| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright (C) 2019 Linaro, Ltd. <ard.biesheuvel@linaro.org> |
| */ |
| |
| #ifdef CONFIG_ARM64 |
| #include <asm/neon-intrinsics.h> |
| |
| #define AES_ROUND "aese %0.16b, %1.16b \n\t aesmc %0.16b, %0.16b" |
| #else |
| #include <arm_neon.h> |
| |
| #define AES_ROUND "aese.8 %q0, %q1 \n\t aesmc.8 %q0, %q0" |
| #endif |
| |
| #define AEGIS_BLOCK_SIZE 16 |
| |
| #include <stddef.h> |
| |
| extern int aegis128_have_aes_insn; |
| |
| void *memcpy(void *dest, const void *src, size_t n); |
| void *memset(void *s, int c, size_t n); |
| |
| struct aegis128_state { |
| uint8x16_t v[5]; |
| }; |
| |
| extern const uint8x16x4_t crypto_aes_sbox[]; |
| |
| static struct aegis128_state aegis128_load_state_neon(const void *state) |
| { |
| return (struct aegis128_state){ { |
| vld1q_u8(state), |
| vld1q_u8(state + 16), |
| vld1q_u8(state + 32), |
| vld1q_u8(state + 48), |
| vld1q_u8(state + 64) |
| } }; |
| } |
| |
| static void aegis128_save_state_neon(struct aegis128_state st, void *state) |
| { |
| vst1q_u8(state, st.v[0]); |
| vst1q_u8(state + 16, st.v[1]); |
| vst1q_u8(state + 32, st.v[2]); |
| vst1q_u8(state + 48, st.v[3]); |
| vst1q_u8(state + 64, st.v[4]); |
| } |
| |
| static inline __attribute__((always_inline)) |
| uint8x16_t aegis_aes_round(uint8x16_t w) |
| { |
| uint8x16_t z = {}; |
| |
| #ifdef CONFIG_ARM64 |
| if (!__builtin_expect(aegis128_have_aes_insn, 1)) { |
| static const uint8x16_t shift_rows = { |
| 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3, |
| 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb, |
| }; |
| static const uint8x16_t ror32by8 = { |
| 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, |
| 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, |
| }; |
| uint8x16_t v; |
| |
| // shift rows |
| w = vqtbl1q_u8(w, shift_rows); |
| |
| // sub bytes |
| if (!IS_ENABLED(CONFIG_CC_IS_GCC)) { |
| v = vqtbl4q_u8(crypto_aes_sbox[0], w); |
| v = vqtbx4q_u8(v, crypto_aes_sbox[1], w - 0x40); |
| v = vqtbx4q_u8(v, crypto_aes_sbox[2], w - 0x80); |
| v = vqtbx4q_u8(v, crypto_aes_sbox[3], w - 0xc0); |
| } else { |
| asm("tbl %0.16b, {v16.16b-v19.16b}, %1.16b" : "=w"(v) : "w"(w)); |
| w -= 0x40; |
| asm("tbx %0.16b, {v20.16b-v23.16b}, %1.16b" : "+w"(v) : "w"(w)); |
| w -= 0x40; |
| asm("tbx %0.16b, {v24.16b-v27.16b}, %1.16b" : "+w"(v) : "w"(w)); |
| w -= 0x40; |
| asm("tbx %0.16b, {v28.16b-v31.16b}, %1.16b" : "+w"(v) : "w"(w)); |
| } |
| |
| // mix columns |
| w = (v << 1) ^ (uint8x16_t)(((int8x16_t)v >> 7) & 0x1b); |
| w ^= (uint8x16_t)vrev32q_u16((uint16x8_t)v); |
| w ^= vqtbl1q_u8(v ^ w, ror32by8); |
| |
| return w; |
| } |
| #endif |
| |
| /* |
| * We use inline asm here instead of the vaeseq_u8/vaesmcq_u8 intrinsics |
| * to force the compiler to issue the aese/aesmc instructions in pairs. |
| * This is much faster on many cores, where the instruction pair can |
| * execute in a single cycle. |
| */ |
| asm(AES_ROUND : "+w"(w) : "w"(z)); |
| return w; |
| } |
| |
| static inline __attribute__((always_inline)) |
| struct aegis128_state aegis128_update_neon(struct aegis128_state st, |
| uint8x16_t m) |
| { |
| m ^= aegis_aes_round(st.v[4]); |
| st.v[4] ^= aegis_aes_round(st.v[3]); |
| st.v[3] ^= aegis_aes_round(st.v[2]); |
| st.v[2] ^= aegis_aes_round(st.v[1]); |
| st.v[1] ^= aegis_aes_round(st.v[0]); |
| st.v[0] ^= m; |
| |
| return st; |
| } |
| |
| static inline __attribute__((always_inline)) |
| void preload_sbox(void) |
| { |
| if (!IS_ENABLED(CONFIG_ARM64) || |
| !IS_ENABLED(CONFIG_CC_IS_GCC) || |
| __builtin_expect(aegis128_have_aes_insn, 1)) |
| return; |
| |
| asm("ld1 {v16.16b-v19.16b}, [%0], #64 \n\t" |
| "ld1 {v20.16b-v23.16b}, [%0], #64 \n\t" |
| "ld1 {v24.16b-v27.16b}, [%0], #64 \n\t" |
| "ld1 {v28.16b-v31.16b}, [%0] \n\t" |
| :: "r"(crypto_aes_sbox)); |
| } |
| |
| void crypto_aegis128_update_neon(void *state, const void *msg) |
| { |
| struct aegis128_state st = aegis128_load_state_neon(state); |
| |
| preload_sbox(); |
| |
| st = aegis128_update_neon(st, vld1q_u8(msg)); |
| |
| aegis128_save_state_neon(st, state); |
| } |
| |
| void crypto_aegis128_encrypt_chunk_neon(void *state, void *dst, const void *src, |
| unsigned int size) |
| { |
| struct aegis128_state st = aegis128_load_state_neon(state); |
| uint8x16_t msg; |
| |
| preload_sbox(); |
| |
| while (size >= AEGIS_BLOCK_SIZE) { |
| uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4]; |
| |
| msg = vld1q_u8(src); |
| st = aegis128_update_neon(st, msg); |
| vst1q_u8(dst, msg ^ s); |
| |
| size -= AEGIS_BLOCK_SIZE; |
| src += AEGIS_BLOCK_SIZE; |
| dst += AEGIS_BLOCK_SIZE; |
| } |
| |
| if (size > 0) { |
| uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4]; |
| uint8_t buf[AEGIS_BLOCK_SIZE] = {}; |
| |
| memcpy(buf, src, size); |
| msg = vld1q_u8(buf); |
| st = aegis128_update_neon(st, msg); |
| vst1q_u8(buf, msg ^ s); |
| memcpy(dst, buf, size); |
| } |
| |
| aegis128_save_state_neon(st, state); |
| } |
| |
| void crypto_aegis128_decrypt_chunk_neon(void *state, void *dst, const void *src, |
| unsigned int size) |
| { |
| struct aegis128_state st = aegis128_load_state_neon(state); |
| uint8x16_t msg; |
| |
| preload_sbox(); |
| |
| while (size >= AEGIS_BLOCK_SIZE) { |
| msg = vld1q_u8(src) ^ st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4]; |
| st = aegis128_update_neon(st, msg); |
| vst1q_u8(dst, msg); |
| |
| size -= AEGIS_BLOCK_SIZE; |
| src += AEGIS_BLOCK_SIZE; |
| dst += AEGIS_BLOCK_SIZE; |
| } |
| |
| if (size > 0) { |
| uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4]; |
| uint8_t buf[AEGIS_BLOCK_SIZE]; |
| |
| vst1q_u8(buf, s); |
| memcpy(buf, src, size); |
| msg = vld1q_u8(buf) ^ s; |
| vst1q_u8(buf, msg); |
| memcpy(dst, buf, size); |
| |
| st = aegis128_update_neon(st, msg); |
| } |
| |
| aegis128_save_state_neon(st, state); |
| } |