| /* |
| * TLB support routines. |
| * |
| * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * |
| * 08/02/00 A. Mallick <asit.k.mallick@intel.com> |
| * Modified RID allocation for SMP |
| * Goutham Rao <goutham.rao@intel.com> |
| * IPI based ptc implementation and A-step IPI implementation. |
| * Rohit Seth <rohit.seth@intel.com> |
| * Ken Chen <kenneth.w.chen@intel.com> |
| * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation |
| * Copyright (C) 2007 Intel Corp |
| * Fenghua Yu <fenghua.yu@intel.com> |
| * Add multiple ptc.g/ptc.ga instruction support in global tlb purge. |
| */ |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/smp.h> |
| #include <linux/mm.h> |
| #include <linux/memblock.h> |
| #include <linux/slab.h> |
| |
| #include <asm/delay.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pal.h> |
| #include <asm/tlbflush.h> |
| #include <asm/dma.h> |
| #include <asm/processor.h> |
| #include <asm/sal.h> |
| #include <asm/tlb.h> |
| |
| static struct { |
| u64 mask; /* mask of supported purge page-sizes */ |
| unsigned long max_bits; /* log2 of largest supported purge page-size */ |
| } purge; |
| |
| struct ia64_ctx ia64_ctx = { |
| .lock = __SPIN_LOCK_UNLOCKED(ia64_ctx.lock), |
| .next = 1, |
| .max_ctx = ~0U |
| }; |
| |
| DEFINE_PER_CPU(u8, ia64_need_tlb_flush); |
| DEFINE_PER_CPU(u8, ia64_tr_num); /*Number of TR slots in current processor*/ |
| DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/ |
| |
| struct ia64_tr_entry *ia64_idtrs[NR_CPUS]; |
| |
| /* |
| * Initializes the ia64_ctx.bitmap array based on max_ctx+1. |
| * Called after cpu_init() has setup ia64_ctx.max_ctx based on |
| * maximum RID that is supported by boot CPU. |
| */ |
| void __init |
| mmu_context_init (void) |
| { |
| ia64_ctx.bitmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3, |
| SMP_CACHE_BYTES); |
| if (!ia64_ctx.bitmap) |
| panic("%s: Failed to allocate %u bytes\n", __func__, |
| (ia64_ctx.max_ctx + 1) >> 3); |
| ia64_ctx.flushmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3, |
| SMP_CACHE_BYTES); |
| if (!ia64_ctx.flushmap) |
| panic("%s: Failed to allocate %u bytes\n", __func__, |
| (ia64_ctx.max_ctx + 1) >> 3); |
| } |
| |
| /* |
| * Acquire the ia64_ctx.lock before calling this function! |
| */ |
| void |
| wrap_mmu_context (struct mm_struct *mm) |
| { |
| int i, cpu; |
| unsigned long flush_bit; |
| |
| for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) { |
| flush_bit = xchg(&ia64_ctx.flushmap[i], 0); |
| ia64_ctx.bitmap[i] ^= flush_bit; |
| } |
| |
| /* use offset at 300 to skip daemons */ |
| ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap, |
| ia64_ctx.max_ctx, 300); |
| ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap, |
| ia64_ctx.max_ctx, ia64_ctx.next); |
| |
| /* |
| * can't call flush_tlb_all() here because of race condition |
| * with O(1) scheduler [EF] |
| */ |
| cpu = get_cpu(); /* prevent preemption/migration */ |
| for_each_online_cpu(i) |
| if (i != cpu) |
| per_cpu(ia64_need_tlb_flush, i) = 1; |
| put_cpu(); |
| local_flush_tlb_all(); |
| } |
| |
| /* |
| * Implement "spinaphores" ... like counting semaphores, but they |
| * spin instead of sleeping. If there are ever any other users for |
| * this primitive it can be moved up to a spinaphore.h header. |
| */ |
| struct spinaphore { |
| unsigned long ticket; |
| unsigned long serve; |
| }; |
| |
| static inline void spinaphore_init(struct spinaphore *ss, int val) |
| { |
| ss->ticket = 0; |
| ss->serve = val; |
| } |
| |
| static inline void down_spin(struct spinaphore *ss) |
| { |
| unsigned long t = ia64_fetchadd(1, &ss->ticket, acq), serve; |
| |
| if (time_before(t, ss->serve)) |
| return; |
| |
| ia64_invala(); |
| |
| for (;;) { |
| asm volatile ("ld8.c.nc %0=[%1]" : "=r"(serve) : "r"(&ss->serve) : "memory"); |
| if (time_before(t, serve)) |
| return; |
| cpu_relax(); |
| } |
| } |
| |
| static inline void up_spin(struct spinaphore *ss) |
| { |
| ia64_fetchadd(1, &ss->serve, rel); |
| } |
| |
| static struct spinaphore ptcg_sem; |
| static u16 nptcg = 1; |
| static int need_ptcg_sem = 1; |
| static int toolatetochangeptcgsem = 0; |
| |
| /* |
| * Kernel parameter "nptcg=" overrides max number of concurrent global TLB |
| * purges which is reported from either PAL or SAL PALO. |
| * |
| * We don't have sanity checking for nptcg value. It's the user's responsibility |
| * for valid nptcg value on the platform. Otherwise, kernel may hang in some |
| * cases. |
| */ |
| static int __init |
| set_nptcg(char *str) |
| { |
| int value = 0; |
| |
| get_option(&str, &value); |
| setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER); |
| |
| return 1; |
| } |
| |
| __setup("nptcg=", set_nptcg); |
| |
| /* |
| * Maximum number of simultaneous ptc.g purges in the system can |
| * be defined by PAL_VM_SUMMARY (in which case we should take |
| * the smallest value for any cpu in the system) or by the PAL |
| * override table (in which case we should ignore the value from |
| * PAL_VM_SUMMARY). |
| * |
| * Kernel parameter "nptcg=" overrides maximum number of simultanesous ptc.g |
| * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case, |
| * we should ignore the value from either PAL_VM_SUMMARY or PAL override table. |
| * |
| * Complicating the logic here is the fact that num_possible_cpus() |
| * isn't fully setup until we start bringing cpus online. |
| */ |
| void |
| setup_ptcg_sem(int max_purges, int nptcg_from) |
| { |
| static int kp_override; |
| static int palo_override; |
| static int firstcpu = 1; |
| |
| if (toolatetochangeptcgsem) { |
| if (nptcg_from == NPTCG_FROM_PAL && max_purges == 0) |
| BUG_ON(1 < nptcg); |
| else |
| BUG_ON(max_purges < nptcg); |
| return; |
| } |
| |
| if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) { |
| kp_override = 1; |
| nptcg = max_purges; |
| goto resetsema; |
| } |
| if (kp_override) { |
| need_ptcg_sem = num_possible_cpus() > nptcg; |
| return; |
| } |
| |
| if (nptcg_from == NPTCG_FROM_PALO) { |
| palo_override = 1; |
| |
| /* In PALO max_purges == 0 really means it! */ |
| if (max_purges == 0) |
| panic("Whoa! Platform does not support global TLB purges.\n"); |
| nptcg = max_purges; |
| if (nptcg == PALO_MAX_TLB_PURGES) { |
| need_ptcg_sem = 0; |
| return; |
| } |
| goto resetsema; |
| } |
| if (palo_override) { |
| if (nptcg != PALO_MAX_TLB_PURGES) |
| need_ptcg_sem = (num_possible_cpus() > nptcg); |
| return; |
| } |
| |
| /* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */ |
| if (max_purges == 0) max_purges = 1; |
| |
| if (firstcpu) { |
| nptcg = max_purges; |
| firstcpu = 0; |
| } |
| if (max_purges < nptcg) |
| nptcg = max_purges; |
| if (nptcg == PAL_MAX_PURGES) { |
| need_ptcg_sem = 0; |
| return; |
| } else |
| need_ptcg_sem = (num_possible_cpus() > nptcg); |
| |
| resetsema: |
| spinaphore_init(&ptcg_sem, max_purges); |
| } |
| |
| void |
| ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start, |
| unsigned long end, unsigned long nbits) |
| { |
| struct mm_struct *active_mm = current->active_mm; |
| |
| toolatetochangeptcgsem = 1; |
| |
| if (mm != active_mm) { |
| /* Restore region IDs for mm */ |
| if (mm && active_mm) { |
| activate_context(mm); |
| } else { |
| flush_tlb_all(); |
| return; |
| } |
| } |
| |
| if (need_ptcg_sem) |
| down_spin(&ptcg_sem); |
| |
| do { |
| /* |
| * Flush ALAT entries also. |
| */ |
| ia64_ptcga(start, (nbits << 2)); |
| ia64_srlz_i(); |
| start += (1UL << nbits); |
| } while (start < end); |
| |
| if (need_ptcg_sem) |
| up_spin(&ptcg_sem); |
| |
| if (mm != active_mm) { |
| activate_context(active_mm); |
| } |
| } |
| |
| void |
| local_flush_tlb_all (void) |
| { |
| unsigned long i, j, flags, count0, count1, stride0, stride1, addr; |
| |
| addr = local_cpu_data->ptce_base; |
| count0 = local_cpu_data->ptce_count[0]; |
| count1 = local_cpu_data->ptce_count[1]; |
| stride0 = local_cpu_data->ptce_stride[0]; |
| stride1 = local_cpu_data->ptce_stride[1]; |
| |
| local_irq_save(flags); |
| for (i = 0; i < count0; ++i) { |
| for (j = 0; j < count1; ++j) { |
| ia64_ptce(addr); |
| addr += stride1; |
| } |
| addr += stride0; |
| } |
| local_irq_restore(flags); |
| ia64_srlz_i(); /* srlz.i implies srlz.d */ |
| } |
| |
| static void |
| __flush_tlb_range (struct vm_area_struct *vma, unsigned long start, |
| unsigned long end) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| unsigned long size = end - start; |
| unsigned long nbits; |
| |
| #ifndef CONFIG_SMP |
| if (mm != current->active_mm) { |
| mm->context = 0; |
| return; |
| } |
| #endif |
| |
| nbits = ia64_fls(size + 0xfff); |
| while (unlikely (((1UL << nbits) & purge.mask) == 0) && |
| (nbits < purge.max_bits)) |
| ++nbits; |
| if (nbits > purge.max_bits) |
| nbits = purge.max_bits; |
| start &= ~((1UL << nbits) - 1); |
| |
| preempt_disable(); |
| #ifdef CONFIG_SMP |
| if (mm != current->active_mm || cpumask_weight(mm_cpumask(mm)) != 1) { |
| platform_global_tlb_purge(mm, start, end, nbits); |
| preempt_enable(); |
| return; |
| } |
| #endif |
| do { |
| ia64_ptcl(start, (nbits<<2)); |
| start += (1UL << nbits); |
| } while (start < end); |
| preempt_enable(); |
| ia64_srlz_i(); /* srlz.i implies srlz.d */ |
| } |
| |
| void flush_tlb_range(struct vm_area_struct *vma, |
| unsigned long start, unsigned long end) |
| { |
| if (unlikely(end - start >= 1024*1024*1024*1024UL |
| || REGION_NUMBER(start) != REGION_NUMBER(end - 1))) { |
| /* |
| * If we flush more than a tera-byte or across regions, we're |
| * probably better off just flushing the entire TLB(s). This |
| * should be very rare and is not worth optimizing for. |
| */ |
| flush_tlb_all(); |
| } else { |
| /* flush the address range from the tlb */ |
| __flush_tlb_range(vma, start, end); |
| /* flush the virt. page-table area mapping the addr range */ |
| __flush_tlb_range(vma, ia64_thash(start), ia64_thash(end)); |
| } |
| } |
| EXPORT_SYMBOL(flush_tlb_range); |
| |
| void ia64_tlb_init(void) |
| { |
| ia64_ptce_info_t uninitialized_var(ptce_info); /* GCC be quiet */ |
| u64 tr_pgbits; |
| long status; |
| pal_vm_info_1_u_t vm_info_1; |
| pal_vm_info_2_u_t vm_info_2; |
| int cpu = smp_processor_id(); |
| |
| if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) { |
| printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; " |
| "defaulting to architected purge page-sizes.\n", status); |
| purge.mask = 0x115557000UL; |
| } |
| purge.max_bits = ia64_fls(purge.mask); |
| |
| ia64_get_ptce(&ptce_info); |
| local_cpu_data->ptce_base = ptce_info.base; |
| local_cpu_data->ptce_count[0] = ptce_info.count[0]; |
| local_cpu_data->ptce_count[1] = ptce_info.count[1]; |
| local_cpu_data->ptce_stride[0] = ptce_info.stride[0]; |
| local_cpu_data->ptce_stride[1] = ptce_info.stride[1]; |
| |
| local_flush_tlb_all(); /* nuke left overs from bootstrapping... */ |
| status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2); |
| |
| if (status) { |
| printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status); |
| per_cpu(ia64_tr_num, cpu) = 8; |
| return; |
| } |
| per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1; |
| if (per_cpu(ia64_tr_num, cpu) > |
| (vm_info_1.pal_vm_info_1_s.max_dtr_entry+1)) |
| per_cpu(ia64_tr_num, cpu) = |
| vm_info_1.pal_vm_info_1_s.max_dtr_entry+1; |
| if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) { |
| static int justonce = 1; |
| per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX; |
| if (justonce) { |
| justonce = 0; |
| printk(KERN_DEBUG "TR register number exceeds " |
| "IA64_TR_ALLOC_MAX!\n"); |
| } |
| } |
| } |
| |
| /* |
| * is_tr_overlap |
| * |
| * Check overlap with inserted TRs. |
| */ |
| static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size) |
| { |
| u64 tr_log_size; |
| u64 tr_end; |
| u64 va_rr = ia64_get_rr(va); |
| u64 va_rid = RR_TO_RID(va_rr); |
| u64 va_end = va + (1<<log_size) - 1; |
| |
| if (va_rid != RR_TO_RID(p->rr)) |
| return 0; |
| tr_log_size = (p->itir & 0xff) >> 2; |
| tr_end = p->ifa + (1<<tr_log_size) - 1; |
| |
| if (va > tr_end || p->ifa > va_end) |
| return 0; |
| return 1; |
| |
| } |
| |
| /* |
| * ia64_insert_tr in virtual mode. Allocate a TR slot |
| * |
| * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr |
| * |
| * va : virtual address. |
| * pte : pte entries inserted. |
| * log_size: range to be covered. |
| * |
| * Return value: <0 : error No. |
| * |
| * >=0 : slot number allocated for TR. |
| * Must be called with preemption disabled. |
| */ |
| int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size) |
| { |
| int i, r; |
| unsigned long psr; |
| struct ia64_tr_entry *p; |
| int cpu = smp_processor_id(); |
| |
| if (!ia64_idtrs[cpu]) { |
| ia64_idtrs[cpu] = kmalloc_array(2 * IA64_TR_ALLOC_MAX, |
| sizeof(struct ia64_tr_entry), |
| GFP_KERNEL); |
| if (!ia64_idtrs[cpu]) |
| return -ENOMEM; |
| } |
| r = -EINVAL; |
| /*Check overlap with existing TR entries*/ |
| if (target_mask & 0x1) { |
| p = ia64_idtrs[cpu]; |
| for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu); |
| i++, p++) { |
| if (p->pte & 0x1) |
| if (is_tr_overlap(p, va, log_size)) { |
| printk(KERN_DEBUG "Overlapped Entry" |
| "Inserted for TR Register!!\n"); |
| goto out; |
| } |
| } |
| } |
| if (target_mask & 0x2) { |
| p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX; |
| for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu); |
| i++, p++) { |
| if (p->pte & 0x1) |
| if (is_tr_overlap(p, va, log_size)) { |
| printk(KERN_DEBUG "Overlapped Entry" |
| "Inserted for TR Register!!\n"); |
| goto out; |
| } |
| } |
| } |
| |
| for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) { |
| switch (target_mask & 0x3) { |
| case 1: |
| if (!((ia64_idtrs[cpu] + i)->pte & 0x1)) |
| goto found; |
| continue; |
| case 2: |
| if (!((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) |
| goto found; |
| continue; |
| case 3: |
| if (!((ia64_idtrs[cpu] + i)->pte & 0x1) && |
| !((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) |
| goto found; |
| continue; |
| default: |
| r = -EINVAL; |
| goto out; |
| } |
| } |
| found: |
| if (i >= per_cpu(ia64_tr_num, cpu)) |
| return -EBUSY; |
| |
| /*Record tr info for mca hander use!*/ |
| if (i > per_cpu(ia64_tr_used, cpu)) |
| per_cpu(ia64_tr_used, cpu) = i; |
| |
| psr = ia64_clear_ic(); |
| if (target_mask & 0x1) { |
| ia64_itr(0x1, i, va, pte, log_size); |
| ia64_srlz_i(); |
| p = ia64_idtrs[cpu] + i; |
| p->ifa = va; |
| p->pte = pte; |
| p->itir = log_size << 2; |
| p->rr = ia64_get_rr(va); |
| } |
| if (target_mask & 0x2) { |
| ia64_itr(0x2, i, va, pte, log_size); |
| ia64_srlz_i(); |
| p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i; |
| p->ifa = va; |
| p->pte = pte; |
| p->itir = log_size << 2; |
| p->rr = ia64_get_rr(va); |
| } |
| ia64_set_psr(psr); |
| r = i; |
| out: |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(ia64_itr_entry); |
| |
| /* |
| * ia64_purge_tr |
| * |
| * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr. |
| * slot: slot number to be freed. |
| * |
| * Must be called with preemption disabled. |
| */ |
| void ia64_ptr_entry(u64 target_mask, int slot) |
| { |
| int cpu = smp_processor_id(); |
| int i; |
| struct ia64_tr_entry *p; |
| |
| if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu)) |
| return; |
| |
| if (target_mask & 0x1) { |
| p = ia64_idtrs[cpu] + slot; |
| if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) { |
| p->pte = 0; |
| ia64_ptr(0x1, p->ifa, p->itir>>2); |
| ia64_srlz_i(); |
| } |
| } |
| |
| if (target_mask & 0x2) { |
| p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + slot; |
| if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) { |
| p->pte = 0; |
| ia64_ptr(0x2, p->ifa, p->itir>>2); |
| ia64_srlz_i(); |
| } |
| } |
| |
| for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) { |
| if (((ia64_idtrs[cpu] + i)->pte & 0x1) || |
| ((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) |
| break; |
| } |
| per_cpu(ia64_tr_used, cpu) = i; |
| } |
| EXPORT_SYMBOL_GPL(ia64_ptr_entry); |