| /* drivers/net/ethernet/micrel/ks8851.c |
| * |
| * Copyright 2009 Simtec Electronics |
| * http://www.simtec.co.uk/ |
| * Ben Dooks <ben@simtec.co.uk> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #define DEBUG |
| |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/ethtool.h> |
| #include <linux/cache.h> |
| #include <linux/crc32.h> |
| #include <linux/mii.h> |
| #include <linux/eeprom_93cx6.h> |
| #include <linux/regulator/consumer.h> |
| |
| #include <linux/spi/spi.h> |
| |
| #include "ks8851.h" |
| |
| /** |
| * struct ks8851_rxctrl - KS8851 driver rx control |
| * @mchash: Multicast hash-table data. |
| * @rxcr1: KS_RXCR1 register setting |
| * @rxcr2: KS_RXCR2 register setting |
| * |
| * Representation of the settings needs to control the receive filtering |
| * such as the multicast hash-filter and the receive register settings. This |
| * is used to make the job of working out if the receive settings change and |
| * then issuing the new settings to the worker that will send the necessary |
| * commands. |
| */ |
| struct ks8851_rxctrl { |
| u16 mchash[4]; |
| u16 rxcr1; |
| u16 rxcr2; |
| }; |
| |
| /** |
| * union ks8851_tx_hdr - tx header data |
| * @txb: The header as bytes |
| * @txw: The header as 16bit, little-endian words |
| * |
| * A dual representation of the tx header data to allow |
| * access to individual bytes, and to allow 16bit accesses |
| * with 16bit alignment. |
| */ |
| union ks8851_tx_hdr { |
| u8 txb[6]; |
| __le16 txw[3]; |
| }; |
| |
| /** |
| * struct ks8851_net - KS8851 driver private data |
| * @netdev: The network device we're bound to |
| * @spidev: The spi device we're bound to. |
| * @lock: Lock to ensure that the device is not accessed when busy. |
| * @statelock: Lock on this structure for tx list. |
| * @mii: The MII state information for the mii calls. |
| * @rxctrl: RX settings for @rxctrl_work. |
| * @tx_work: Work queue for tx packets |
| * @rxctrl_work: Work queue for updating RX mode and multicast lists |
| * @txq: Queue of packets for transmission. |
| * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1. |
| * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2. |
| * @txh: Space for generating packet TX header in DMA-able data |
| * @rxd: Space for receiving SPI data, in DMA-able space. |
| * @txd: Space for transmitting SPI data, in DMA-able space. |
| * @msg_enable: The message flags controlling driver output (see ethtool). |
| * @fid: Incrementing frame id tag. |
| * @rc_ier: Cached copy of KS_IER. |
| * @rc_ccr: Cached copy of KS_CCR. |
| * @rc_rxqcr: Cached copy of KS_RXQCR. |
| * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom |
| * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM. |
| * @vdd_reg: Optional regulator supplying the chip |
| * |
| * The @lock ensures that the chip is protected when certain operations are |
| * in progress. When the read or write packet transfer is in progress, most |
| * of the chip registers are not ccessible until the transfer is finished and |
| * the DMA has been de-asserted. |
| * |
| * The @statelock is used to protect information in the structure which may |
| * need to be accessed via several sources, such as the network driver layer |
| * or one of the work queues. |
| * |
| * We align the buffers we may use for rx/tx to ensure that if the SPI driver |
| * wants to DMA map them, it will not have any problems with data the driver |
| * modifies. |
| */ |
| struct ks8851_net { |
| struct net_device *netdev; |
| struct spi_device *spidev; |
| struct mutex lock; |
| spinlock_t statelock; |
| |
| union ks8851_tx_hdr txh ____cacheline_aligned; |
| u8 rxd[8]; |
| u8 txd[8]; |
| |
| u32 msg_enable ____cacheline_aligned; |
| u16 tx_space; |
| u8 fid; |
| |
| u16 rc_ier; |
| u16 rc_rxqcr; |
| u16 rc_ccr; |
| u16 eeprom_size; |
| |
| struct mii_if_info mii; |
| struct ks8851_rxctrl rxctrl; |
| |
| struct work_struct tx_work; |
| struct work_struct rxctrl_work; |
| |
| struct sk_buff_head txq; |
| |
| struct spi_message spi_msg1; |
| struct spi_message spi_msg2; |
| struct spi_transfer spi_xfer1; |
| struct spi_transfer spi_xfer2[2]; |
| |
| struct eeprom_93cx6 eeprom; |
| struct regulator *vdd_reg; |
| }; |
| |
| static int msg_enable; |
| |
| /* shift for byte-enable data */ |
| #define BYTE_EN(_x) ((_x) << 2) |
| |
| /* turn register number and byte-enable mask into data for start of packet */ |
| #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6) |
| |
| /* SPI register read/write calls. |
| * |
| * All these calls issue SPI transactions to access the chip's registers. They |
| * all require that the necessary lock is held to prevent accesses when the |
| * chip is busy transferring packet data (RX/TX FIFO accesses). |
| */ |
| |
| /** |
| * ks8851_wrreg16 - write 16bit register value to chip |
| * @ks: The chip state |
| * @reg: The register address |
| * @val: The value to write |
| * |
| * Issue a write to put the value @val into the register specified in @reg. |
| */ |
| static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val) |
| { |
| struct spi_transfer *xfer = &ks->spi_xfer1; |
| struct spi_message *msg = &ks->spi_msg1; |
| __le16 txb[2]; |
| int ret; |
| |
| txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR); |
| txb[1] = cpu_to_le16(val); |
| |
| xfer->tx_buf = txb; |
| xfer->rx_buf = NULL; |
| xfer->len = 4; |
| |
| ret = spi_sync(ks->spidev, msg); |
| if (ret < 0) |
| netdev_err(ks->netdev, "spi_sync() failed\n"); |
| } |
| |
| /** |
| * ks8851_wrreg8 - write 8bit register value to chip |
| * @ks: The chip state |
| * @reg: The register address |
| * @val: The value to write |
| * |
| * Issue a write to put the value @val into the register specified in @reg. |
| */ |
| static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val) |
| { |
| struct spi_transfer *xfer = &ks->spi_xfer1; |
| struct spi_message *msg = &ks->spi_msg1; |
| __le16 txb[2]; |
| int ret; |
| int bit; |
| |
| bit = 1 << (reg & 3); |
| |
| txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR); |
| txb[1] = val; |
| |
| xfer->tx_buf = txb; |
| xfer->rx_buf = NULL; |
| xfer->len = 3; |
| |
| ret = spi_sync(ks->spidev, msg); |
| if (ret < 0) |
| netdev_err(ks->netdev, "spi_sync() failed\n"); |
| } |
| |
| /** |
| * ks8851_rx_1msg - select whether to use one or two messages for spi read |
| * @ks: The device structure |
| * |
| * Return whether to generate a single message with a tx and rx buffer |
| * supplied to spi_sync(), or alternatively send the tx and rx buffers |
| * as separate messages. |
| * |
| * Depending on the hardware in use, a single message may be more efficient |
| * on interrupts or work done by the driver. |
| * |
| * This currently always returns true until we add some per-device data passed |
| * from the platform code to specify which mode is better. |
| */ |
| static inline bool ks8851_rx_1msg(struct ks8851_net *ks) |
| { |
| return true; |
| } |
| |
| /** |
| * ks8851_rdreg - issue read register command and return the data |
| * @ks: The device state |
| * @op: The register address and byte enables in message format. |
| * @rxb: The RX buffer to return the result into |
| * @rxl: The length of data expected. |
| * |
| * This is the low level read call that issues the necessary spi message(s) |
| * to read data from the register specified in @op. |
| */ |
| static void ks8851_rdreg(struct ks8851_net *ks, unsigned op, |
| u8 *rxb, unsigned rxl) |
| { |
| struct spi_transfer *xfer; |
| struct spi_message *msg; |
| __le16 *txb = (__le16 *)ks->txd; |
| u8 *trx = ks->rxd; |
| int ret; |
| |
| txb[0] = cpu_to_le16(op | KS_SPIOP_RD); |
| |
| if (ks8851_rx_1msg(ks)) { |
| msg = &ks->spi_msg1; |
| xfer = &ks->spi_xfer1; |
| |
| xfer->tx_buf = txb; |
| xfer->rx_buf = trx; |
| xfer->len = rxl + 2; |
| } else { |
| msg = &ks->spi_msg2; |
| xfer = ks->spi_xfer2; |
| |
| xfer->tx_buf = txb; |
| xfer->rx_buf = NULL; |
| xfer->len = 2; |
| |
| xfer++; |
| xfer->tx_buf = NULL; |
| xfer->rx_buf = trx; |
| xfer->len = rxl; |
| } |
| |
| ret = spi_sync(ks->spidev, msg); |
| if (ret < 0) |
| netdev_err(ks->netdev, "read: spi_sync() failed\n"); |
| else if (ks8851_rx_1msg(ks)) |
| memcpy(rxb, trx + 2, rxl); |
| else |
| memcpy(rxb, trx, rxl); |
| } |
| |
| /** |
| * ks8851_rdreg8 - read 8 bit register from device |
| * @ks: The chip information |
| * @reg: The register address |
| * |
| * Read a 8bit register from the chip, returning the result |
| */ |
| static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg) |
| { |
| u8 rxb[1]; |
| |
| ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1); |
| return rxb[0]; |
| } |
| |
| /** |
| * ks8851_rdreg16 - read 16 bit register from device |
| * @ks: The chip information |
| * @reg: The register address |
| * |
| * Read a 16bit register from the chip, returning the result |
| */ |
| static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg) |
| { |
| __le16 rx = 0; |
| |
| ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2); |
| return le16_to_cpu(rx); |
| } |
| |
| /** |
| * ks8851_rdreg32 - read 32 bit register from device |
| * @ks: The chip information |
| * @reg: The register address |
| * |
| * Read a 32bit register from the chip. |
| * |
| * Note, this read requires the address be aligned to 4 bytes. |
| */ |
| static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg) |
| { |
| __le32 rx = 0; |
| |
| WARN_ON(reg & 3); |
| |
| ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4); |
| return le32_to_cpu(rx); |
| } |
| |
| /** |
| * ks8851_soft_reset - issue one of the soft reset to the device |
| * @ks: The device state. |
| * @op: The bit(s) to set in the GRR |
| * |
| * Issue the relevant soft-reset command to the device's GRR register |
| * specified by @op. |
| * |
| * Note, the delays are in there as a caution to ensure that the reset |
| * has time to take effect and then complete. Since the datasheet does |
| * not currently specify the exact sequence, we have chosen something |
| * that seems to work with our device. |
| */ |
| static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op) |
| { |
| ks8851_wrreg16(ks, KS_GRR, op); |
| mdelay(1); /* wait a short time to effect reset */ |
| ks8851_wrreg16(ks, KS_GRR, 0); |
| mdelay(1); /* wait for condition to clear */ |
| } |
| |
| /** |
| * ks8851_set_powermode - set power mode of the device |
| * @ks: The device state |
| * @pwrmode: The power mode value to write to KS_PMECR. |
| * |
| * Change the power mode of the chip. |
| */ |
| static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode) |
| { |
| unsigned pmecr; |
| |
| netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode); |
| |
| pmecr = ks8851_rdreg16(ks, KS_PMECR); |
| pmecr &= ~PMECR_PM_MASK; |
| pmecr |= pwrmode; |
| |
| ks8851_wrreg16(ks, KS_PMECR, pmecr); |
| } |
| |
| /** |
| * ks8851_write_mac_addr - write mac address to device registers |
| * @dev: The network device |
| * |
| * Update the KS8851 MAC address registers from the address in @dev. |
| * |
| * This call assumes that the chip is not running, so there is no need to |
| * shutdown the RXQ process whilst setting this. |
| */ |
| static int ks8851_write_mac_addr(struct net_device *dev) |
| { |
| struct ks8851_net *ks = netdev_priv(dev); |
| int i; |
| |
| mutex_lock(&ks->lock); |
| |
| /* |
| * Wake up chip in case it was powered off when stopped; otherwise, |
| * the first write to the MAC address does not take effect. |
| */ |
| ks8851_set_powermode(ks, PMECR_PM_NORMAL); |
| for (i = 0; i < ETH_ALEN; i++) |
| ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]); |
| if (!netif_running(dev)) |
| ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN); |
| |
| mutex_unlock(&ks->lock); |
| |
| return 0; |
| } |
| |
| /** |
| * ks8851_read_mac_addr - read mac address from device registers |
| * @dev: The network device |
| * |
| * Update our copy of the KS8851 MAC address from the registers of @dev. |
| */ |
| static void ks8851_read_mac_addr(struct net_device *dev) |
| { |
| struct ks8851_net *ks = netdev_priv(dev); |
| int i; |
| |
| mutex_lock(&ks->lock); |
| |
| for (i = 0; i < ETH_ALEN; i++) |
| dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i)); |
| |
| mutex_unlock(&ks->lock); |
| } |
| |
| /** |
| * ks8851_init_mac - initialise the mac address |
| * @ks: The device structure |
| * |
| * Get or create the initial mac address for the device and then set that |
| * into the station address register. If there is an EEPROM present, then |
| * we try that. If no valid mac address is found we use eth_random_addr() |
| * to create a new one. |
| */ |
| static void ks8851_init_mac(struct ks8851_net *ks) |
| { |
| struct net_device *dev = ks->netdev; |
| |
| /* first, try reading what we've got already */ |
| if (ks->rc_ccr & CCR_EEPROM) { |
| ks8851_read_mac_addr(dev); |
| if (is_valid_ether_addr(dev->dev_addr)) |
| return; |
| |
| netdev_err(ks->netdev, "invalid mac address read %pM\n", |
| dev->dev_addr); |
| } |
| |
| eth_hw_addr_random(dev); |
| ks8851_write_mac_addr(dev); |
| } |
| |
| /** |
| * ks8851_rdfifo - read data from the receive fifo |
| * @ks: The device state. |
| * @buff: The buffer address |
| * @len: The length of the data to read |
| * |
| * Issue an RXQ FIFO read command and read the @len amount of data from |
| * the FIFO into the buffer specified by @buff. |
| */ |
| static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len) |
| { |
| struct spi_transfer *xfer = ks->spi_xfer2; |
| struct spi_message *msg = &ks->spi_msg2; |
| u8 txb[1]; |
| int ret; |
| |
| netif_dbg(ks, rx_status, ks->netdev, |
| "%s: %d@%p\n", __func__, len, buff); |
| |
| /* set the operation we're issuing */ |
| txb[0] = KS_SPIOP_RXFIFO; |
| |
| xfer->tx_buf = txb; |
| xfer->rx_buf = NULL; |
| xfer->len = 1; |
| |
| xfer++; |
| xfer->rx_buf = buff; |
| xfer->tx_buf = NULL; |
| xfer->len = len; |
| |
| ret = spi_sync(ks->spidev, msg); |
| if (ret < 0) |
| netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__); |
| } |
| |
| /** |
| * ks8851_dbg_dumpkkt - dump initial packet contents to debug |
| * @ks: The device state |
| * @rxpkt: The data for the received packet |
| * |
| * Dump the initial data from the packet to dev_dbg(). |
| */ |
| static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt) |
| { |
| netdev_dbg(ks->netdev, |
| "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n", |
| rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7], |
| rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11], |
| rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]); |
| } |
| |
| /** |
| * ks8851_rx_pkts - receive packets from the host |
| * @ks: The device information. |
| * |
| * This is called from the IRQ work queue when the system detects that there |
| * are packets in the receive queue. Find out how many packets there are and |
| * read them from the FIFO. |
| */ |
| static void ks8851_rx_pkts(struct ks8851_net *ks) |
| { |
| struct sk_buff *skb; |
| unsigned rxfc; |
| unsigned rxlen; |
| unsigned rxstat; |
| u32 rxh; |
| u8 *rxpkt; |
| |
| rxfc = ks8851_rdreg8(ks, KS_RXFC); |
| |
| netif_dbg(ks, rx_status, ks->netdev, |
| "%s: %d packets\n", __func__, rxfc); |
| |
| /* Currently we're issuing a read per packet, but we could possibly |
| * improve the code by issuing a single read, getting the receive |
| * header, allocating the packet and then reading the packet data |
| * out in one go. |
| * |
| * This form of operation would require us to hold the SPI bus' |
| * chipselect low during the entie transaction to avoid any |
| * reset to the data stream coming from the chip. |
| */ |
| |
| for (; rxfc != 0; rxfc--) { |
| rxh = ks8851_rdreg32(ks, KS_RXFHSR); |
| rxstat = rxh & 0xffff; |
| rxlen = (rxh >> 16) & 0xfff; |
| |
| netif_dbg(ks, rx_status, ks->netdev, |
| "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen); |
| |
| /* the length of the packet includes the 32bit CRC */ |
| |
| /* set dma read address */ |
| ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00); |
| |
| /* start the packet dma process, and set auto-dequeue rx */ |
| ks8851_wrreg16(ks, KS_RXQCR, |
| ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE); |
| |
| if (rxlen > 4) { |
| unsigned int rxalign; |
| |
| rxlen -= 4; |
| rxalign = ALIGN(rxlen, 4); |
| skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign); |
| if (skb) { |
| |
| /* 4 bytes of status header + 4 bytes of |
| * garbage: we put them before ethernet |
| * header, so that they are copied, |
| * but ignored. |
| */ |
| |
| rxpkt = skb_put(skb, rxlen) - 8; |
| |
| ks8851_rdfifo(ks, rxpkt, rxalign + 8); |
| |
| if (netif_msg_pktdata(ks)) |
| ks8851_dbg_dumpkkt(ks, rxpkt); |
| |
| skb->protocol = eth_type_trans(skb, ks->netdev); |
| netif_rx_ni(skb); |
| |
| ks->netdev->stats.rx_packets++; |
| ks->netdev->stats.rx_bytes += rxlen; |
| } |
| } |
| |
| ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); |
| } |
| } |
| |
| /** |
| * ks8851_irq - IRQ handler for dealing with interrupt requests |
| * @irq: IRQ number |
| * @_ks: cookie |
| * |
| * This handler is invoked when the IRQ line asserts to find out what happened. |
| * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs |
| * in thread context. |
| * |
| * Read the interrupt status, work out what needs to be done and then clear |
| * any of the interrupts that are not needed. |
| */ |
| static irqreturn_t ks8851_irq(int irq, void *_ks) |
| { |
| struct ks8851_net *ks = _ks; |
| unsigned status; |
| unsigned handled = 0; |
| |
| mutex_lock(&ks->lock); |
| |
| status = ks8851_rdreg16(ks, KS_ISR); |
| |
| netif_dbg(ks, intr, ks->netdev, |
| "%s: status 0x%04x\n", __func__, status); |
| |
| if (status & IRQ_LCI) |
| handled |= IRQ_LCI; |
| |
| if (status & IRQ_LDI) { |
| u16 pmecr = ks8851_rdreg16(ks, KS_PMECR); |
| pmecr &= ~PMECR_WKEVT_MASK; |
| ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK); |
| |
| handled |= IRQ_LDI; |
| } |
| |
| if (status & IRQ_RXPSI) |
| handled |= IRQ_RXPSI; |
| |
| if (status & IRQ_TXI) { |
| handled |= IRQ_TXI; |
| |
| /* no lock here, tx queue should have been stopped */ |
| |
| /* update our idea of how much tx space is available to the |
| * system */ |
| ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR); |
| |
| netif_dbg(ks, intr, ks->netdev, |
| "%s: txspace %d\n", __func__, ks->tx_space); |
| } |
| |
| if (status & IRQ_RXI) |
| handled |= IRQ_RXI; |
| |
| if (status & IRQ_SPIBEI) { |
| dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__); |
| handled |= IRQ_SPIBEI; |
| } |
| |
| ks8851_wrreg16(ks, KS_ISR, handled); |
| |
| if (status & IRQ_RXI) { |
| /* the datasheet says to disable the rx interrupt during |
| * packet read-out, however we're masking the interrupt |
| * from the device so do not bother masking just the RX |
| * from the device. */ |
| |
| ks8851_rx_pkts(ks); |
| } |
| |
| /* if something stopped the rx process, probably due to wanting |
| * to change the rx settings, then do something about restarting |
| * it. */ |
| if (status & IRQ_RXPSI) { |
| struct ks8851_rxctrl *rxc = &ks->rxctrl; |
| |
| /* update the multicast hash table */ |
| ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]); |
| ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]); |
| ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]); |
| ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]); |
| |
| ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2); |
| ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1); |
| } |
| |
| mutex_unlock(&ks->lock); |
| |
| if (status & IRQ_LCI) |
| mii_check_link(&ks->mii); |
| |
| if (status & IRQ_TXI) |
| netif_wake_queue(ks->netdev); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * calc_txlen - calculate size of message to send packet |
| * @len: Length of data |
| * |
| * Returns the size of the TXFIFO message needed to send |
| * this packet. |
| */ |
| static inline unsigned calc_txlen(unsigned len) |
| { |
| return ALIGN(len + 4, 4); |
| } |
| |
| /** |
| * ks8851_wrpkt - write packet to TX FIFO |
| * @ks: The device state. |
| * @txp: The sk_buff to transmit. |
| * @irq: IRQ on completion of the packet. |
| * |
| * Send the @txp to the chip. This means creating the relevant packet header |
| * specifying the length of the packet and the other information the chip |
| * needs, such as IRQ on completion. Send the header and the packet data to |
| * the device. |
| */ |
| static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq) |
| { |
| struct spi_transfer *xfer = ks->spi_xfer2; |
| struct spi_message *msg = &ks->spi_msg2; |
| unsigned fid = 0; |
| int ret; |
| |
| netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n", |
| __func__, txp, txp->len, txp->data, irq); |
| |
| fid = ks->fid++; |
| fid &= TXFR_TXFID_MASK; |
| |
| if (irq) |
| fid |= TXFR_TXIC; /* irq on completion */ |
| |
| /* start header at txb[1] to align txw entries */ |
| ks->txh.txb[1] = KS_SPIOP_TXFIFO; |
| ks->txh.txw[1] = cpu_to_le16(fid); |
| ks->txh.txw[2] = cpu_to_le16(txp->len); |
| |
| xfer->tx_buf = &ks->txh.txb[1]; |
| xfer->rx_buf = NULL; |
| xfer->len = 5; |
| |
| xfer++; |
| xfer->tx_buf = txp->data; |
| xfer->rx_buf = NULL; |
| xfer->len = ALIGN(txp->len, 4); |
| |
| ret = spi_sync(ks->spidev, msg); |
| if (ret < 0) |
| netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__); |
| } |
| |
| /** |
| * ks8851_done_tx - update and then free skbuff after transmitting |
| * @ks: The device state |
| * @txb: The buffer transmitted |
| */ |
| static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb) |
| { |
| struct net_device *dev = ks->netdev; |
| |
| dev->stats.tx_bytes += txb->len; |
| dev->stats.tx_packets++; |
| |
| dev_kfree_skb(txb); |
| } |
| |
| /** |
| * ks8851_tx_work - process tx packet(s) |
| * @work: The work strucutre what was scheduled. |
| * |
| * This is called when a number of packets have been scheduled for |
| * transmission and need to be sent to the device. |
| */ |
| static void ks8851_tx_work(struct work_struct *work) |
| { |
| struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work); |
| struct sk_buff *txb; |
| bool last = skb_queue_empty(&ks->txq); |
| |
| mutex_lock(&ks->lock); |
| |
| while (!last) { |
| txb = skb_dequeue(&ks->txq); |
| last = skb_queue_empty(&ks->txq); |
| |
| if (txb != NULL) { |
| ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA); |
| ks8851_wrpkt(ks, txb, last); |
| ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); |
| ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE); |
| |
| ks8851_done_tx(ks, txb); |
| } |
| } |
| |
| mutex_unlock(&ks->lock); |
| } |
| |
| /** |
| * ks8851_net_open - open network device |
| * @dev: The network device being opened. |
| * |
| * Called when the network device is marked active, such as a user executing |
| * 'ifconfig up' on the device. |
| */ |
| static int ks8851_net_open(struct net_device *dev) |
| { |
| struct ks8851_net *ks = netdev_priv(dev); |
| |
| /* lock the card, even if we may not actually be doing anything |
| * else at the moment */ |
| mutex_lock(&ks->lock); |
| |
| netif_dbg(ks, ifup, ks->netdev, "opening\n"); |
| |
| /* bring chip out of any power saving mode it was in */ |
| ks8851_set_powermode(ks, PMECR_PM_NORMAL); |
| |
| /* issue a soft reset to the RX/TX QMU to put it into a known |
| * state. */ |
| ks8851_soft_reset(ks, GRR_QMU); |
| |
| /* setup transmission parameters */ |
| |
| ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */ |
| TXCR_TXPE | /* pad to min length */ |
| TXCR_TXCRC | /* add CRC */ |
| TXCR_TXFCE)); /* enable flow control */ |
| |
| /* auto-increment tx data, reset tx pointer */ |
| ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI); |
| |
| /* setup receiver control */ |
| |
| ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */ |
| RXCR1_RXFCE | /* enable flow control */ |
| RXCR1_RXBE | /* broadcast enable */ |
| RXCR1_RXUE | /* unicast enable */ |
| RXCR1_RXE)); /* enable rx block */ |
| |
| /* transfer entire frames out in one go */ |
| ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME); |
| |
| /* set receive counter timeouts */ |
| ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */ |
| ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */ |
| ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */ |
| |
| ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */ |
| RXQCR_RXDBCTE | /* IRQ on byte count exceeded */ |
| RXQCR_RXDTTE); /* IRQ on time exceeded */ |
| |
| ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); |
| |
| /* clear then enable interrupts */ |
| |
| #define STD_IRQ (IRQ_LCI | /* Link Change */ \ |
| IRQ_TXI | /* TX done */ \ |
| IRQ_RXI | /* RX done */ \ |
| IRQ_SPIBEI | /* SPI bus error */ \ |
| IRQ_TXPSI | /* TX process stop */ \ |
| IRQ_RXPSI) /* RX process stop */ |
| |
| ks->rc_ier = STD_IRQ; |
| ks8851_wrreg16(ks, KS_ISR, STD_IRQ); |
| ks8851_wrreg16(ks, KS_IER, STD_IRQ); |
| |
| netif_start_queue(ks->netdev); |
| |
| netif_dbg(ks, ifup, ks->netdev, "network device up\n"); |
| |
| mutex_unlock(&ks->lock); |
| return 0; |
| } |
| |
| /** |
| * ks8851_net_stop - close network device |
| * @dev: The device being closed. |
| * |
| * Called to close down a network device which has been active. Cancell any |
| * work, shutdown the RX and TX process and then place the chip into a low |
| * power state whilst it is not being used. |
| */ |
| static int ks8851_net_stop(struct net_device *dev) |
| { |
| struct ks8851_net *ks = netdev_priv(dev); |
| |
| netif_info(ks, ifdown, dev, "shutting down\n"); |
| |
| netif_stop_queue(dev); |
| |
| mutex_lock(&ks->lock); |
| /* turn off the IRQs and ack any outstanding */ |
| ks8851_wrreg16(ks, KS_IER, 0x0000); |
| ks8851_wrreg16(ks, KS_ISR, 0xffff); |
| mutex_unlock(&ks->lock); |
| |
| /* stop any outstanding work */ |
| flush_work(&ks->tx_work); |
| flush_work(&ks->rxctrl_work); |
| |
| mutex_lock(&ks->lock); |
| /* shutdown RX process */ |
| ks8851_wrreg16(ks, KS_RXCR1, 0x0000); |
| |
| /* shutdown TX process */ |
| ks8851_wrreg16(ks, KS_TXCR, 0x0000); |
| |
| /* set powermode to soft power down to save power */ |
| ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN); |
| mutex_unlock(&ks->lock); |
| |
| /* ensure any queued tx buffers are dumped */ |
| while (!skb_queue_empty(&ks->txq)) { |
| struct sk_buff *txb = skb_dequeue(&ks->txq); |
| |
| netif_dbg(ks, ifdown, ks->netdev, |
| "%s: freeing txb %p\n", __func__, txb); |
| |
| dev_kfree_skb(txb); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ks8851_start_xmit - transmit packet |
| * @skb: The buffer to transmit |
| * @dev: The device used to transmit the packet. |
| * |
| * Called by the network layer to transmit the @skb. Queue the packet for |
| * the device and schedule the necessary work to transmit the packet when |
| * it is free. |
| * |
| * We do this to firstly avoid sleeping with the network device locked, |
| * and secondly so we can round up more than one packet to transmit which |
| * means we can try and avoid generating too many transmit done interrupts. |
| */ |
| static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| struct ks8851_net *ks = netdev_priv(dev); |
| unsigned needed = calc_txlen(skb->len); |
| netdev_tx_t ret = NETDEV_TX_OK; |
| |
| netif_dbg(ks, tx_queued, ks->netdev, |
| "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data); |
| |
| spin_lock(&ks->statelock); |
| |
| if (needed > ks->tx_space) { |
| netif_stop_queue(dev); |
| ret = NETDEV_TX_BUSY; |
| } else { |
| ks->tx_space -= needed; |
| skb_queue_tail(&ks->txq, skb); |
| } |
| |
| spin_unlock(&ks->statelock); |
| schedule_work(&ks->tx_work); |
| |
| return ret; |
| } |
| |
| /** |
| * ks8851_rxctrl_work - work handler to change rx mode |
| * @work: The work structure this belongs to. |
| * |
| * Lock the device and issue the necessary changes to the receive mode from |
| * the network device layer. This is done so that we can do this without |
| * having to sleep whilst holding the network device lock. |
| * |
| * Since the recommendation from Micrel is that the RXQ is shutdown whilst the |
| * receive parameters are programmed, we issue a write to disable the RXQ and |
| * then wait for the interrupt handler to be triggered once the RXQ shutdown is |
| * complete. The interrupt handler then writes the new values into the chip. |
| */ |
| static void ks8851_rxctrl_work(struct work_struct *work) |
| { |
| struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work); |
| |
| mutex_lock(&ks->lock); |
| |
| /* need to shutdown RXQ before modifying filter parameters */ |
| ks8851_wrreg16(ks, KS_RXCR1, 0x00); |
| |
| mutex_unlock(&ks->lock); |
| } |
| |
| static void ks8851_set_rx_mode(struct net_device *dev) |
| { |
| struct ks8851_net *ks = netdev_priv(dev); |
| struct ks8851_rxctrl rxctrl; |
| |
| memset(&rxctrl, 0, sizeof(rxctrl)); |
| |
| if (dev->flags & IFF_PROMISC) { |
| /* interface to receive everything */ |
| |
| rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF; |
| } else if (dev->flags & IFF_ALLMULTI) { |
| /* accept all multicast packets */ |
| |
| rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE | |
| RXCR1_RXPAFMA | RXCR1_RXMAFMA); |
| } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) { |
| struct netdev_hw_addr *ha; |
| u32 crc; |
| |
| /* accept some multicast */ |
| |
| netdev_for_each_mc_addr(ha, dev) { |
| crc = ether_crc(ETH_ALEN, ha->addr); |
| crc >>= (32 - 6); /* get top six bits */ |
| |
| rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf)); |
| } |
| |
| rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA; |
| } else { |
| /* just accept broadcast / unicast */ |
| rxctrl.rxcr1 = RXCR1_RXPAFMA; |
| } |
| |
| rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */ |
| RXCR1_RXBE | /* broadcast enable */ |
| RXCR1_RXE | /* RX process enable */ |
| RXCR1_RXFCE); /* enable flow control */ |
| |
| rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME; |
| |
| /* schedule work to do the actual set of the data if needed */ |
| |
| spin_lock(&ks->statelock); |
| |
| if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) { |
| memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl)); |
| schedule_work(&ks->rxctrl_work); |
| } |
| |
| spin_unlock(&ks->statelock); |
| } |
| |
| static int ks8851_set_mac_address(struct net_device *dev, void *addr) |
| { |
| struct sockaddr *sa = addr; |
| |
| if (netif_running(dev)) |
| return -EBUSY; |
| |
| if (!is_valid_ether_addr(sa->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN); |
| return ks8851_write_mac_addr(dev); |
| } |
| |
| static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd) |
| { |
| struct ks8851_net *ks = netdev_priv(dev); |
| |
| if (!netif_running(dev)) |
| return -EINVAL; |
| |
| return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL); |
| } |
| |
| static const struct net_device_ops ks8851_netdev_ops = { |
| .ndo_open = ks8851_net_open, |
| .ndo_stop = ks8851_net_stop, |
| .ndo_do_ioctl = ks8851_net_ioctl, |
| .ndo_start_xmit = ks8851_start_xmit, |
| .ndo_set_mac_address = ks8851_set_mac_address, |
| .ndo_set_rx_mode = ks8851_set_rx_mode, |
| .ndo_change_mtu = eth_change_mtu, |
| .ndo_validate_addr = eth_validate_addr, |
| }; |
| |
| /* ethtool support */ |
| |
| static void ks8851_get_drvinfo(struct net_device *dev, |
| struct ethtool_drvinfo *di) |
| { |
| strlcpy(di->driver, "KS8851", sizeof(di->driver)); |
| strlcpy(di->version, "1.00", sizeof(di->version)); |
| strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info)); |
| } |
| |
| static u32 ks8851_get_msglevel(struct net_device *dev) |
| { |
| struct ks8851_net *ks = netdev_priv(dev); |
| return ks->msg_enable; |
| } |
| |
| static void ks8851_set_msglevel(struct net_device *dev, u32 to) |
| { |
| struct ks8851_net *ks = netdev_priv(dev); |
| ks->msg_enable = to; |
| } |
| |
| static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct ks8851_net *ks = netdev_priv(dev); |
| return mii_ethtool_gset(&ks->mii, cmd); |
| } |
| |
| static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct ks8851_net *ks = netdev_priv(dev); |
| return mii_ethtool_sset(&ks->mii, cmd); |
| } |
| |
| static u32 ks8851_get_link(struct net_device *dev) |
| { |
| struct ks8851_net *ks = netdev_priv(dev); |
| return mii_link_ok(&ks->mii); |
| } |
| |
| static int ks8851_nway_reset(struct net_device *dev) |
| { |
| struct ks8851_net *ks = netdev_priv(dev); |
| return mii_nway_restart(&ks->mii); |
| } |
| |
| /* EEPROM support */ |
| |
| static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee) |
| { |
| struct ks8851_net *ks = ee->data; |
| unsigned val; |
| |
| val = ks8851_rdreg16(ks, KS_EEPCR); |
| |
| ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0; |
| ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0; |
| ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0; |
| } |
| |
| static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee) |
| { |
| struct ks8851_net *ks = ee->data; |
| unsigned val = EEPCR_EESA; /* default - eeprom access on */ |
| |
| if (ee->drive_data) |
| val |= EEPCR_EESRWA; |
| if (ee->reg_data_in) |
| val |= EEPCR_EEDO; |
| if (ee->reg_data_clock) |
| val |= EEPCR_EESCK; |
| if (ee->reg_chip_select) |
| val |= EEPCR_EECS; |
| |
| ks8851_wrreg16(ks, KS_EEPCR, val); |
| } |
| |
| /** |
| * ks8851_eeprom_claim - claim device EEPROM and activate the interface |
| * @ks: The network device state. |
| * |
| * Check for the presence of an EEPROM, and then activate software access |
| * to the device. |
| */ |
| static int ks8851_eeprom_claim(struct ks8851_net *ks) |
| { |
| if (!(ks->rc_ccr & CCR_EEPROM)) |
| return -ENOENT; |
| |
| mutex_lock(&ks->lock); |
| |
| /* start with clock low, cs high */ |
| ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS); |
| return 0; |
| } |
| |
| /** |
| * ks8851_eeprom_release - release the EEPROM interface |
| * @ks: The device state |
| * |
| * Release the software access to the device EEPROM |
| */ |
| static void ks8851_eeprom_release(struct ks8851_net *ks) |
| { |
| unsigned val = ks8851_rdreg16(ks, KS_EEPCR); |
| |
| ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA); |
| mutex_unlock(&ks->lock); |
| } |
| |
| #define KS_EEPROM_MAGIC (0x00008851) |
| |
| static int ks8851_set_eeprom(struct net_device *dev, |
| struct ethtool_eeprom *ee, u8 *data) |
| { |
| struct ks8851_net *ks = netdev_priv(dev); |
| int offset = ee->offset; |
| int len = ee->len; |
| u16 tmp; |
| |
| /* currently only support byte writing */ |
| if (len != 1) |
| return -EINVAL; |
| |
| if (ee->magic != KS_EEPROM_MAGIC) |
| return -EINVAL; |
| |
| if (ks8851_eeprom_claim(ks)) |
| return -ENOENT; |
| |
| eeprom_93cx6_wren(&ks->eeprom, true); |
| |
| /* ethtool currently only supports writing bytes, which means |
| * we have to read/modify/write our 16bit EEPROMs */ |
| |
| eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp); |
| |
| if (offset & 1) { |
| tmp &= 0xff; |
| tmp |= *data << 8; |
| } else { |
| tmp &= 0xff00; |
| tmp |= *data; |
| } |
| |
| eeprom_93cx6_write(&ks->eeprom, offset/2, tmp); |
| eeprom_93cx6_wren(&ks->eeprom, false); |
| |
| ks8851_eeprom_release(ks); |
| |
| return 0; |
| } |
| |
| static int ks8851_get_eeprom(struct net_device *dev, |
| struct ethtool_eeprom *ee, u8 *data) |
| { |
| struct ks8851_net *ks = netdev_priv(dev); |
| int offset = ee->offset; |
| int len = ee->len; |
| |
| /* must be 2 byte aligned */ |
| if (len & 1 || offset & 1) |
| return -EINVAL; |
| |
| if (ks8851_eeprom_claim(ks)) |
| return -ENOENT; |
| |
| ee->magic = KS_EEPROM_MAGIC; |
| |
| eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2); |
| ks8851_eeprom_release(ks); |
| |
| return 0; |
| } |
| |
| static int ks8851_get_eeprom_len(struct net_device *dev) |
| { |
| struct ks8851_net *ks = netdev_priv(dev); |
| |
| /* currently, we assume it is an 93C46 attached, so return 128 */ |
| return ks->rc_ccr & CCR_EEPROM ? 128 : 0; |
| } |
| |
| static const struct ethtool_ops ks8851_ethtool_ops = { |
| .get_drvinfo = ks8851_get_drvinfo, |
| .get_msglevel = ks8851_get_msglevel, |
| .set_msglevel = ks8851_set_msglevel, |
| .get_settings = ks8851_get_settings, |
| .set_settings = ks8851_set_settings, |
| .get_link = ks8851_get_link, |
| .nway_reset = ks8851_nway_reset, |
| .get_eeprom_len = ks8851_get_eeprom_len, |
| .get_eeprom = ks8851_get_eeprom, |
| .set_eeprom = ks8851_set_eeprom, |
| }; |
| |
| /* MII interface controls */ |
| |
| /** |
| * ks8851_phy_reg - convert MII register into a KS8851 register |
| * @reg: MII register number. |
| * |
| * Return the KS8851 register number for the corresponding MII PHY register |
| * if possible. Return zero if the MII register has no direct mapping to the |
| * KS8851 register set. |
| */ |
| static int ks8851_phy_reg(int reg) |
| { |
| switch (reg) { |
| case MII_BMCR: |
| return KS_P1MBCR; |
| case MII_BMSR: |
| return KS_P1MBSR; |
| case MII_PHYSID1: |
| return KS_PHY1ILR; |
| case MII_PHYSID2: |
| return KS_PHY1IHR; |
| case MII_ADVERTISE: |
| return KS_P1ANAR; |
| case MII_LPA: |
| return KS_P1ANLPR; |
| } |
| |
| return 0x0; |
| } |
| |
| /** |
| * ks8851_phy_read - MII interface PHY register read. |
| * @dev: The network device the PHY is on. |
| * @phy_addr: Address of PHY (ignored as we only have one) |
| * @reg: The register to read. |
| * |
| * This call reads data from the PHY register specified in @reg. Since the |
| * device does not support all the MII registers, the non-existent values |
| * are always returned as zero. |
| * |
| * We return zero for unsupported registers as the MII code does not check |
| * the value returned for any error status, and simply returns it to the |
| * caller. The mii-tool that the driver was tested with takes any -ve error |
| * as real PHY capabilities, thus displaying incorrect data to the user. |
| */ |
| static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg) |
| { |
| struct ks8851_net *ks = netdev_priv(dev); |
| int ksreg; |
| int result; |
| |
| ksreg = ks8851_phy_reg(reg); |
| if (!ksreg) |
| return 0x0; /* no error return allowed, so use zero */ |
| |
| mutex_lock(&ks->lock); |
| result = ks8851_rdreg16(ks, ksreg); |
| mutex_unlock(&ks->lock); |
| |
| return result; |
| } |
| |
| static void ks8851_phy_write(struct net_device *dev, |
| int phy, int reg, int value) |
| { |
| struct ks8851_net *ks = netdev_priv(dev); |
| int ksreg; |
| |
| ksreg = ks8851_phy_reg(reg); |
| if (ksreg) { |
| mutex_lock(&ks->lock); |
| ks8851_wrreg16(ks, ksreg, value); |
| mutex_unlock(&ks->lock); |
| } |
| } |
| |
| /** |
| * ks8851_read_selftest - read the selftest memory info. |
| * @ks: The device state |
| * |
| * Read and check the TX/RX memory selftest information. |
| */ |
| static int ks8851_read_selftest(struct ks8851_net *ks) |
| { |
| unsigned both_done = MBIR_TXMBF | MBIR_RXMBF; |
| int ret = 0; |
| unsigned rd; |
| |
| rd = ks8851_rdreg16(ks, KS_MBIR); |
| |
| if ((rd & both_done) != both_done) { |
| netdev_warn(ks->netdev, "Memory selftest not finished\n"); |
| return 0; |
| } |
| |
| if (rd & MBIR_TXMBFA) { |
| netdev_err(ks->netdev, "TX memory selftest fail\n"); |
| ret |= 1; |
| } |
| |
| if (rd & MBIR_RXMBFA) { |
| netdev_err(ks->netdev, "RX memory selftest fail\n"); |
| ret |= 2; |
| } |
| |
| return 0; |
| } |
| |
| /* driver bus management functions */ |
| |
| #ifdef CONFIG_PM_SLEEP |
| |
| static int ks8851_suspend(struct device *dev) |
| { |
| struct ks8851_net *ks = dev_get_drvdata(dev); |
| struct net_device *netdev = ks->netdev; |
| |
| if (netif_running(netdev)) { |
| netif_device_detach(netdev); |
| ks8851_net_stop(netdev); |
| } |
| |
| return 0; |
| } |
| |
| static int ks8851_resume(struct device *dev) |
| { |
| struct ks8851_net *ks = dev_get_drvdata(dev); |
| struct net_device *netdev = ks->netdev; |
| |
| if (netif_running(netdev)) { |
| ks8851_net_open(netdev); |
| netif_device_attach(netdev); |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume); |
| |
| static int ks8851_probe(struct spi_device *spi) |
| { |
| struct net_device *ndev; |
| struct ks8851_net *ks; |
| int ret; |
| unsigned cider; |
| |
| ndev = alloc_etherdev(sizeof(struct ks8851_net)); |
| if (!ndev) |
| return -ENOMEM; |
| |
| spi->bits_per_word = 8; |
| |
| ks = netdev_priv(ndev); |
| |
| ks->netdev = ndev; |
| ks->spidev = spi; |
| ks->tx_space = 6144; |
| |
| ks->vdd_reg = devm_regulator_get_optional(&spi->dev, "vdd"); |
| if (IS_ERR(ks->vdd_reg)) { |
| ret = PTR_ERR(ks->vdd_reg); |
| if (ret == -EPROBE_DEFER) |
| goto err_reg; |
| } else { |
| ret = regulator_enable(ks->vdd_reg); |
| if (ret) { |
| dev_err(&spi->dev, "regulator enable fail: %d\n", |
| ret); |
| goto err_reg; |
| } |
| } |
| |
| |
| mutex_init(&ks->lock); |
| spin_lock_init(&ks->statelock); |
| |
| INIT_WORK(&ks->tx_work, ks8851_tx_work); |
| INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work); |
| |
| /* initialise pre-made spi transfer messages */ |
| |
| spi_message_init(&ks->spi_msg1); |
| spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1); |
| |
| spi_message_init(&ks->spi_msg2); |
| spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2); |
| spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2); |
| |
| /* setup EEPROM state */ |
| |
| ks->eeprom.data = ks; |
| ks->eeprom.width = PCI_EEPROM_WIDTH_93C46; |
| ks->eeprom.register_read = ks8851_eeprom_regread; |
| ks->eeprom.register_write = ks8851_eeprom_regwrite; |
| |
| /* setup mii state */ |
| ks->mii.dev = ndev; |
| ks->mii.phy_id = 1, |
| ks->mii.phy_id_mask = 1; |
| ks->mii.reg_num_mask = 0xf; |
| ks->mii.mdio_read = ks8851_phy_read; |
| ks->mii.mdio_write = ks8851_phy_write; |
| |
| dev_info(&spi->dev, "message enable is %d\n", msg_enable); |
| |
| /* set the default message enable */ |
| ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV | |
| NETIF_MSG_PROBE | |
| NETIF_MSG_LINK)); |
| |
| skb_queue_head_init(&ks->txq); |
| |
| ndev->ethtool_ops = &ks8851_ethtool_ops; |
| SET_NETDEV_DEV(ndev, &spi->dev); |
| |
| spi_set_drvdata(spi, ks); |
| |
| ndev->if_port = IF_PORT_100BASET; |
| ndev->netdev_ops = &ks8851_netdev_ops; |
| ndev->irq = spi->irq; |
| |
| /* issue a global soft reset to reset the device. */ |
| ks8851_soft_reset(ks, GRR_GSR); |
| |
| /* simple check for a valid chip being connected to the bus */ |
| cider = ks8851_rdreg16(ks, KS_CIDER); |
| if ((cider & ~CIDER_REV_MASK) != CIDER_ID) { |
| dev_err(&spi->dev, "failed to read device ID\n"); |
| ret = -ENODEV; |
| goto err_id; |
| } |
| |
| /* cache the contents of the CCR register for EEPROM, etc. */ |
| ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR); |
| |
| if (ks->rc_ccr & CCR_EEPROM) |
| ks->eeprom_size = 128; |
| else |
| ks->eeprom_size = 0; |
| |
| ks8851_read_selftest(ks); |
| ks8851_init_mac(ks); |
| |
| ret = request_threaded_irq(spi->irq, NULL, ks8851_irq, |
| IRQF_TRIGGER_LOW | IRQF_ONESHOT, |
| ndev->name, ks); |
| if (ret < 0) { |
| dev_err(&spi->dev, "failed to get irq\n"); |
| goto err_irq; |
| } |
| |
| ret = register_netdev(ndev); |
| if (ret) { |
| dev_err(&spi->dev, "failed to register network device\n"); |
| goto err_netdev; |
| } |
| |
| netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n", |
| CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq, |
| ks->rc_ccr & CCR_EEPROM ? "has" : "no"); |
| |
| return 0; |
| |
| |
| err_netdev: |
| free_irq(ndev->irq, ks); |
| |
| err_irq: |
| err_id: |
| if (!IS_ERR(ks->vdd_reg)) |
| regulator_disable(ks->vdd_reg); |
| err_reg: |
| free_netdev(ndev); |
| return ret; |
| } |
| |
| static int ks8851_remove(struct spi_device *spi) |
| { |
| struct ks8851_net *priv = spi_get_drvdata(spi); |
| |
| if (netif_msg_drv(priv)) |
| dev_info(&spi->dev, "remove\n"); |
| |
| unregister_netdev(priv->netdev); |
| free_irq(spi->irq, priv); |
| if (!IS_ERR(priv->vdd_reg)) |
| regulator_disable(priv->vdd_reg); |
| free_netdev(priv->netdev); |
| |
| return 0; |
| } |
| |
| static struct spi_driver ks8851_driver = { |
| .driver = { |
| .name = "ks8851", |
| .owner = THIS_MODULE, |
| .pm = &ks8851_pm_ops, |
| }, |
| .probe = ks8851_probe, |
| .remove = ks8851_remove, |
| }; |
| module_spi_driver(ks8851_driver); |
| |
| MODULE_DESCRIPTION("KS8851 Network driver"); |
| MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); |
| MODULE_LICENSE("GPL"); |
| |
| module_param_named(message, msg_enable, int, 0); |
| MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)"); |
| MODULE_ALIAS("spi:ks8851"); |