| /* |
| * Perf support for the Statistical Profiling Extension, introduced as |
| * part of ARMv8.2. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| * |
| * Copyright (C) 2016 ARM Limited |
| * |
| * Author: Will Deacon <will.deacon@arm.com> |
| */ |
| |
| #define PMUNAME "arm_spe" |
| #define DRVNAME PMUNAME "_pmu" |
| #define pr_fmt(fmt) DRVNAME ": " fmt |
| |
| #include <linux/bitops.h> |
| #include <linux/bug.h> |
| #include <linux/capability.h> |
| #include <linux/cpuhotplug.h> |
| #include <linux/cpumask.h> |
| #include <linux/device.h> |
| #include <linux/errno.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/of_address.h> |
| #include <linux/of_device.h> |
| #include <linux/perf_event.h> |
| #include <linux/platform_device.h> |
| #include <linux/printk.h> |
| #include <linux/slab.h> |
| #include <linux/smp.h> |
| #include <linux/vmalloc.h> |
| |
| #include <asm/barrier.h> |
| #include <asm/cpufeature.h> |
| #include <asm/mmu.h> |
| #include <asm/sysreg.h> |
| |
| #define ARM_SPE_BUF_PAD_BYTE 0 |
| |
| struct arm_spe_pmu_buf { |
| int nr_pages; |
| bool snapshot; |
| void *base; |
| }; |
| |
| struct arm_spe_pmu { |
| struct pmu pmu; |
| struct platform_device *pdev; |
| cpumask_t supported_cpus; |
| struct hlist_node hotplug_node; |
| |
| int irq; /* PPI */ |
| |
| u16 min_period; |
| u16 counter_sz; |
| |
| #define SPE_PMU_FEAT_FILT_EVT (1UL << 0) |
| #define SPE_PMU_FEAT_FILT_TYP (1UL << 1) |
| #define SPE_PMU_FEAT_FILT_LAT (1UL << 2) |
| #define SPE_PMU_FEAT_ARCH_INST (1UL << 3) |
| #define SPE_PMU_FEAT_LDS (1UL << 4) |
| #define SPE_PMU_FEAT_ERND (1UL << 5) |
| #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63) |
| u64 features; |
| |
| u16 max_record_sz; |
| u16 align; |
| struct perf_output_handle __percpu *handle; |
| }; |
| |
| #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu)) |
| |
| /* Convert a free-running index from perf into an SPE buffer offset */ |
| #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT)) |
| |
| /* Keep track of our dynamic hotplug state */ |
| static enum cpuhp_state arm_spe_pmu_online; |
| |
| enum arm_spe_pmu_buf_fault_action { |
| SPE_PMU_BUF_FAULT_ACT_SPURIOUS, |
| SPE_PMU_BUF_FAULT_ACT_FATAL, |
| SPE_PMU_BUF_FAULT_ACT_OK, |
| }; |
| |
| /* This sysfs gunk was really good fun to write. */ |
| enum arm_spe_pmu_capabilities { |
| SPE_PMU_CAP_ARCH_INST = 0, |
| SPE_PMU_CAP_ERND, |
| SPE_PMU_CAP_FEAT_MAX, |
| SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX, |
| SPE_PMU_CAP_MIN_IVAL, |
| }; |
| |
| static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = { |
| [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST, |
| [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND, |
| }; |
| |
| static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap) |
| { |
| if (cap < SPE_PMU_CAP_FEAT_MAX) |
| return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]); |
| |
| switch (cap) { |
| case SPE_PMU_CAP_CNT_SZ: |
| return spe_pmu->counter_sz; |
| case SPE_PMU_CAP_MIN_IVAL: |
| return spe_pmu->min_period; |
| default: |
| WARN(1, "unknown cap %d\n", cap); |
| } |
| |
| return 0; |
| } |
| |
| static ssize_t arm_spe_pmu_cap_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); |
| struct dev_ext_attribute *ea = |
| container_of(attr, struct dev_ext_attribute, attr); |
| int cap = (long)ea->var; |
| |
| return snprintf(buf, PAGE_SIZE, "%u\n", |
| arm_spe_pmu_cap_get(spe_pmu, cap)); |
| } |
| |
| #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \ |
| &((struct dev_ext_attribute[]) { \ |
| { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \ |
| })[0].attr.attr |
| |
| #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \ |
| SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var) |
| |
| static struct attribute *arm_spe_pmu_cap_attr[] = { |
| SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST), |
| SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND), |
| SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ), |
| SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL), |
| NULL, |
| }; |
| |
| static struct attribute_group arm_spe_pmu_cap_group = { |
| .name = "caps", |
| .attrs = arm_spe_pmu_cap_attr, |
| }; |
| |
| /* User ABI */ |
| #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */ |
| #define ATTR_CFG_FLD_ts_enable_LO 0 |
| #define ATTR_CFG_FLD_ts_enable_HI 0 |
| #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */ |
| #define ATTR_CFG_FLD_pa_enable_LO 1 |
| #define ATTR_CFG_FLD_pa_enable_HI 1 |
| #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */ |
| #define ATTR_CFG_FLD_pct_enable_LO 2 |
| #define ATTR_CFG_FLD_pct_enable_HI 2 |
| #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */ |
| #define ATTR_CFG_FLD_jitter_LO 16 |
| #define ATTR_CFG_FLD_jitter_HI 16 |
| #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */ |
| #define ATTR_CFG_FLD_branch_filter_LO 32 |
| #define ATTR_CFG_FLD_branch_filter_HI 32 |
| #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */ |
| #define ATTR_CFG_FLD_load_filter_LO 33 |
| #define ATTR_CFG_FLD_load_filter_HI 33 |
| #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */ |
| #define ATTR_CFG_FLD_store_filter_LO 34 |
| #define ATTR_CFG_FLD_store_filter_HI 34 |
| |
| #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */ |
| #define ATTR_CFG_FLD_event_filter_LO 0 |
| #define ATTR_CFG_FLD_event_filter_HI 63 |
| |
| #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */ |
| #define ATTR_CFG_FLD_min_latency_LO 0 |
| #define ATTR_CFG_FLD_min_latency_HI 11 |
| |
| /* Why does everything I do descend into this? */ |
| #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \ |
| (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi |
| |
| #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \ |
| __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) |
| |
| #define GEN_PMU_FORMAT_ATTR(name) \ |
| PMU_FORMAT_ATTR(name, \ |
| _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \ |
| ATTR_CFG_FLD_##name##_LO, \ |
| ATTR_CFG_FLD_##name##_HI)) |
| |
| #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \ |
| ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0)) |
| |
| #define ATTR_CFG_GET_FLD(attr, name) \ |
| _ATTR_CFG_GET_FLD(attr, \ |
| ATTR_CFG_FLD_##name##_CFG, \ |
| ATTR_CFG_FLD_##name##_LO, \ |
| ATTR_CFG_FLD_##name##_HI) |
| |
| GEN_PMU_FORMAT_ATTR(ts_enable); |
| GEN_PMU_FORMAT_ATTR(pa_enable); |
| GEN_PMU_FORMAT_ATTR(pct_enable); |
| GEN_PMU_FORMAT_ATTR(jitter); |
| GEN_PMU_FORMAT_ATTR(branch_filter); |
| GEN_PMU_FORMAT_ATTR(load_filter); |
| GEN_PMU_FORMAT_ATTR(store_filter); |
| GEN_PMU_FORMAT_ATTR(event_filter); |
| GEN_PMU_FORMAT_ATTR(min_latency); |
| |
| static struct attribute *arm_spe_pmu_formats_attr[] = { |
| &format_attr_ts_enable.attr, |
| &format_attr_pa_enable.attr, |
| &format_attr_pct_enable.attr, |
| &format_attr_jitter.attr, |
| &format_attr_branch_filter.attr, |
| &format_attr_load_filter.attr, |
| &format_attr_store_filter.attr, |
| &format_attr_event_filter.attr, |
| &format_attr_min_latency.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group arm_spe_pmu_format_group = { |
| .name = "format", |
| .attrs = arm_spe_pmu_formats_attr, |
| }; |
| |
| static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); |
| |
| return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus); |
| } |
| static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL); |
| |
| static struct attribute *arm_spe_pmu_attrs[] = { |
| &dev_attr_cpumask.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group arm_spe_pmu_group = { |
| .attrs = arm_spe_pmu_attrs, |
| }; |
| |
| static const struct attribute_group *arm_spe_pmu_attr_groups[] = { |
| &arm_spe_pmu_group, |
| &arm_spe_pmu_cap_group, |
| &arm_spe_pmu_format_group, |
| NULL, |
| }; |
| |
| /* Convert between user ABI and register values */ |
| static u64 arm_spe_event_to_pmscr(struct perf_event *event) |
| { |
| struct perf_event_attr *attr = &event->attr; |
| u64 reg = 0; |
| |
| reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT; |
| reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT; |
| reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT; |
| |
| if (!attr->exclude_user) |
| reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT); |
| |
| if (!attr->exclude_kernel) |
| reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT); |
| |
| if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && capable(CAP_SYS_ADMIN)) |
| reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT); |
| |
| return reg; |
| } |
| |
| static void arm_spe_event_sanitise_period(struct perf_event *event) |
| { |
| struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); |
| u64 period = event->hw.sample_period; |
| u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK |
| << SYS_PMSIRR_EL1_INTERVAL_SHIFT; |
| |
| if (period < spe_pmu->min_period) |
| period = spe_pmu->min_period; |
| else if (period > max_period) |
| period = max_period; |
| else |
| period &= max_period; |
| |
| event->hw.sample_period = period; |
| } |
| |
| static u64 arm_spe_event_to_pmsirr(struct perf_event *event) |
| { |
| struct perf_event_attr *attr = &event->attr; |
| u64 reg = 0; |
| |
| arm_spe_event_sanitise_period(event); |
| |
| reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT; |
| reg |= event->hw.sample_period; |
| |
| return reg; |
| } |
| |
| static u64 arm_spe_event_to_pmsfcr(struct perf_event *event) |
| { |
| struct perf_event_attr *attr = &event->attr; |
| u64 reg = 0; |
| |
| reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT; |
| reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT; |
| reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT; |
| |
| if (reg) |
| reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT); |
| |
| if (ATTR_CFG_GET_FLD(attr, event_filter)) |
| reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT); |
| |
| if (ATTR_CFG_GET_FLD(attr, min_latency)) |
| reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT); |
| |
| return reg; |
| } |
| |
| static u64 arm_spe_event_to_pmsevfr(struct perf_event *event) |
| { |
| struct perf_event_attr *attr = &event->attr; |
| return ATTR_CFG_GET_FLD(attr, event_filter); |
| } |
| |
| static u64 arm_spe_event_to_pmslatfr(struct perf_event *event) |
| { |
| struct perf_event_attr *attr = &event->attr; |
| return ATTR_CFG_GET_FLD(attr, min_latency) |
| << SYS_PMSLATFR_EL1_MINLAT_SHIFT; |
| } |
| |
| static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len) |
| { |
| struct arm_spe_pmu_buf *buf = perf_get_aux(handle); |
| u64 head = PERF_IDX2OFF(handle->head, buf); |
| |
| memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len); |
| if (!buf->snapshot) |
| perf_aux_output_skip(handle, len); |
| } |
| |
| static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle) |
| { |
| struct arm_spe_pmu_buf *buf = perf_get_aux(handle); |
| struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); |
| u64 head = PERF_IDX2OFF(handle->head, buf); |
| u64 limit = buf->nr_pages * PAGE_SIZE; |
| |
| /* |
| * The trace format isn't parseable in reverse, so clamp |
| * the limit to half of the buffer size in snapshot mode |
| * so that the worst case is half a buffer of records, as |
| * opposed to a single record. |
| */ |
| if (head < limit >> 1) |
| limit >>= 1; |
| |
| /* |
| * If we're within max_record_sz of the limit, we must |
| * pad, move the head index and recompute the limit. |
| */ |
| if (limit - head < spe_pmu->max_record_sz) { |
| arm_spe_pmu_pad_buf(handle, limit - head); |
| handle->head = PERF_IDX2OFF(limit, buf); |
| limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head; |
| } |
| |
| return limit; |
| } |
| |
| static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle) |
| { |
| struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); |
| struct arm_spe_pmu_buf *buf = perf_get_aux(handle); |
| const u64 bufsize = buf->nr_pages * PAGE_SIZE; |
| u64 limit = bufsize; |
| u64 head, tail, wakeup; |
| |
| /* |
| * The head can be misaligned for two reasons: |
| * |
| * 1. The hardware left PMBPTR pointing to the first byte after |
| * a record when generating a buffer management event. |
| * |
| * 2. We used perf_aux_output_skip to consume handle->size bytes |
| * and CIRC_SPACE was used to compute the size, which always |
| * leaves one entry free. |
| * |
| * Deal with this by padding to the next alignment boundary and |
| * moving the head index. If we run out of buffer space, we'll |
| * reduce handle->size to zero and end up reporting truncation. |
| */ |
| head = PERF_IDX2OFF(handle->head, buf); |
| if (!IS_ALIGNED(head, spe_pmu->align)) { |
| unsigned long delta = roundup(head, spe_pmu->align) - head; |
| |
| delta = min(delta, handle->size); |
| arm_spe_pmu_pad_buf(handle, delta); |
| head = PERF_IDX2OFF(handle->head, buf); |
| } |
| |
| /* If we've run out of free space, then nothing more to do */ |
| if (!handle->size) |
| goto no_space; |
| |
| /* Compute the tail and wakeup indices now that we've aligned head */ |
| tail = PERF_IDX2OFF(handle->head + handle->size, buf); |
| wakeup = PERF_IDX2OFF(handle->wakeup, buf); |
| |
| /* |
| * Avoid clobbering unconsumed data. We know we have space, so |
| * if we see head == tail we know that the buffer is empty. If |
| * head > tail, then there's nothing to clobber prior to |
| * wrapping. |
| */ |
| if (head < tail) |
| limit = round_down(tail, PAGE_SIZE); |
| |
| /* |
| * Wakeup may be arbitrarily far into the future. If it's not in |
| * the current generation, either we'll wrap before hitting it, |
| * or it's in the past and has been handled already. |
| * |
| * If there's a wakeup before we wrap, arrange to be woken up by |
| * the page boundary following it. Keep the tail boundary if |
| * that's lower. |
| */ |
| if (handle->wakeup < (handle->head + handle->size) && head <= wakeup) |
| limit = min(limit, round_up(wakeup, PAGE_SIZE)); |
| |
| if (limit > head) |
| return limit; |
| |
| arm_spe_pmu_pad_buf(handle, handle->size); |
| no_space: |
| perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); |
| perf_aux_output_end(handle, 0); |
| return 0; |
| } |
| |
| static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle) |
| { |
| struct arm_spe_pmu_buf *buf = perf_get_aux(handle); |
| struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); |
| u64 limit = __arm_spe_pmu_next_off(handle); |
| u64 head = PERF_IDX2OFF(handle->head, buf); |
| |
| /* |
| * If the head has come too close to the end of the buffer, |
| * then pad to the end and recompute the limit. |
| */ |
| if (limit && (limit - head < spe_pmu->max_record_sz)) { |
| arm_spe_pmu_pad_buf(handle, limit - head); |
| limit = __arm_spe_pmu_next_off(handle); |
| } |
| |
| return limit; |
| } |
| |
| static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle, |
| struct perf_event *event) |
| { |
| u64 base, limit; |
| struct arm_spe_pmu_buf *buf; |
| |
| /* Start a new aux session */ |
| buf = perf_aux_output_begin(handle, event); |
| if (!buf) { |
| event->hw.state |= PERF_HES_STOPPED; |
| /* |
| * We still need to clear the limit pointer, since the |
| * profiler might only be disabled by virtue of a fault. |
| */ |
| limit = 0; |
| goto out_write_limit; |
| } |
| |
| limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle) |
| : arm_spe_pmu_next_off(handle); |
| if (limit) |
| limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT); |
| |
| limit += (u64)buf->base; |
| base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf); |
| write_sysreg_s(base, SYS_PMBPTR_EL1); |
| |
| out_write_limit: |
| write_sysreg_s(limit, SYS_PMBLIMITR_EL1); |
| } |
| |
| static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle) |
| { |
| struct arm_spe_pmu_buf *buf = perf_get_aux(handle); |
| u64 offset, size; |
| |
| offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base; |
| size = offset - PERF_IDX2OFF(handle->head, buf); |
| |
| if (buf->snapshot) |
| handle->head = offset; |
| |
| perf_aux_output_end(handle, size); |
| } |
| |
| static void arm_spe_pmu_disable_and_drain_local(void) |
| { |
| /* Disable profiling at EL0 and EL1 */ |
| write_sysreg_s(0, SYS_PMSCR_EL1); |
| isb(); |
| |
| /* Drain any buffered data */ |
| psb_csync(); |
| dsb(nsh); |
| |
| /* Disable the profiling buffer */ |
| write_sysreg_s(0, SYS_PMBLIMITR_EL1); |
| isb(); |
| } |
| |
| /* IRQ handling */ |
| static enum arm_spe_pmu_buf_fault_action |
| arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle) |
| { |
| const char *err_str; |
| u64 pmbsr; |
| enum arm_spe_pmu_buf_fault_action ret; |
| |
| /* |
| * Ensure new profiling data is visible to the CPU and any external |
| * aborts have been resolved. |
| */ |
| psb_csync(); |
| dsb(nsh); |
| |
| /* Ensure hardware updates to PMBPTR_EL1 are visible */ |
| isb(); |
| |
| /* Service required? */ |
| pmbsr = read_sysreg_s(SYS_PMBSR_EL1); |
| if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT))) |
| return SPE_PMU_BUF_FAULT_ACT_SPURIOUS; |
| |
| /* |
| * If we've lost data, disable profiling and also set the PARTIAL |
| * flag to indicate that the last record is corrupted. |
| */ |
| if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT)) |
| perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED | |
| PERF_AUX_FLAG_PARTIAL); |
| |
| /* Report collisions to userspace so that it can up the period */ |
| if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT)) |
| perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION); |
| |
| /* We only expect buffer management events */ |
| switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) { |
| case SYS_PMBSR_EL1_EC_BUF: |
| /* Handled below */ |
| break; |
| case SYS_PMBSR_EL1_EC_FAULT_S1: |
| case SYS_PMBSR_EL1_EC_FAULT_S2: |
| err_str = "Unexpected buffer fault"; |
| goto out_err; |
| default: |
| err_str = "Unknown error code"; |
| goto out_err; |
| } |
| |
| /* Buffer management event */ |
| switch (pmbsr & |
| (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) { |
| case SYS_PMBSR_EL1_BUF_BSC_FULL: |
| ret = SPE_PMU_BUF_FAULT_ACT_OK; |
| goto out_stop; |
| default: |
| err_str = "Unknown buffer status code"; |
| } |
| |
| out_err: |
| pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n", |
| err_str, smp_processor_id(), pmbsr, |
| read_sysreg_s(SYS_PMBPTR_EL1), |
| read_sysreg_s(SYS_PMBLIMITR_EL1)); |
| ret = SPE_PMU_BUF_FAULT_ACT_FATAL; |
| |
| out_stop: |
| arm_spe_perf_aux_output_end(handle); |
| return ret; |
| } |
| |
| static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev) |
| { |
| struct perf_output_handle *handle = dev; |
| struct perf_event *event = handle->event; |
| enum arm_spe_pmu_buf_fault_action act; |
| |
| if (!perf_get_aux(handle)) |
| return IRQ_NONE; |
| |
| act = arm_spe_pmu_buf_get_fault_act(handle); |
| if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) |
| return IRQ_NONE; |
| |
| /* |
| * Ensure perf callbacks have completed, which may disable the |
| * profiling buffer in response to a TRUNCATION flag. |
| */ |
| irq_work_run(); |
| |
| switch (act) { |
| case SPE_PMU_BUF_FAULT_ACT_FATAL: |
| /* |
| * If a fatal exception occurred then leaving the profiling |
| * buffer enabled is a recipe waiting to happen. Since |
| * fatal faults don't always imply truncation, make sure |
| * that the profiling buffer is disabled explicitly before |
| * clearing the syndrome register. |
| */ |
| arm_spe_pmu_disable_and_drain_local(); |
| break; |
| case SPE_PMU_BUF_FAULT_ACT_OK: |
| /* |
| * We handled the fault (the buffer was full), so resume |
| * profiling as long as we didn't detect truncation. |
| * PMBPTR might be misaligned, but we'll burn that bridge |
| * when we get to it. |
| */ |
| if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) { |
| arm_spe_perf_aux_output_begin(handle, event); |
| isb(); |
| } |
| break; |
| case SPE_PMU_BUF_FAULT_ACT_SPURIOUS: |
| /* We've seen you before, but GCC has the memory of a sieve. */ |
| break; |
| } |
| |
| /* The buffer pointers are now sane, so resume profiling. */ |
| write_sysreg_s(0, SYS_PMBSR_EL1); |
| return IRQ_HANDLED; |
| } |
| |
| /* Perf callbacks */ |
| static int arm_spe_pmu_event_init(struct perf_event *event) |
| { |
| u64 reg; |
| struct perf_event_attr *attr = &event->attr; |
| struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); |
| |
| /* This is, of course, deeply driver-specific */ |
| if (attr->type != event->pmu->type) |
| return -ENOENT; |
| |
| if (event->cpu >= 0 && |
| !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus)) |
| return -ENOENT; |
| |
| if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0) |
| return -EOPNOTSUPP; |
| |
| if (attr->exclude_idle) |
| return -EOPNOTSUPP; |
| |
| /* |
| * Feedback-directed frequency throttling doesn't work when we |
| * have a buffer of samples. We'd need to manually count the |
| * samples in the buffer when it fills up and adjust the event |
| * count to reflect that. Instead, just force the user to specify |
| * a sample period. |
| */ |
| if (attr->freq) |
| return -EINVAL; |
| |
| reg = arm_spe_event_to_pmsfcr(event); |
| if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) && |
| !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT)) |
| return -EOPNOTSUPP; |
| |
| if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) && |
| !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP)) |
| return -EOPNOTSUPP; |
| |
| if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) && |
| !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT)) |
| return -EOPNOTSUPP; |
| |
| reg = arm_spe_event_to_pmscr(event); |
| if (!capable(CAP_SYS_ADMIN) && |
| (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) | |
| BIT(SYS_PMSCR_EL1_CX_SHIFT) | |
| BIT(SYS_PMSCR_EL1_PCT_SHIFT)))) |
| return -EACCES; |
| |
| return 0; |
| } |
| |
| static void arm_spe_pmu_start(struct perf_event *event, int flags) |
| { |
| u64 reg; |
| struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); |
| |
| hwc->state = 0; |
| arm_spe_perf_aux_output_begin(handle, event); |
| if (hwc->state) |
| return; |
| |
| reg = arm_spe_event_to_pmsfcr(event); |
| write_sysreg_s(reg, SYS_PMSFCR_EL1); |
| |
| reg = arm_spe_event_to_pmsevfr(event); |
| write_sysreg_s(reg, SYS_PMSEVFR_EL1); |
| |
| reg = arm_spe_event_to_pmslatfr(event); |
| write_sysreg_s(reg, SYS_PMSLATFR_EL1); |
| |
| if (flags & PERF_EF_RELOAD) { |
| reg = arm_spe_event_to_pmsirr(event); |
| write_sysreg_s(reg, SYS_PMSIRR_EL1); |
| isb(); |
| reg = local64_read(&hwc->period_left); |
| write_sysreg_s(reg, SYS_PMSICR_EL1); |
| } |
| |
| reg = arm_spe_event_to_pmscr(event); |
| isb(); |
| write_sysreg_s(reg, SYS_PMSCR_EL1); |
| } |
| |
| static void arm_spe_pmu_stop(struct perf_event *event, int flags) |
| { |
| struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); |
| |
| /* If we're already stopped, then nothing to do */ |
| if (hwc->state & PERF_HES_STOPPED) |
| return; |
| |
| /* Stop all trace generation */ |
| arm_spe_pmu_disable_and_drain_local(); |
| |
| if (flags & PERF_EF_UPDATE) { |
| /* |
| * If there's a fault pending then ensure we contain it |
| * to this buffer, since we might be on the context-switch |
| * path. |
| */ |
| if (perf_get_aux(handle)) { |
| enum arm_spe_pmu_buf_fault_action act; |
| |
| act = arm_spe_pmu_buf_get_fault_act(handle); |
| if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) |
| arm_spe_perf_aux_output_end(handle); |
| else |
| write_sysreg_s(0, SYS_PMBSR_EL1); |
| } |
| |
| /* |
| * This may also contain ECOUNT, but nobody else should |
| * be looking at period_left, since we forbid frequency |
| * based sampling. |
| */ |
| local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1)); |
| hwc->state |= PERF_HES_UPTODATE; |
| } |
| |
| hwc->state |= PERF_HES_STOPPED; |
| } |
| |
| static int arm_spe_pmu_add(struct perf_event *event, int flags) |
| { |
| int ret = 0; |
| struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu; |
| |
| if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) |
| return -ENOENT; |
| |
| hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; |
| |
| if (flags & PERF_EF_START) { |
| arm_spe_pmu_start(event, PERF_EF_RELOAD); |
| if (hwc->state & PERF_HES_STOPPED) |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static void arm_spe_pmu_del(struct perf_event *event, int flags) |
| { |
| arm_spe_pmu_stop(event, PERF_EF_UPDATE); |
| } |
| |
| static void arm_spe_pmu_read(struct perf_event *event) |
| { |
| } |
| |
| static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages, |
| int nr_pages, bool snapshot) |
| { |
| int i, cpu = event->cpu; |
| struct page **pglist; |
| struct arm_spe_pmu_buf *buf; |
| |
| /* We need at least two pages for this to work. */ |
| if (nr_pages < 2) |
| return NULL; |
| |
| /* |
| * We require an even number of pages for snapshot mode, so that |
| * we can effectively treat the buffer as consisting of two equal |
| * parts and give userspace a fighting chance of getting some |
| * useful data out of it. |
| */ |
| if (!nr_pages || (snapshot && (nr_pages & 1))) |
| return NULL; |
| |
| if (cpu == -1) |
| cpu = raw_smp_processor_id(); |
| |
| buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu)); |
| if (!buf) |
| return NULL; |
| |
| pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL); |
| if (!pglist) |
| goto out_free_buf; |
| |
| for (i = 0; i < nr_pages; ++i) |
| pglist[i] = virt_to_page(pages[i]); |
| |
| buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL); |
| if (!buf->base) |
| goto out_free_pglist; |
| |
| buf->nr_pages = nr_pages; |
| buf->snapshot = snapshot; |
| |
| kfree(pglist); |
| return buf; |
| |
| out_free_pglist: |
| kfree(pglist); |
| out_free_buf: |
| kfree(buf); |
| return NULL; |
| } |
| |
| static void arm_spe_pmu_free_aux(void *aux) |
| { |
| struct arm_spe_pmu_buf *buf = aux; |
| |
| vunmap(buf->base); |
| kfree(buf); |
| } |
| |
| /* Initialisation and teardown functions */ |
| static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu) |
| { |
| static atomic_t pmu_idx = ATOMIC_INIT(-1); |
| |
| int idx; |
| char *name; |
| struct device *dev = &spe_pmu->pdev->dev; |
| |
| spe_pmu->pmu = (struct pmu) { |
| .module = THIS_MODULE, |
| .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE, |
| .attr_groups = arm_spe_pmu_attr_groups, |
| /* |
| * We hitch a ride on the software context here, so that |
| * we can support per-task profiling (which is not possible |
| * with the invalid context as it doesn't get sched callbacks). |
| * This requires that userspace either uses a dummy event for |
| * perf_event_open, since the aux buffer is not setup until |
| * a subsequent mmap, or creates the profiling event in a |
| * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it |
| * once the buffer has been created. |
| */ |
| .task_ctx_nr = perf_sw_context, |
| .event_init = arm_spe_pmu_event_init, |
| .add = arm_spe_pmu_add, |
| .del = arm_spe_pmu_del, |
| .start = arm_spe_pmu_start, |
| .stop = arm_spe_pmu_stop, |
| .read = arm_spe_pmu_read, |
| .setup_aux = arm_spe_pmu_setup_aux, |
| .free_aux = arm_spe_pmu_free_aux, |
| }; |
| |
| idx = atomic_inc_return(&pmu_idx); |
| name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx); |
| if (!name) { |
| dev_err(dev, "failed to allocate name for pmu %d\n", idx); |
| return -ENOMEM; |
| } |
| |
| return perf_pmu_register(&spe_pmu->pmu, name, -1); |
| } |
| |
| static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu) |
| { |
| perf_pmu_unregister(&spe_pmu->pmu); |
| } |
| |
| static void __arm_spe_pmu_dev_probe(void *info) |
| { |
| int fld; |
| u64 reg; |
| struct arm_spe_pmu *spe_pmu = info; |
| struct device *dev = &spe_pmu->pdev->dev; |
| |
| fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1), |
| ID_AA64DFR0_PMSVER_SHIFT); |
| if (!fld) { |
| dev_err(dev, |
| "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n", |
| fld, smp_processor_id()); |
| return; |
| } |
| |
| /* Read PMBIDR first to determine whether or not we have access */ |
| reg = read_sysreg_s(SYS_PMBIDR_EL1); |
| if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) { |
| dev_err(dev, |
| "profiling buffer owned by higher exception level\n"); |
| return; |
| } |
| |
| /* Minimum alignment. If it's out-of-range, then fail the probe */ |
| fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK; |
| spe_pmu->align = 1 << fld; |
| if (spe_pmu->align > SZ_2K) { |
| dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n", |
| fld, smp_processor_id()); |
| return; |
| } |
| |
| /* It's now safe to read PMSIDR and figure out what we've got */ |
| reg = read_sysreg_s(SYS_PMSIDR_EL1); |
| if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT)) |
| spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT; |
| |
| if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT)) |
| spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP; |
| |
| if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT)) |
| spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT; |
| |
| if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT)) |
| spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST; |
| |
| if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT)) |
| spe_pmu->features |= SPE_PMU_FEAT_LDS; |
| |
| if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT)) |
| spe_pmu->features |= SPE_PMU_FEAT_ERND; |
| |
| /* This field has a spaced out encoding, so just use a look-up */ |
| fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK; |
| switch (fld) { |
| case 0: |
| spe_pmu->min_period = 256; |
| break; |
| case 2: |
| spe_pmu->min_period = 512; |
| break; |
| case 3: |
| spe_pmu->min_period = 768; |
| break; |
| case 4: |
| spe_pmu->min_period = 1024; |
| break; |
| case 5: |
| spe_pmu->min_period = 1536; |
| break; |
| case 6: |
| spe_pmu->min_period = 2048; |
| break; |
| case 7: |
| spe_pmu->min_period = 3072; |
| break; |
| default: |
| dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n", |
| fld); |
| /* Fallthrough */ |
| case 8: |
| spe_pmu->min_period = 4096; |
| } |
| |
| /* Maximum record size. If it's out-of-range, then fail the probe */ |
| fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK; |
| spe_pmu->max_record_sz = 1 << fld; |
| if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) { |
| dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n", |
| fld, smp_processor_id()); |
| return; |
| } |
| |
| fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK; |
| switch (fld) { |
| default: |
| dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n", |
| fld); |
| /* Fallthrough */ |
| case 2: |
| spe_pmu->counter_sz = 12; |
| } |
| |
| dev_info(dev, |
| "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n", |
| cpumask_pr_args(&spe_pmu->supported_cpus), |
| spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features); |
| |
| spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED; |
| return; |
| } |
| |
| static void __arm_spe_pmu_reset_local(void) |
| { |
| /* |
| * This is probably overkill, as we have no idea where we're |
| * draining any buffered data to... |
| */ |
| arm_spe_pmu_disable_and_drain_local(); |
| |
| /* Reset the buffer base pointer */ |
| write_sysreg_s(0, SYS_PMBPTR_EL1); |
| isb(); |
| |
| /* Clear any pending management interrupts */ |
| write_sysreg_s(0, SYS_PMBSR_EL1); |
| isb(); |
| } |
| |
| static void __arm_spe_pmu_setup_one(void *info) |
| { |
| struct arm_spe_pmu *spe_pmu = info; |
| |
| __arm_spe_pmu_reset_local(); |
| enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE); |
| } |
| |
| static void __arm_spe_pmu_stop_one(void *info) |
| { |
| struct arm_spe_pmu *spe_pmu = info; |
| |
| disable_percpu_irq(spe_pmu->irq); |
| __arm_spe_pmu_reset_local(); |
| } |
| |
| static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node) |
| { |
| struct arm_spe_pmu *spe_pmu; |
| |
| spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); |
| if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) |
| return 0; |
| |
| __arm_spe_pmu_setup_one(spe_pmu); |
| return 0; |
| } |
| |
| static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node) |
| { |
| struct arm_spe_pmu *spe_pmu; |
| |
| spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); |
| if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) |
| return 0; |
| |
| __arm_spe_pmu_stop_one(spe_pmu); |
| return 0; |
| } |
| |
| static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu) |
| { |
| int ret; |
| cpumask_t *mask = &spe_pmu->supported_cpus; |
| |
| /* Make sure we probe the hardware on a relevant CPU */ |
| ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1); |
| if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED)) |
| return -ENXIO; |
| |
| /* Request our PPIs (note that the IRQ is still disabled) */ |
| ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME, |
| spe_pmu->handle); |
| if (ret) |
| return ret; |
| |
| /* |
| * Register our hotplug notifier now so we don't miss any events. |
| * This will enable the IRQ for any supported CPUs that are already |
| * up. |
| */ |
| ret = cpuhp_state_add_instance(arm_spe_pmu_online, |
| &spe_pmu->hotplug_node); |
| if (ret) |
| free_percpu_irq(spe_pmu->irq, spe_pmu->handle); |
| |
| return ret; |
| } |
| |
| static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu) |
| { |
| cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node); |
| free_percpu_irq(spe_pmu->irq, spe_pmu->handle); |
| } |
| |
| /* Driver and device probing */ |
| static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu) |
| { |
| struct platform_device *pdev = spe_pmu->pdev; |
| int irq = platform_get_irq(pdev, 0); |
| |
| if (irq < 0) { |
| dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq); |
| return -ENXIO; |
| } |
| |
| if (!irq_is_percpu(irq)) { |
| dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq); |
| return -EINVAL; |
| } |
| |
| if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) { |
| dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq); |
| return -EINVAL; |
| } |
| |
| spe_pmu->irq = irq; |
| return 0; |
| } |
| |
| static const struct of_device_id arm_spe_pmu_of_match[] = { |
| { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 }, |
| { /* Sentinel */ }, |
| }; |
| MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match); |
| |
| static int arm_spe_pmu_device_dt_probe(struct platform_device *pdev) |
| { |
| int ret; |
| struct arm_spe_pmu *spe_pmu; |
| struct device *dev = &pdev->dev; |
| |
| /* |
| * If kernelspace is unmapped when running at EL0, then the SPE |
| * buffer will fault and prematurely terminate the AUX session. |
| */ |
| if (arm64_kernel_unmapped_at_el0()) { |
| dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n"); |
| return -EPERM; |
| } |
| |
| spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL); |
| if (!spe_pmu) { |
| dev_err(dev, "failed to allocate spe_pmu\n"); |
| return -ENOMEM; |
| } |
| |
| spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle)); |
| if (!spe_pmu->handle) |
| return -ENOMEM; |
| |
| spe_pmu->pdev = pdev; |
| platform_set_drvdata(pdev, spe_pmu); |
| |
| ret = arm_spe_pmu_irq_probe(spe_pmu); |
| if (ret) |
| goto out_free_handle; |
| |
| ret = arm_spe_pmu_dev_init(spe_pmu); |
| if (ret) |
| goto out_free_handle; |
| |
| ret = arm_spe_pmu_perf_init(spe_pmu); |
| if (ret) |
| goto out_teardown_dev; |
| |
| return 0; |
| |
| out_teardown_dev: |
| arm_spe_pmu_dev_teardown(spe_pmu); |
| out_free_handle: |
| free_percpu(spe_pmu->handle); |
| return ret; |
| } |
| |
| static int arm_spe_pmu_device_remove(struct platform_device *pdev) |
| { |
| struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev); |
| |
| arm_spe_pmu_perf_destroy(spe_pmu); |
| arm_spe_pmu_dev_teardown(spe_pmu); |
| free_percpu(spe_pmu->handle); |
| return 0; |
| } |
| |
| static struct platform_driver arm_spe_pmu_driver = { |
| .driver = { |
| .name = DRVNAME, |
| .of_match_table = of_match_ptr(arm_spe_pmu_of_match), |
| }, |
| .probe = arm_spe_pmu_device_dt_probe, |
| .remove = arm_spe_pmu_device_remove, |
| }; |
| |
| static int __init arm_spe_pmu_init(void) |
| { |
| int ret; |
| |
| ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME, |
| arm_spe_pmu_cpu_startup, |
| arm_spe_pmu_cpu_teardown); |
| if (ret < 0) |
| return ret; |
| arm_spe_pmu_online = ret; |
| |
| ret = platform_driver_register(&arm_spe_pmu_driver); |
| if (ret) |
| cpuhp_remove_multi_state(arm_spe_pmu_online); |
| |
| return ret; |
| } |
| |
| static void __exit arm_spe_pmu_exit(void) |
| { |
| platform_driver_unregister(&arm_spe_pmu_driver); |
| cpuhp_remove_multi_state(arm_spe_pmu_online); |
| } |
| |
| module_init(arm_spe_pmu_init); |
| module_exit(arm_spe_pmu_exit); |
| |
| MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension"); |
| MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>"); |
| MODULE_LICENSE("GPL v2"); |