE_FAIL) { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| goto skip_emul; |
| } |
| |
| switch (exccode) { |
| case EXCCODE_INT: |
| kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc); |
| |
| ++vcpu->stat.int_exits; |
| |
| if (need_resched()) |
| cond_resched(); |
| |
| ret = RESUME_GUEST; |
| break; |
| |
| case EXCCODE_CPU: |
| kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc); |
| |
| ++vcpu->stat.cop_unusable_exits; |
| ret = kvm_mips_callbacks->handle_cop_unusable(vcpu); |
| /* XXXKYMA: Might need to return to user space */ |
| if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN) |
| ret = RESUME_HOST; |
| break; |
| |
| case EXCCODE_MOD: |
| ++vcpu->stat.tlbmod_exits; |
| ret = kvm_mips_callbacks->handle_tlb_mod(vcpu); |
| break; |
| |
| case EXCCODE_TLBS: |
| kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n", |
| cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc, |
| badvaddr); |
| |
| ++vcpu->stat.tlbmiss_st_exits; |
| ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu); |
| break; |
| |
| case EXCCODE_TLBL: |
| kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n", |
| cause, opc, badvaddr); |
| |
| ++vcpu->stat.tlbmiss_ld_exits; |
| ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu); |
| break; |
| |
| case EXCCODE_ADES: |
| ++vcpu->stat.addrerr_st_exits; |
| ret = kvm_mips_callbacks->handle_addr_err_st(vcpu); |
| break; |
| |
| case EXCCODE_ADEL: |
| ++vcpu->stat.addrerr_ld_exits; |
| ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu); |
| break; |
| |
| case EXCCODE_SYS: |
| ++vcpu->stat.syscall_exits; |
| ret = kvm_mips_callbacks->handle_syscall(vcpu); |
| break; |
| |
| case EXCCODE_RI: |
| ++vcpu->stat.resvd_inst_exits; |
| ret = kvm_mips_callbacks->handle_res_inst(vcpu); |
| break; |
| |
| case EXCCODE_BP: |
| ++vcpu->stat.break_inst_exits; |
| ret = kvm_mips_callbacks->handle_break(vcpu); |
| break; |
| |
| case EXCCODE_TR: |
| ++vcpu->stat.trap_inst_exits; |
| ret = kvm_mips_callbacks->handle_trap(vcpu); |
| break; |
| |
| case EXCCODE_MSAFPE: |
| ++vcpu->stat.msa_fpe_exits; |
| ret = kvm_mips_callbacks->handle_msa_fpe(vcpu); |
| break; |
| |
| case EXCCODE_FPE: |
| ++vcpu->stat.fpe_exits; |
| ret = kvm_mips_callbacks->handle_fpe(vcpu); |
| break; |
| |
| case EXCCODE_MSADIS: |
| ++vcpu->stat.msa_disabled_exits; |
| ret = kvm_mips_callbacks->handle_msa_disabled(vcpu); |
| break; |
| |
| default: |
| if (cause & CAUSEF_BD) |
| opc += 1; |
| inst = 0; |
| kvm_get_badinstr(opc, vcpu, &inst); |
| kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n", |
| exccode, opc, inst, badvaddr, |
| kvm_read_c0_guest_status(vcpu->arch.cop0)); |
| kvm_arch_vcpu_dump_regs(vcpu); |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| break; |
| |
| } |
| |
| skip_emul: |
| local_irq_disable(); |
| |
| if (er == EMULATE_DONE && !(ret & RESUME_HOST)) |
| kvm_mips_deliver_interrupts(vcpu, cause); |
| |
| if (!(ret & RESUME_HOST)) { |
| /* Only check for signals if not already exiting to userspace */ |
| if (signal_pending(current)) { |
| run->exit_reason = KVM_EXIT_INTR; |
| ret = (-EINTR << 2) | RESUME_HOST; |
| ++vcpu->stat.signal_exits; |
| trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL); |
| } |
| } |
| |
| if (ret == RESUME_GUEST) { |
| trace_kvm_reenter(vcpu); |
| |
| /* |
| * Make sure the read of VCPU requests in vcpu_reenter() |
| * callback is not reordered ahead of the write to vcpu->mode, |
| * or we could miss a TLB flush request while the requester sees |
| * the VCPU as outside of guest mode and not needing an IPI. |
| */ |
| smp_store_mb(vcpu->mode, IN_GUEST_MODE); |
| |
| kvm_mips_callbacks->vcpu_reenter(run, vcpu); |
| |
| /* |
| * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context |
| * is live), restore FCR31 / MSACSR. |
| * |
| * This should be before returning to the guest exception |
| * vector, as it may well cause an [MSA] FP exception if there |
| * are pending exception bits unmasked. (see |
| * kvm_mips_csr_die_notifier() for how that is handled). |
| */ |
| if (kvm_mips_guest_has_fpu(&vcpu->arch) && |
| read_c0_status() & ST0_CU1) |
| __kvm_restore_fcsr(&vcpu->arch); |
| |
| if (kvm_mips_guest_has_msa(&vcpu->arch) && |
| read_c0_config5() & MIPS_CONF5_MSAEN) |
| __kvm_restore_msacsr(&vcpu->arch); |
| } |
| |
| /* Disable HTW before returning to guest or host */ |
| htw_stop(); |
| |
| return ret; |
| } |
| |
| /* Enable FPU for guest and restore context */ |
| void kvm_own_fpu(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| unsigned int sr, cfg5; |
| |
| preempt_disable(); |
| |
| sr = kvm_read_c0_guest_status(cop0); |
| |
| /* |
| * If MSA state is already live, it is undefined how it interacts with |
| * FR=0 FPU state, and we don't want to hit reserved instruction |
| * exceptions trying to save the MSA state later when CU=1 && FR=1, so |
| * play it safe and save it first. |
| * |
| * In theory we shouldn't ever hit this case since kvm_lose_fpu() should |
| * get called when guest CU1 is set, however we can't trust the guest |
| * not to clobber the status register directly via the commpage. |
| */ |
| if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) && |
| vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) |
| kvm_lose_fpu(vcpu); |
| |
| /* |
| * Enable FPU for guest |
| * We set FR and FRE according to guest context |
| */ |
| change_c0_status(ST0_CU1 | ST0_FR, sr); |
| if (cpu_has_fre) { |
| cfg5 = kvm_read_c0_guest_config5(cop0); |
| change_c0_config5(MIPS_CONF5_FRE, cfg5); |
| } |
| enable_fpu_hazard(); |
| |
| /* If guest FPU state not active, restore it now */ |
| if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) { |
| __kvm_restore_fpu(&vcpu->arch); |
| vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU; |
| trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU); |
| } else { |
| trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU); |
| } |
| |
| preempt_enable(); |
| } |
| |
| #ifdef CONFIG_CPU_HAS_MSA |
| /* Enable MSA for guest and restore context */ |
| void kvm_own_msa(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| unsigned int sr, cfg5; |
| |
| preempt_disable(); |
| |
| /* |
| * Enable FPU if enabled in guest, since we're restoring FPU context |
| * anyway. We set FR and FRE according to guest context. |
| */ |
| if (kvm_mips_guest_has_fpu(&vcpu->arch)) { |
| sr = kvm_read_c0_guest_status(cop0); |
| |
| /* |
| * If FR=0 FPU state is already live, it is undefined how it |
| * interacts with MSA state, so play it safe and save it first. |
| */ |
| if (!(sr & ST0_FR) && |
| (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | |
| KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU) |
| kvm_lose_fpu(vcpu); |
| |
| change_c0_status(ST0_CU1 | ST0_FR, sr); |
| if (sr & ST0_CU1 && cpu_has_fre) { |
| cfg5 = kvm_read_c0_guest_config5(cop0); |
| change_c0_config5(MIPS_CONF5_FRE, cfg5); |
| } |
| } |
| |
| /* Enable MSA for guest */ |
| set_c0_config5(MIPS_CONF5_MSAEN); |
| enable_fpu_hazard(); |
| |
| switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) { |
| case KVM_MIPS_AUX_FPU: |
| /* |
| * Guest FPU state already loaded, only restore upper MSA state |
| */ |
| __kvm_restore_msa_upper(&vcpu->arch); |
| vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA; |
| trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA); |
| break; |
| case 0: |
| /* Neither FPU or MSA already active, restore full MSA state */ |
| __kvm_restore_msa(&vcpu->arch); |
| vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA; |
| if (kvm_mips_guest_has_fpu(&vcpu->arch)) |
| vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU; |
| trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, |
| KVM_TRACE_AUX_FPU_MSA); |
| break; |
| default: |
| trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA); |
| break; |
| } |
| |
| preempt_enable(); |
| } |
| #endif |
| |
| /* Drop FPU & MSA without saving it */ |
| void kvm_drop_fpu(struct kvm_vcpu *vcpu) |
| { |
| preempt_disable(); |
| if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { |
| disable_msa(); |
| trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA); |
| vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA; |
| } |
| if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { |
| clear_c0_status(ST0_CU1 | ST0_FR); |
| trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU); |
| vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU; |
| } |
| preempt_enable(); |
| } |
| |
| /* Save and disable FPU & MSA */ |
| void kvm_lose_fpu(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * FPU & MSA get disabled in root context (hardware) when it is disabled |
| * in guest context (software), but the register state in the hardware |
| * may still be in use. This is why we explicitly re-enable the hardware |
| * before saving. |
| */ |
| |
| preempt_disable(); |
| if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { |
| set_c0_config5(MIPS_CONF5_MSAEN); |
| enable_fpu_hazard(); |
| |
| __kvm_save_msa(&vcpu->arch); |
| trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA); |
| |
| /* Disable MSA & FPU */ |
| disable_msa(); |
| if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { |
| clear_c0_status(ST0_CU1 | ST0_FR); |
| disable_fpu_hazard(); |
| } |
| vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA); |
| } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { |
| set_c0_status(ST0_CU1); |
| enable_fpu_hazard(); |
| |
| __kvm_save_fpu(&vcpu->arch); |
| vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU; |
| trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU); |
| |
| /* Disable FPU */ |
| clear_c0_status(ST0_CU1 | ST0_FR); |
| disable_fpu_hazard(); |
| } |
| preempt_enable(); |
| } |
| |
| /* |
| * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are |
| * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP |
| * exception if cause bits are set in the value being written. |
| */ |
| static int kvm_mips_csr_die_notify(struct notifier_block *self, |
| unsigned long cmd, void *ptr) |
| { |
| struct die_args *args = (struct die_args *)ptr; |
| struct pt_regs *regs = args->regs; |
| unsigned long pc; |
| |
| /* Only interested in FPE and MSAFPE */ |
| if (cmd != DIE_FP && cmd != DIE_MSAFP) |
| return NOTIFY_DONE; |
| |
| /* Return immediately if guest context isn't active */ |
| if (!(current->flags & PF_VCPU)) |
| return NOTIFY_DONE; |
| |
| /* Should never get here from user mode */ |
| BUG_ON(user_mode(regs)); |
| |
| pc = instruction_pointer(regs); |
| switch (cmd) { |
| case DIE_FP: |
| /* match 2nd instruction in __kvm_restore_fcsr */ |
| if (pc != (unsigned long)&__kvm_restore_fcsr + 4) |
| return NOTIFY_DONE; |
| break; |
| case DIE_MSAFP: |
| /* match 2nd/3rd instruction in __kvm_restore_msacsr */ |
| if (!cpu_has_msa || |
| pc < (unsigned long)&__kvm_restore_msacsr + 4 || |
| pc > (unsigned long)&__kvm_restore_msacsr + 8) |
| return NOTIFY_DONE; |
| break; |
| } |
| |
| /* Move PC forward a little and continue executing */ |
| instruction_pointer(regs) += 4; |
| |
| return NOTIFY_STOP; |
| } |
| |
| static struct notifier_block kvm_mips_csr_die_notifier = { |
| .notifier_call = kvm_mips_csr_die_notify, |
| }; |
| |
| static int __init kvm_mips_init(void) |
| { |
| int ret; |
| |
| ret = kvm_mips_entry_setup(); |
| if (ret) |
| return ret; |
| |
| ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); |
| |
| if (ret) |
| return ret; |
| |
| register_die_notifier(&kvm_mips_csr_die_notifier); |
| |
| return 0; |
| } |
| |
| static void __exit kvm_mips_exit(void) |
| { |
| kvm_exit(); |
| |
| unregister_die_notifier(&kvm_mips_csr_die_notifier); |
| } |
| |
| module_init(kvm_mips_init); |
| module_exit(kvm_mips_exit); |
| |
| EXPORT_TRACEPOINT_SYMBOL(kvm_exit); |