blob: 84d52fc3a2da6e9175908c17e9b0431938a271d5 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* sun8i-ss-cipher.c - hardware cryptographic offloader for
* Allwinner A80/A83T SoC
*
* Copyright (C) 2016-2019 Corentin LABBE <clabbe.montjoie@gmail.com>
*
* This file add support for AES cipher with 128,192,256 bits keysize in
* CBC and ECB mode.
*
* You could find a link for the datasheet in Documentation/arm/sunxi/README
*/
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/pm_runtime.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/skcipher.h>
#include "sun8i-ss.h"
static bool sun8i_ss_need_fallback(struct skcipher_request *areq)
{
struct scatterlist *in_sg = areq->src;
struct scatterlist *out_sg = areq->dst;
struct scatterlist *sg;
if (areq->cryptlen == 0 || areq->cryptlen % 16)
return true;
if (sg_nents(areq->src) > 8 || sg_nents(areq->dst) > 8)
return true;
sg = areq->src;
while (sg) {
if ((sg->length % 16) != 0)
return true;
if ((sg_dma_len(sg) % 16) != 0)
return true;
if (!IS_ALIGNED(sg->offset, 16))
return true;
sg = sg_next(sg);
}
sg = areq->dst;
while (sg) {
if ((sg->length % 16) != 0)
return true;
if ((sg_dma_len(sg) % 16) != 0)
return true;
if (!IS_ALIGNED(sg->offset, 16))
return true;
sg = sg_next(sg);
}
/* SS need same numbers of SG (with same length) for source and destination */
in_sg = areq->src;
out_sg = areq->dst;
while (in_sg && out_sg) {
if (in_sg->length != out_sg->length)
return true;
in_sg = sg_next(in_sg);
out_sg = sg_next(out_sg);
}
if (in_sg || out_sg)
return true;
return false;
}
static int sun8i_ss_cipher_fallback(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
int err;
SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, op->fallback_tfm);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct sun8i_ss_alg_template *algt;
algt = container_of(alg, struct sun8i_ss_alg_template, alg.skcipher);
algt->stat_fb++;
#endif
skcipher_request_set_sync_tfm(subreq, op->fallback_tfm);
skcipher_request_set_callback(subreq, areq->base.flags, NULL, NULL);
skcipher_request_set_crypt(subreq, areq->src, areq->dst,
areq->cryptlen, areq->iv);
if (rctx->op_dir & SS_DECRYPTION)
err = crypto_skcipher_decrypt(subreq);
else
err = crypto_skcipher_encrypt(subreq);
skcipher_request_zero(subreq);
return err;
}
static int sun8i_ss_cipher(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_ss_dev *ss = op->ss;
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct sun8i_ss_alg_template *algt;
struct scatterlist *sg;
unsigned int todo, len, offset, ivsize;
void *backup_iv = NULL;
int nr_sgs = 0;
int nr_sgd = 0;
int err = 0;
int i;
algt = container_of(alg, struct sun8i_ss_alg_template, alg.skcipher);
dev_dbg(ss->dev, "%s %s %u %x IV(%p %u) key=%u\n", __func__,
crypto_tfm_alg_name(areq->base.tfm),
areq->cryptlen,
rctx->op_dir, areq->iv, crypto_skcipher_ivsize(tfm),
op->keylen);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG
algt->stat_req++;
#endif
rctx->op_mode = ss->variant->op_mode[algt->ss_blockmode];
rctx->method = ss->variant->alg_cipher[algt->ss_algo_id];
rctx->keylen = op->keylen;
rctx->p_key = dma_map_single(ss->dev, op->key, op->keylen, DMA_TO_DEVICE);
if (dma_mapping_error(ss->dev, rctx->p_key)) {
dev_err(ss->dev, "Cannot DMA MAP KEY\n");
err = -EFAULT;
goto theend;
}
ivsize = crypto_skcipher_ivsize(tfm);
if (areq->iv && crypto_skcipher_ivsize(tfm) > 0) {
rctx->ivlen = ivsize;
rctx->biv = kzalloc(ivsize, GFP_KERNEL | GFP_DMA);
if (!rctx->biv) {
err = -ENOMEM;
goto theend_key;
}
if (rctx->op_dir & SS_DECRYPTION) {
backup_iv = kzalloc(ivsize, GFP_KERNEL);
if (!backup_iv) {
err = -ENOMEM;
goto theend_key;
}
offset = areq->cryptlen - ivsize;
scatterwalk_map_and_copy(backup_iv, areq->src, offset,
ivsize, 0);
}
memcpy(rctx->biv, areq->iv, ivsize);
rctx->p_iv = dma_map_single(ss->dev, rctx->biv, rctx->ivlen,
DMA_TO_DEVICE);
if (dma_mapping_error(ss->dev, rctx->p_iv)) {
dev_err(ss->dev, "Cannot DMA MAP IV\n");
err = -ENOMEM;
goto theend_iv;
}
}
if (areq->src == areq->dst) {
nr_sgs = dma_map_sg(ss->dev, areq->src, sg_nents(areq->src),
DMA_BIDIRECTIONAL);
if (nr_sgs <= 0 || nr_sgs > 8) {
dev_err(ss->dev, "Invalid sg number %d\n", nr_sgs);
err = -EINVAL;
goto theend_iv;
}
nr_sgd = nr_sgs;
} else {
nr_sgs = dma_map_sg(ss->dev, areq->src, sg_nents(areq->src),
DMA_TO_DEVICE);
if (nr_sgs <= 0 || nr_sgs > 8) {
dev_err(ss->dev, "Invalid sg number %d\n", nr_sgs);
err = -EINVAL;
goto theend_iv;
}
nr_sgd = dma_map_sg(ss->dev, areq->dst, sg_nents(areq->dst),
DMA_FROM_DEVICE);
if (nr_sgd <= 0 || nr_sgd > 8) {
dev_err(ss->dev, "Invalid sg number %d\n", nr_sgd);
err = -EINVAL;
goto theend_sgs;
}
}
len = areq->cryptlen;
i = 0;
sg = areq->src;
while (i < nr_sgs && sg && len) {
if (sg_dma_len(sg) == 0)
goto sgs_next;
rctx->t_src[i].addr = sg_dma_address(sg);
todo = min(len, sg_dma_len(sg));
rctx->t_src[i].len = todo / 4;
dev_dbg(ss->dev, "%s total=%u SGS(%d %u off=%d) todo=%u\n", __func__,
areq->cryptlen, i, rctx->t_src[i].len, sg->offset, todo);
len -= todo;
i++;
sgs_next:
sg = sg_next(sg);
}
if (len > 0) {
dev_err(ss->dev, "remaining len %d\n", len);
err = -EINVAL;
goto theend_sgs;
}
len = areq->cryptlen;
i = 0;
sg = areq->dst;
while (i < nr_sgd && sg && len) {
if (sg_dma_len(sg) == 0)
goto sgd_next;
rctx->t_dst[i].addr = sg_dma_address(sg);
todo = min(len, sg_dma_len(sg));
rctx->t_dst[i].len = todo / 4;
dev_dbg(ss->dev, "%s total=%u SGD(%d %u off=%d) todo=%u\n", __func__,
areq->cryptlen, i, rctx->t_dst[i].len, sg->offset, todo);
len -= todo;
i++;
sgd_next:
sg = sg_next(sg);
}
if (len > 0) {
dev_err(ss->dev, "remaining len %d\n", len);
err = -EINVAL;
goto theend_sgs;
}
err = sun8i_ss_run_task(ss, rctx, crypto_tfm_alg_name(areq->base.tfm));
theend_sgs:
if (areq->src == areq->dst) {
dma_unmap_sg(ss->dev, areq->src, nr_sgs, DMA_BIDIRECTIONAL);
} else {
dma_unmap_sg(ss->dev, areq->src, nr_sgs, DMA_TO_DEVICE);
dma_unmap_sg(ss->dev, areq->dst, nr_sgd, DMA_FROM_DEVICE);
}
theend_iv:
if (rctx->p_iv)
dma_unmap_single(ss->dev, rctx->p_iv, rctx->ivlen,
DMA_TO_DEVICE);
if (areq->iv && ivsize > 0) {
if (rctx->biv) {
offset = areq->cryptlen - ivsize;
if (rctx->op_dir & SS_DECRYPTION) {
memcpy(areq->iv, backup_iv, ivsize);
memzero_explicit(backup_iv, ivsize);
kzfree(backup_iv);
} else {
scatterwalk_map_and_copy(areq->iv, areq->dst, offset,
ivsize, 0);
}
kfree(rctx->biv);
}
}
theend_key:
dma_unmap_single(ss->dev, rctx->p_key, op->keylen, DMA_TO_DEVICE);
theend:
return err;
}
static int sun8i_ss_handle_cipher_request(struct crypto_engine *engine, void *areq)
{
int err;
struct skcipher_request *breq = container_of(areq, struct skcipher_request, base);
err = sun8i_ss_cipher(breq);
crypto_finalize_skcipher_request(engine, breq, err);
return 0;
}
int sun8i_ss_skdecrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
struct crypto_engine *engine;
int e;
memset(rctx, 0, sizeof(struct sun8i_cipher_req_ctx));
rctx->op_dir = SS_DECRYPTION;
if (sun8i_ss_need_fallback(areq))
return sun8i_ss_cipher_fallback(areq);
e = sun8i_ss_get_engine_number(op->ss);
engine = op->ss->flows[e].engine;
rctx->flow = e;
return crypto_transfer_skcipher_request_to_engine(engine, areq);
}
int sun8i_ss_skencrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
struct crypto_engine *engine;
int e;
memset(rctx, 0, sizeof(struct sun8i_cipher_req_ctx));
rctx->op_dir = SS_ENCRYPTION;
if (sun8i_ss_need_fallback(areq))
return sun8i_ss_cipher_fallback(areq);
e = sun8i_ss_get_engine_number(op->ss);
engine = op->ss->flows[e].engine;
rctx->flow = e;
return crypto_transfer_skcipher_request_to_engine(engine, areq);
}
int sun8i_ss_cipher_init(struct crypto_tfm *tfm)
{
struct sun8i_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm);
struct sun8i_ss_alg_template *algt;
const char *name = crypto_tfm_alg_name(tfm);
struct crypto_skcipher *sktfm = __crypto_skcipher_cast(tfm);
struct skcipher_alg *alg = crypto_skcipher_alg(sktfm);
int err;
memset(op, 0, sizeof(struct sun8i_cipher_tfm_ctx));
algt = container_of(alg, struct sun8i_ss_alg_template, alg.skcipher);
op->ss = algt->ss;
sktfm->reqsize = sizeof(struct sun8i_cipher_req_ctx);
op->fallback_tfm = crypto_alloc_sync_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(op->fallback_tfm)) {
dev_err(op->ss->dev, "ERROR: Cannot allocate fallback for %s %ld\n",
name, PTR_ERR(op->fallback_tfm));
return PTR_ERR(op->fallback_tfm);
}
dev_info(op->ss->dev, "Fallback for %s is %s\n",
crypto_tfm_alg_driver_name(&sktfm->base),
crypto_tfm_alg_driver_name(crypto_skcipher_tfm(&op->fallback_tfm->base)));
op->enginectx.op.do_one_request = sun8i_ss_handle_cipher_request;
op->enginectx.op.prepare_request = NULL;
op->enginectx.op.unprepare_request = NULL;
err = pm_runtime_get_sync(op->ss->dev);
if (err < 0) {
dev_err(op->ss->dev, "pm error %d\n", err);
goto error_pm;
}
return 0;
error_pm:
crypto_free_sync_skcipher(op->fallback_tfm);
return err;
}
void sun8i_ss_cipher_exit(struct crypto_tfm *tfm)
{
struct sun8i_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm);
if (op->key) {
memzero_explicit(op->key, op->keylen);
kfree(op->key);
}
crypto_free_sync_skcipher(op->fallback_tfm);
pm_runtime_put_sync(op->ss->dev);
}
int sun8i_ss_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_ss_dev *ss = op->ss;
switch (keylen) {
case 128 / 8:
break;
case 192 / 8:
break;
case 256 / 8:
break;
default:
dev_dbg(ss->dev, "ERROR: Invalid keylen %u\n", keylen);
return -EINVAL;
}
if (op->key) {
memzero_explicit(op->key, op->keylen);
kfree(op->key);
}
op->keylen = keylen;
op->key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA);
if (!op->key)
return -ENOMEM;
crypto_sync_skcipher_clear_flags(op->fallback_tfm, CRYPTO_TFM_REQ_MASK);
crypto_sync_skcipher_set_flags(op->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
return crypto_sync_skcipher_setkey(op->fallback_tfm, key, keylen);
}
int sun8i_ss_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_ss_dev *ss = op->ss;
if (unlikely(keylen != 3 * DES_KEY_SIZE)) {
dev_dbg(ss->dev, "Invalid keylen %u\n", keylen);
return -EINVAL;
}
if (op->key) {
memzero_explicit(op->key, op->keylen);
kfree(op->key);
}
op->keylen = keylen;
op->key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA);
if (!op->key)
return -ENOMEM;
crypto_sync_skcipher_clear_flags(op->fallback_tfm, CRYPTO_TFM_REQ_MASK);
crypto_sync_skcipher_set_flags(op->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
return crypto_sync_skcipher_setkey(op->fallback_tfm, key, keylen);
}