| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) STMicroelectronics 2018 - All Rights Reserved |
| * Author: David Hernandez Sanchez <david.hernandezsanchez@st.com> for |
| * STMicroelectronics. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/clk-provider.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/iopoll.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/thermal.h> |
| |
| #include "../thermal_core.h" |
| #include "../thermal_hwmon.h" |
| |
| /* DTS register offsets */ |
| #define DTS_CFGR1_OFFSET 0x0 |
| #define DTS_T0VALR1_OFFSET 0x8 |
| #define DTS_RAMPVALR_OFFSET 0X10 |
| #define DTS_ITR1_OFFSET 0x14 |
| #define DTS_DR_OFFSET 0x1C |
| #define DTS_SR_OFFSET 0x20 |
| #define DTS_ITENR_OFFSET 0x24 |
| #define DTS_ICIFR_OFFSET 0x28 |
| |
| /* DTS_CFGR1 register mask definitions */ |
| #define HSREF_CLK_DIV_MASK GENMASK(30, 24) |
| #define TS1_SMP_TIME_MASK GENMASK(19, 16) |
| #define TS1_INTRIG_SEL_MASK GENMASK(11, 8) |
| |
| /* DTS_T0VALR1 register mask definitions */ |
| #define TS1_T0_MASK GENMASK(17, 16) |
| #define TS1_FMT0_MASK GENMASK(15, 0) |
| |
| /* DTS_RAMPVALR register mask definitions */ |
| #define TS1_RAMP_COEFF_MASK GENMASK(15, 0) |
| |
| /* DTS_ITR1 register mask definitions */ |
| #define TS1_HITTHD_MASK GENMASK(31, 16) |
| #define TS1_LITTHD_MASK GENMASK(15, 0) |
| |
| /* DTS_DR register mask definitions */ |
| #define TS1_MFREQ_MASK GENMASK(15, 0) |
| |
| /* Less significant bit position definitions */ |
| #define TS1_T0_POS 16 |
| #define TS1_SMP_TIME_POS 16 |
| #define TS1_HITTHD_POS 16 |
| #define HSREF_CLK_DIV_POS 24 |
| |
| /* DTS_CFGR1 bit definitions */ |
| #define TS1_EN BIT(0) |
| #define TS1_START BIT(4) |
| #define REFCLK_SEL BIT(20) |
| #define REFCLK_LSE REFCLK_SEL |
| #define Q_MEAS_OPT BIT(21) |
| #define CALIBRATION_CONTROL Q_MEAS_OPT |
| |
| /* DTS_SR bit definitions */ |
| #define TS_RDY BIT(15) |
| /* Bit definitions below are common for DTS_SR, DTS_ITENR and DTS_CIFR */ |
| #define HIGH_THRESHOLD BIT(2) |
| #define LOW_THRESHOLD BIT(1) |
| |
| /* Constants */ |
| #define ADJUST 100 |
| #define ONE_MHZ 1000000 |
| #define POLL_TIMEOUT 5000 |
| #define STARTUP_TIME 40 |
| #define TS1_T0_VAL0 30 |
| #define TS1_T0_VAL1 130 |
| #define NO_HW_TRIG 0 |
| |
| /* The Thermal Framework expects millidegrees */ |
| #define mcelsius(temp) ((temp) * 1000) |
| |
| /* The Sensor expects oC degrees */ |
| #define celsius(temp) ((temp) / 1000) |
| |
| struct stm_thermal_sensor { |
| struct device *dev; |
| struct thermal_zone_device *th_dev; |
| enum thermal_device_mode mode; |
| struct clk *clk; |
| int high_temp; |
| int low_temp; |
| int temp_critical; |
| int temp_passive; |
| unsigned int low_temp_enabled; |
| int num_trips; |
| int irq; |
| unsigned int irq_enabled; |
| void __iomem *base; |
| int t0, fmt0, ramp_coeff; |
| }; |
| |
| static irqreturn_t stm_thermal_alarm_irq(int irq, void *sdata) |
| { |
| struct stm_thermal_sensor *sensor = sdata; |
| |
| disable_irq_nosync(irq); |
| sensor->irq_enabled = false; |
| |
| return IRQ_WAKE_THREAD; |
| } |
| |
| static irqreturn_t stm_thermal_alarm_irq_thread(int irq, void *sdata) |
| { |
| u32 value; |
| struct stm_thermal_sensor *sensor = sdata; |
| |
| /* read IT reason in SR and clear flags */ |
| value = readl_relaxed(sensor->base + DTS_SR_OFFSET); |
| |
| if ((value & LOW_THRESHOLD) == LOW_THRESHOLD) |
| writel_relaxed(LOW_THRESHOLD, sensor->base + DTS_ICIFR_OFFSET); |
| |
| if ((value & HIGH_THRESHOLD) == HIGH_THRESHOLD) |
| writel_relaxed(HIGH_THRESHOLD, sensor->base + DTS_ICIFR_OFFSET); |
| |
| thermal_zone_device_update(sensor->th_dev, THERMAL_EVENT_UNSPECIFIED); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int stm_sensor_power_on(struct stm_thermal_sensor *sensor) |
| { |
| int ret; |
| u32 value; |
| |
| /* Enable sensor */ |
| value = readl_relaxed(sensor->base + DTS_CFGR1_OFFSET); |
| value |= TS1_EN; |
| writel_relaxed(value, sensor->base + DTS_CFGR1_OFFSET); |
| |
| /* |
| * The DTS block can be enabled by setting TSx_EN bit in |
| * DTS_CFGRx register. It requires a startup time of |
| * 40μs. Use 5 ms as arbitrary timeout. |
| */ |
| ret = readl_poll_timeout(sensor->base + DTS_SR_OFFSET, |
| value, (value & TS_RDY), |
| STARTUP_TIME, POLL_TIMEOUT); |
| if (ret) |
| return ret; |
| |
| /* Start continuous measuring */ |
| value = readl_relaxed(sensor->base + |
| DTS_CFGR1_OFFSET); |
| value |= TS1_START; |
| writel_relaxed(value, sensor->base + |
| DTS_CFGR1_OFFSET); |
| |
| sensor->mode = THERMAL_DEVICE_ENABLED; |
| |
| return 0; |
| } |
| |
| static int stm_sensor_power_off(struct stm_thermal_sensor *sensor) |
| { |
| u32 value; |
| |
| sensor->mode = THERMAL_DEVICE_DISABLED; |
| |
| /* Stop measuring */ |
| value = readl_relaxed(sensor->base + DTS_CFGR1_OFFSET); |
| value &= ~TS1_START; |
| writel_relaxed(value, sensor->base + DTS_CFGR1_OFFSET); |
| |
| /* Ensure stop is taken into account */ |
| usleep_range(STARTUP_TIME, POLL_TIMEOUT); |
| |
| /* Disable sensor */ |
| value = readl_relaxed(sensor->base + DTS_CFGR1_OFFSET); |
| value &= ~TS1_EN; |
| writel_relaxed(value, sensor->base + DTS_CFGR1_OFFSET); |
| |
| /* Ensure disable is taken into account */ |
| return readl_poll_timeout(sensor->base + DTS_SR_OFFSET, value, |
| !(value & TS_RDY), |
| STARTUP_TIME, POLL_TIMEOUT); |
| } |
| |
| static int stm_thermal_calibration(struct stm_thermal_sensor *sensor) |
| { |
| u32 value, clk_freq; |
| u32 prescaler; |
| |
| /* Figure out prescaler value for PCLK during calibration */ |
| clk_freq = clk_get_rate(sensor->clk); |
| if (!clk_freq) |
| return -EINVAL; |
| |
| prescaler = 0; |
| clk_freq /= ONE_MHZ; |
| if (clk_freq) { |
| while (prescaler <= clk_freq) |
| prescaler++; |
| } |
| |
| value = readl_relaxed(sensor->base + DTS_CFGR1_OFFSET); |
| |
| /* Clear prescaler */ |
| value &= ~HSREF_CLK_DIV_MASK; |
| |
| /* Set prescaler. pclk_freq/prescaler < 1MHz */ |
| value |= (prescaler << HSREF_CLK_DIV_POS); |
| |
| /* Select PCLK as reference clock */ |
| value &= ~REFCLK_SEL; |
| |
| /* Set maximal sampling time for better precision */ |
| value |= TS1_SMP_TIME_MASK; |
| |
| /* Measure with calibration */ |
| value &= ~CALIBRATION_CONTROL; |
| |
| /* select trigger */ |
| value &= ~TS1_INTRIG_SEL_MASK; |
| value |= NO_HW_TRIG; |
| |
| writel_relaxed(value, sensor->base + DTS_CFGR1_OFFSET); |
| |
| return 0; |
| } |
| |
| /* Fill in DTS structure with factory sensor values */ |
| static int stm_thermal_read_factory_settings(struct stm_thermal_sensor *sensor) |
| { |
| /* Retrieve engineering calibration temperature */ |
| sensor->t0 = readl_relaxed(sensor->base + DTS_T0VALR1_OFFSET) & |
| TS1_T0_MASK; |
| if (!sensor->t0) |
| sensor->t0 = TS1_T0_VAL0; |
| else |
| sensor->t0 = TS1_T0_VAL1; |
| |
| /* Retrieve fmt0 and put it on Hz */ |
| sensor->fmt0 = ADJUST * (readl_relaxed(sensor->base + |
| DTS_T0VALR1_OFFSET) & TS1_FMT0_MASK); |
| |
| /* Retrieve ramp coefficient */ |
| sensor->ramp_coeff = readl_relaxed(sensor->base + DTS_RAMPVALR_OFFSET) & |
| TS1_RAMP_COEFF_MASK; |
| |
| if (!sensor->fmt0 || !sensor->ramp_coeff) { |
| dev_err(sensor->dev, "%s: wrong setting\n", __func__); |
| return -EINVAL; |
| } |
| |
| dev_dbg(sensor->dev, "%s: T0 = %doC, FMT0 = %dHz, RAMP_COEFF = %dHz/oC", |
| __func__, sensor->t0, sensor->fmt0, sensor->ramp_coeff); |
| |
| return 0; |
| } |
| |
| static int stm_thermal_calculate_threshold(struct stm_thermal_sensor *sensor, |
| int temp, u32 *th) |
| { |
| int freqM; |
| u32 sampling_time; |
| |
| /* Retrieve the number of periods to sample */ |
| sampling_time = (readl_relaxed(sensor->base + DTS_CFGR1_OFFSET) & |
| TS1_SMP_TIME_MASK) >> TS1_SMP_TIME_POS; |
| |
| /* Figure out the CLK_PTAT frequency for a given temperature */ |
| freqM = ((temp - sensor->t0) * sensor->ramp_coeff) |
| + sensor->fmt0; |
| |
| dev_dbg(sensor->dev, "%s: freqM for threshold = %d Hz", |
| __func__, freqM); |
| |
| /* Figure out the threshold sample number */ |
| *th = clk_get_rate(sensor->clk); |
| if (!*th) |
| return -EINVAL; |
| |
| *th = *th / freqM; |
| |
| *th *= sampling_time; |
| |
| return 0; |
| } |
| |
| static int stm_thermal_set_threshold(struct stm_thermal_sensor *sensor) |
| { |
| u32 value, th; |
| int ret; |
| |
| value = readl_relaxed(sensor->base + DTS_ITR1_OFFSET); |
| |
| /* Erase threshold content */ |
| value &= ~(TS1_LITTHD_MASK | TS1_HITTHD_MASK); |
| |
| /* Retrieve the sample threshold number th for a given temperature */ |
| ret = stm_thermal_calculate_threshold(sensor, sensor->high_temp, &th); |
| if (ret) |
| return ret; |
| |
| value |= th & TS1_LITTHD_MASK; |
| |
| if (sensor->low_temp_enabled) { |
| /* Retrieve the sample threshold */ |
| ret = stm_thermal_calculate_threshold(sensor, sensor->low_temp, |
| &th); |
| if (ret) |
| return ret; |
| |
| value |= (TS1_HITTHD_MASK & (th << TS1_HITTHD_POS)); |
| } |
| |
| /* Write value on the Low interrupt threshold */ |
| writel_relaxed(value, sensor->base + DTS_ITR1_OFFSET); |
| |
| return 0; |
| } |
| |
| /* Disable temperature interrupt */ |
| static int stm_disable_irq(struct stm_thermal_sensor *sensor) |
| { |
| u32 value; |
| |
| /* Disable IT generation for low and high thresholds */ |
| value = readl_relaxed(sensor->base + DTS_ITENR_OFFSET); |
| writel_relaxed(value & ~(LOW_THRESHOLD | HIGH_THRESHOLD), |
| sensor->base + DTS_ITENR_OFFSET); |
| |
| dev_dbg(sensor->dev, "%s: IT disabled on sensor side", __func__); |
| |
| return 0; |
| } |
| |
| /* Enable temperature interrupt */ |
| static int stm_enable_irq(struct stm_thermal_sensor *sensor) |
| { |
| u32 value; |
| |
| /* |
| * Code below enables High temperature threshold using a low threshold |
| * sampling value |
| */ |
| |
| /* Make sure LOW_THRESHOLD IT is clear before enabling */ |
| writel_relaxed(LOW_THRESHOLD, sensor->base + DTS_ICIFR_OFFSET); |
| |
| /* Enable IT generation for low threshold */ |
| value = readl_relaxed(sensor->base + DTS_ITENR_OFFSET); |
| value |= LOW_THRESHOLD; |
| |
| /* Enable the low temperature threshold if needed */ |
| if (sensor->low_temp_enabled) { |
| /* Make sure HIGH_THRESHOLD IT is clear before enabling */ |
| writel_relaxed(HIGH_THRESHOLD, sensor->base + DTS_ICIFR_OFFSET); |
| |
| /* Enable IT generation for high threshold */ |
| value |= HIGH_THRESHOLD; |
| } |
| |
| /* Enable thresholds */ |
| writel_relaxed(value, sensor->base + DTS_ITENR_OFFSET); |
| |
| dev_dbg(sensor->dev, "%s: IT enabled on sensor side", __func__); |
| |
| return 0; |
| } |
| |
| static int stm_thermal_update_threshold(struct stm_thermal_sensor *sensor) |
| { |
| int ret; |
| |
| |
| ret = stm_sensor_power_off(sensor); |
| if (ret) |
| return ret; |
| |
| ret = stm_disable_irq(sensor); |
| if (ret) |
| return ret; |
| |
| ret = stm_thermal_set_threshold(sensor); |
| if (ret) |
| return ret; |
| |
| ret = stm_enable_irq(sensor); |
| if (ret) |
| return ret; |
| |
| ret = stm_sensor_power_on(sensor); |
| if (ret) |
| return ret; |
| |
| sensor->mode = THERMAL_DEVICE_ENABLED; |
| |
| return 0; |
| } |
| |
| /* Callback to get temperature from HW */ |
| static int stm_thermal_get_temp(void *data, int *temp) |
| { |
| struct stm_thermal_sensor *sensor = data; |
| u32 sampling_time; |
| int freqM, ret; |
| |
| if (sensor->mode != THERMAL_DEVICE_ENABLED) |
| return -EAGAIN; |
| |
| /* Retrieve the number of samples */ |
| ret = readl_poll_timeout(sensor->base + DTS_DR_OFFSET, freqM, |
| (freqM & TS1_MFREQ_MASK), STARTUP_TIME, |
| POLL_TIMEOUT); |
| |
| if (ret) |
| return ret; |
| |
| if (!freqM) |
| return -ENODATA; |
| |
| /* Retrieve the number of periods sampled */ |
| sampling_time = (readl_relaxed(sensor->base + DTS_CFGR1_OFFSET) & |
| TS1_SMP_TIME_MASK) >> TS1_SMP_TIME_POS; |
| |
| /* Figure out the number of samples per period */ |
| freqM /= sampling_time; |
| |
| /* Figure out the CLK_PTAT frequency */ |
| freqM = clk_get_rate(sensor->clk) / freqM; |
| if (!freqM) |
| return -EINVAL; |
| |
| dev_dbg(sensor->dev, "%s: freqM=%d\n", __func__, freqM); |
| |
| /* Figure out the temperature in mili celsius */ |
| *temp = mcelsius(sensor->t0 + ((freqM - sensor->fmt0) / |
| sensor->ramp_coeff)); |
| |
| dev_dbg(sensor->dev, "%s: temperature = %d millicelsius", |
| __func__, *temp); |
| |
| /* Update thresholds */ |
| if (sensor->num_trips > 1) { |
| /* Update alarm threshold value to next higher trip point */ |
| if (sensor->high_temp == sensor->temp_passive && |
| celsius(*temp) >= sensor->temp_passive) { |
| sensor->high_temp = sensor->temp_critical; |
| sensor->low_temp = sensor->temp_passive; |
| sensor->low_temp_enabled = true; |
| ret = stm_thermal_update_threshold(sensor); |
| if (ret) |
| return ret; |
| } |
| |
| if (sensor->high_temp == sensor->temp_critical && |
| celsius(*temp) < sensor->temp_passive) { |
| sensor->high_temp = sensor->temp_passive; |
| sensor->low_temp_enabled = false; |
| ret = stm_thermal_update_threshold(sensor); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * Re-enable alarm IRQ if temperature below critical |
| * temperature |
| */ |
| if (!sensor->irq_enabled && |
| (celsius(*temp) < sensor->temp_critical)) { |
| sensor->irq_enabled = true; |
| enable_irq(sensor->irq); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Registers DTS irq to be visible by GIC */ |
| static int stm_register_irq(struct stm_thermal_sensor *sensor) |
| { |
| struct device *dev = sensor->dev; |
| struct platform_device *pdev = to_platform_device(dev); |
| int ret; |
| |
| sensor->irq = platform_get_irq(pdev, 0); |
| if (sensor->irq < 0) { |
| dev_err(dev, "%s: Unable to find IRQ\n", __func__); |
| return sensor->irq; |
| } |
| |
| ret = devm_request_threaded_irq(dev, sensor->irq, |
| stm_thermal_alarm_irq, |
| stm_thermal_alarm_irq_thread, |
| IRQF_ONESHOT, |
| dev->driver->name, sensor); |
| if (ret) { |
| dev_err(dev, "%s: Failed to register IRQ %d\n", __func__, |
| sensor->irq); |
| return ret; |
| } |
| |
| sensor->irq_enabled = true; |
| |
| dev_dbg(dev, "%s: thermal IRQ registered", __func__); |
| |
| return 0; |
| } |
| |
| static int stm_thermal_sensor_off(struct stm_thermal_sensor *sensor) |
| { |
| int ret; |
| |
| ret = stm_sensor_power_off(sensor); |
| if (ret) |
| return ret; |
| |
| clk_disable_unprepare(sensor->clk); |
| |
| return 0; |
| } |
| |
| static int stm_thermal_prepare(struct stm_thermal_sensor *sensor) |
| { |
| int ret; |
| struct device *dev = sensor->dev; |
| |
| ret = clk_prepare_enable(sensor->clk); |
| if (ret) |
| return ret; |
| |
| ret = stm_thermal_read_factory_settings(sensor); |
| if (ret) |
| goto thermal_unprepare; |
| |
| ret = stm_thermal_calibration(sensor); |
| if (ret) |
| goto thermal_unprepare; |
| |
| /* Set threshold(s) for IRQ */ |
| ret = stm_thermal_set_threshold(sensor); |
| if (ret) |
| goto thermal_unprepare; |
| |
| ret = stm_enable_irq(sensor); |
| if (ret) |
| goto thermal_unprepare; |
| |
| ret = stm_sensor_power_on(sensor); |
| if (ret) { |
| dev_err(dev, "%s: failed to power on sensor\n", __func__); |
| goto irq_disable; |
| } |
| |
| return 0; |
| |
| irq_disable: |
| stm_disable_irq(sensor); |
| |
| thermal_unprepare: |
| clk_disable_unprepare(sensor->clk); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int stm_thermal_suspend(struct device *dev) |
| { |
| int ret; |
| struct stm_thermal_sensor *sensor = dev_get_drvdata(dev); |
| |
| ret = stm_thermal_sensor_off(sensor); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int stm_thermal_resume(struct device *dev) |
| { |
| int ret; |
| struct stm_thermal_sensor *sensor = dev_get_drvdata(dev); |
| |
| ret = stm_thermal_prepare(sensor); |
| if (ret) |
| return ret; |
| |
| |
| return 0; |
| } |
| #endif /* CONFIG_PM_SLEEP */ |
| |
| SIMPLE_DEV_PM_OPS(stm_thermal_pm_ops, stm_thermal_suspend, stm_thermal_resume); |
| |
| static const struct thermal_zone_of_device_ops stm_tz_ops = { |
| .get_temp = stm_thermal_get_temp, |
| }; |
| |
| static const struct of_device_id stm_thermal_of_match[] = { |
| { .compatible = "st,stm32-thermal"}, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, stm_thermal_of_match); |
| |
| static int stm_thermal_probe(struct platform_device *pdev) |
| { |
| struct stm_thermal_sensor *sensor; |
| struct resource *res; |
| const struct thermal_trip *trip; |
| void __iomem *base; |
| int ret, i; |
| |
| if (!pdev->dev.of_node) { |
| dev_err(&pdev->dev, "%s: device tree node not found\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| sensor = devm_kzalloc(&pdev->dev, sizeof(*sensor), GFP_KERNEL); |
| if (!sensor) |
| return -ENOMEM; |
| |
| platform_set_drvdata(pdev, sensor); |
| |
| sensor->dev = &pdev->dev; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(base)) |
| return PTR_ERR(base); |
| |
| /* Populate sensor */ |
| sensor->base = base; |
| |
| sensor->clk = devm_clk_get(&pdev->dev, "pclk"); |
| if (IS_ERR(sensor->clk)) { |
| dev_err(&pdev->dev, "%s: failed to fetch PCLK clock\n", |
| __func__); |
| return PTR_ERR(sensor->clk); |
| } |
| |
| /* Register IRQ into GIC */ |
| ret = stm_register_irq(sensor); |
| if (ret) |
| return ret; |
| |
| sensor->th_dev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, |
| sensor, |
| &stm_tz_ops); |
| |
| if (IS_ERR(sensor->th_dev)) { |
| dev_err(&pdev->dev, "%s: thermal zone sensor registering KO\n", |
| __func__); |
| ret = PTR_ERR(sensor->th_dev); |
| return ret; |
| } |
| |
| if (!sensor->th_dev->ops->get_crit_temp) { |
| /* Critical point must be provided */ |
| ret = -EINVAL; |
| goto err_tz; |
| } |
| |
| ret = sensor->th_dev->ops->get_crit_temp(sensor->th_dev, |
| &sensor->temp_critical); |
| if (ret) { |
| dev_err(&pdev->dev, |
| "Not able to read critical_temp: %d\n", ret); |
| goto err_tz; |
| } |
| |
| sensor->temp_critical = celsius(sensor->temp_critical); |
| |
| /* Set thresholds for IRQ */ |
| sensor->high_temp = sensor->temp_critical; |
| |
| trip = of_thermal_get_trip_points(sensor->th_dev); |
| sensor->num_trips = of_thermal_get_ntrips(sensor->th_dev); |
| |
| /* Find out passive temperature if it exists */ |
| for (i = (sensor->num_trips - 1); i >= 0; i--) { |
| if (trip[i].type == THERMAL_TRIP_PASSIVE) { |
| sensor->temp_passive = celsius(trip[i].temperature); |
| /* Update high temperature threshold */ |
| sensor->high_temp = sensor->temp_passive; |
| } |
| } |
| |
| /* |
| * Ensure low_temp_enabled flag is disabled. |
| * By disabling low_temp_enabled, low threshold IT will not be |
| * configured neither enabled because it is not needed as high |
| * threshold is set on the lowest temperature trip point after |
| * probe. |
| */ |
| sensor->low_temp_enabled = false; |
| |
| /* Configure and enable HW sensor */ |
| ret = stm_thermal_prepare(sensor); |
| if (ret) { |
| dev_err(&pdev->dev, |
| "Not able to enable sensor: %d\n", ret); |
| goto err_tz; |
| } |
| |
| /* |
| * Thermal_zone doesn't enable hwmon as default, |
| * enable it here |
| */ |
| sensor->th_dev->tzp->no_hwmon = false; |
| ret = thermal_add_hwmon_sysfs(sensor->th_dev); |
| if (ret) |
| goto err_tz; |
| |
| dev_info(&pdev->dev, "%s: Driver initialized successfully\n", |
| __func__); |
| |
| return 0; |
| |
| err_tz: |
| thermal_zone_of_sensor_unregister(&pdev->dev, sensor->th_dev); |
| return ret; |
| } |
| |
| static int stm_thermal_remove(struct platform_device *pdev) |
| { |
| struct stm_thermal_sensor *sensor = platform_get_drvdata(pdev); |
| |
| stm_thermal_sensor_off(sensor); |
| thermal_remove_hwmon_sysfs(sensor->th_dev); |
| thermal_zone_of_sensor_unregister(&pdev->dev, sensor->th_dev); |
| |
| return 0; |
| } |
| |
| static struct platform_driver stm_thermal_driver = { |
| .driver = { |
| .name = "stm_thermal", |
| .pm = &stm_thermal_pm_ops, |
| .of_match_table = stm_thermal_of_match, |
| }, |
| .probe = stm_thermal_probe, |
| .remove = stm_thermal_remove, |
| }; |
| module_platform_driver(stm_thermal_driver); |
| |
| MODULE_DESCRIPTION("STMicroelectronics STM32 Thermal Sensor Driver"); |
| MODULE_AUTHOR("David Hernandez Sanchez <david.hernandezsanchez@st.com>"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_ALIAS("platform:stm_thermal"); |