blob: a9c6ecef36565b0e94af8ddb0eb2da8dafc7e6ae [file] [log] [blame]
#ifndef _ASM_POWERPC_PGTABLE_PPC32_H
#define _ASM_POWERPC_PGTABLE_PPC32_H
#include <asm-generic/pgtable-nopmd.h>
#ifndef __ASSEMBLY__
#include <linux/sched.h>
#include <linux/threads.h>
#include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */
extern unsigned long va_to_phys(unsigned long address);
extern pte_t *va_to_pte(unsigned long address);
extern unsigned long ioremap_bot, ioremap_base;
#ifdef CONFIG_44x
extern int icache_44x_need_flush;
#endif
#endif /* __ASSEMBLY__ */
/*
* The normal case is that PTEs are 32-bits and we have a 1-page
* 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
*
* For any >32-bit physical address platform, we can use the following
* two level page table layout where the pgdir is 8KB and the MS 13 bits
* are an index to the second level table. The combined pgdir/pmd first
* level has 2048 entries and the second level has 512 64-bit PTE entries.
* -Matt
*/
/* PGDIR_SHIFT determines what a top-level page table entry can map */
#define PGDIR_SHIFT (PAGE_SHIFT + PTE_SHIFT)
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* entries per page directory level: our page-table tree is two-level, so
* we don't really have any PMD directory.
*/
#ifndef __ASSEMBLY__
#define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_SHIFT)
#define PGD_TABLE_SIZE (sizeof(pgd_t) << (32 - PGDIR_SHIFT))
#endif /* __ASSEMBLY__ */
#define PTRS_PER_PTE (1 << PTE_SHIFT)
#define PTRS_PER_PMD 1
#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT))
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
#define FIRST_USER_ADDRESS 0
#define pte_ERROR(e) \
printk("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
(unsigned long long)pte_val(e))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
/*
* Just any arbitrary offset to the start of the vmalloc VM area: the
* current 64MB value just means that there will be a 64MB "hole" after the
* physical memory until the kernel virtual memory starts. That means that
* any out-of-bounds memory accesses will hopefully be caught.
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
* area for the same reason. ;)
*
* We no longer map larger than phys RAM with the BATs so we don't have
* to worry about the VMALLOC_OFFSET causing problems. We do have to worry
* about clashes between our early calls to ioremap() that start growing down
* from ioremap_base being run into the VM area allocations (growing upwards
* from VMALLOC_START). For this reason we have ioremap_bot to check when
* we actually run into our mappings setup in the early boot with the VM
* system. This really does become a problem for machines with good amounts
* of RAM. -- Cort
*/
#define VMALLOC_OFFSET (0x1000000) /* 16M */
#ifdef PPC_PIN_SIZE
#define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
#else
#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
#endif
#define VMALLOC_END ioremap_bot
/*
* Bits in a linux-style PTE. These match the bits in the
* (hardware-defined) PowerPC PTE as closely as possible.
*/
#if defined(CONFIG_40x)
#include <asm/pte-40x.h>
#elif defined(CONFIG_44x)
#include <asm/pte-44x.h>
#elif defined(CONFIG_FSL_BOOKE)
#include <asm/pte-fsl-booke.h>
#elif defined(CONFIG_8xx)
#include <asm/pte-8xx.h>
#else /* CONFIG_6xx */
#include <asm/pte-hash32.h>
#endif
/* If _PAGE_SPECIAL is defined, then we advertise our support for it */
#ifdef _PAGE_SPECIAL
#define __HAVE_ARCH_PTE_SPECIAL
#endif
/*
* Some bits are only used on some cpu families... Make sure that all
* the undefined gets defined as 0
*/
#ifndef _PAGE_HASHPTE
#define _PAGE_HASHPTE 0
#endif
#ifndef _PTE_NONE_MASK
#define _PTE_NONE_MASK 0
#endif
#ifndef _PAGE_SHARED
#define _PAGE_SHARED 0
#endif
#ifndef _PAGE_HWWRITE
#define _PAGE_HWWRITE 0
#endif
#ifndef _PAGE_HWEXEC
#define _PAGE_HWEXEC 0
#endif
#ifndef _PAGE_EXEC
#define _PAGE_EXEC 0
#endif
#ifndef _PAGE_ENDIAN
#define _PAGE_ENDIAN 0
#endif
#ifndef _PAGE_COHERENT
#define _PAGE_COHERENT 0
#endif
#ifndef _PAGE_WRITETHRU
#define _PAGE_WRITETHRU 0
#endif
#ifndef _PAGE_SPECIAL
#define _PAGE_SPECIAL 0
#endif
#ifndef _PMD_PRESENT_MASK
#define _PMD_PRESENT_MASK _PMD_PRESENT
#endif
#ifndef _PMD_SIZE
#define _PMD_SIZE 0
#define PMD_PAGE_SIZE(pmd) bad_call_to_PMD_PAGE_SIZE()
#endif
#define _PAGE_HPTEFLAGS _PAGE_HASHPTE
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | \
_PAGE_SPECIAL)
#define PAGE_PROT_BITS (_PAGE_GUARDED | _PAGE_COHERENT | _PAGE_NO_CACHE | \
_PAGE_WRITETHRU | _PAGE_ENDIAN | \
_PAGE_USER | _PAGE_ACCESSED | \
_PAGE_RW | _PAGE_HWWRITE | _PAGE_DIRTY | \
_PAGE_EXEC | _PAGE_HWEXEC)
/*
* We define 2 sets of base prot bits, one for basic pages (ie,
* cacheable kernel and user pages) and one for non cacheable
* pages. We always set _PAGE_COHERENT when SMP is enabled or
* the processor might need it for DMA coherency.
*/
#if defined(CONFIG_SMP) || defined(CONFIG_PPC_STD_MMU)
#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
#else
#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
#endif
#define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_NO_CACHE)
#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
#define _PAGE_KERNEL (_PAGE_BASE | _PAGE_SHARED | _PAGE_WRENABLE)
#define _PAGE_KERNEL_NC (_PAGE_BASE_NC | _PAGE_SHARED | _PAGE_WRENABLE)
#ifdef CONFIG_PPC_STD_MMU
/* On standard PPC MMU, no user access implies kernel read/write access,
* so to write-protect kernel memory we must turn on user access */
#define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED | _PAGE_USER)
#else
#define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED)
#endif
#define _PAGE_IO (_PAGE_KERNEL_NC | _PAGE_GUARDED)
#define _PAGE_RAM (_PAGE_KERNEL | _PAGE_HWEXEC)
#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\
defined(CONFIG_KPROBES)
/* We want the debuggers to be able to set breakpoints anywhere, so
* don't write protect the kernel text */
#define _PAGE_RAM_TEXT _PAGE_RAM
#else
#define _PAGE_RAM_TEXT (_PAGE_KERNEL_RO | _PAGE_HWEXEC)
#endif
#define PAGE_NONE __pgprot(_PAGE_BASE)
#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
#define PAGE_KERNEL __pgprot(_PAGE_RAM)
#define PAGE_KERNEL_NOCACHE __pgprot(_PAGE_IO)
/*
* The PowerPC can only do execute protection on a segment (256MB) basis,
* not on a page basis. So we consider execute permission the same as read.
* Also, write permissions imply read permissions.
* This is the closest we can get..
*/
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY_X
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY_X
#define __P100 PAGE_READONLY
#define __P101 PAGE_READONLY_X
#define __P110 PAGE_COPY
#define __P111 PAGE_COPY_X
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY_X
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED_X
#define __S100 PAGE_READONLY
#define __S101 PAGE_READONLY_X
#define __S110 PAGE_SHARED
#define __S111 PAGE_SHARED_X
#ifndef __ASSEMBLY__
/* Make sure we get a link error if PMD_PAGE_SIZE is ever called on a
* kernel without large page PMD support */
extern unsigned long bad_call_to_PMD_PAGE_SIZE(void);
/*
* Conversions between PTE values and page frame numbers.
*/
/* in some case we want to additionaly adjust where the pfn is in the pte to
* allow room for more flags */
#if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
#define PFN_SHIFT_OFFSET (PAGE_SHIFT + 8)
#else
#define PFN_SHIFT_OFFSET (PAGE_SHIFT)
#endif
#define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET)
#define pte_page(x) pfn_to_page(pte_pfn(x))
#define pfn_pte(pfn, prot) __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) |\
pgprot_val(prot))
#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
#endif /* __ASSEMBLY__ */
#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
#define pte_clear(mm, addr, ptep) \
do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0)
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0)
#ifndef __ASSEMBLY__
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; }
static inline pte_t pte_wrprotect(pte_t pte) {
pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
static inline pte_t pte_mkclean(pte_t pte) {
pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
static inline pte_t pte_mkold(pte_t pte) {
pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
static inline pte_t pte_mkwrite(pte_t pte) {
pte_val(pte) |= _PAGE_RW; return pte; }
static inline pte_t pte_mkdirty(pte_t pte) {
pte_val(pte) |= _PAGE_DIRTY; return pte; }
static inline pte_t pte_mkyoung(pte_t pte) {
pte_val(pte) |= _PAGE_ACCESSED; return pte; }
static inline pte_t pte_mkspecial(pte_t pte) {
pte_val(pte) |= _PAGE_SPECIAL; return pte; }
static inline pgprot_t pte_pgprot(pte_t pte)
{
return __pgprot(pte_val(pte) & PAGE_PROT_BITS);
}
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
return pte;
}
/*
* When flushing the tlb entry for a page, we also need to flush the hash
* table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
*/
extern int flush_hash_pages(unsigned context, unsigned long va,
unsigned long pmdval, int count);
/* Add an HPTE to the hash table */
extern void add_hash_page(unsigned context, unsigned long va,
unsigned long pmdval);
/* Flush an entry from the TLB/hash table */
extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
unsigned long address);
/*
* PTE updates. This function is called whenever an existing
* valid PTE is updated. This does -not- include set_pte_at()
* which nowadays only sets a new PTE.
*
* Depending on the type of MMU, we may need to use atomic updates
* and the PTE may be either 32 or 64 bit wide. In the later case,
* when using atomic updates, only the low part of the PTE is
* accessed atomically.
*
* In addition, on 44x, we also maintain a global flag indicating
* that an executable user mapping was modified, which is needed
* to properly flush the virtually tagged instruction cache of
* those implementations.
*/
#ifndef CONFIG_PTE_64BIT
static inline unsigned long pte_update(pte_t *p,
unsigned long clr,
unsigned long set)
{
#ifdef PTE_ATOMIC_UPDATES
unsigned long old, tmp;
__asm__ __volatile__("\
1: lwarx %0,0,%3\n\
andc %1,%0,%4\n\
or %1,%1,%5\n"
PPC405_ERR77(0,%3)
" stwcx. %1,0,%3\n\
bne- 1b"
: "=&r" (old), "=&r" (tmp), "=m" (*p)
: "r" (p), "r" (clr), "r" (set), "m" (*p)
: "cc" );
#else /* PTE_ATOMIC_UPDATES */
unsigned long old = pte_val(*p);
*p = __pte((old & ~clr) | set);
#endif /* !PTE_ATOMIC_UPDATES */
#ifdef CONFIG_44x
if ((old & _PAGE_USER) && (old & _PAGE_HWEXEC))
icache_44x_need_flush = 1;
#endif
return old;
}
#else /* CONFIG_PTE_64BIT */
static inline unsigned long long pte_update(pte_t *p,
unsigned long clr,
unsigned long set)
{
#ifdef PTE_ATOMIC_UPDATES
unsigned long long old;
unsigned long tmp;
__asm__ __volatile__("\
1: lwarx %L0,0,%4\n\
lwzx %0,0,%3\n\
andc %1,%L0,%5\n\
or %1,%1,%6\n"
PPC405_ERR77(0,%3)
" stwcx. %1,0,%4\n\
bne- 1b"
: "=&r" (old), "=&r" (tmp), "=m" (*p)
: "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
: "cc" );
#else /* PTE_ATOMIC_UPDATES */
unsigned long long old = pte_val(*p);
*p = __pte((old & ~(unsigned long long)clr) | set);
#endif /* !PTE_ATOMIC_UPDATES */
#ifdef CONFIG_44x
if ((old & _PAGE_USER) && (old & _PAGE_HWEXEC))
icache_44x_need_flush = 1;
#endif
return old;
}
#endif /* CONFIG_PTE_64BIT */
/*
* 2.6 calls this without flushing the TLB entry; this is wrong
* for our hash-based implementation, we fix that up here.
*/
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
{
unsigned long old;
old = pte_update(ptep, _PAGE_ACCESSED, 0);
#if _PAGE_HASHPTE != 0
if (old & _PAGE_HASHPTE) {
unsigned long ptephys = __pa(ptep) & PAGE_MASK;
flush_hash_pages(context, addr, ptephys, 1);
}
#endif
return (old & _PAGE_ACCESSED) != 0;
}
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
__ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
}
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
}
static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
ptep_set_wrprotect(mm, addr, ptep);
}
static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
{
unsigned long bits = pte_val(entry) &
(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW |
_PAGE_HWEXEC | _PAGE_EXEC);
pte_update(ptep, 0, bits);
}
#define __HAVE_ARCH_PTE_SAME
#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
/*
* Note that on Book E processors, the pmd contains the kernel virtual
* (lowmem) address of the pte page. The physical address is less useful
* because everything runs with translation enabled (even the TLB miss
* handler). On everything else the pmd contains the physical address
* of the pte page. -- paulus
*/
#ifndef CONFIG_BOOKE
#define pmd_page_vaddr(pmd) \
((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
#define pmd_page(pmd) \
(mem_map + (pmd_val(pmd) >> PAGE_SHIFT))
#else
#define pmd_page_vaddr(pmd) \
((unsigned long) (pmd_val(pmd) & PAGE_MASK))
#define pmd_page(pmd) \
pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
#endif
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/* to find an entry in a page-table-directory */
#define pgd_index(address) ((address) >> PGDIR_SHIFT)
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
/* Find an entry in the third-level page table.. */
#define pte_index(address) \
(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir, addr) \
((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
#define pte_offset_map(dir, addr) \
((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr))
#define pte_offset_map_nested(dir, addr) \
((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr))
#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
/*
* Encode and decode a swap entry.
* Note that the bits we use in a PTE for representing a swap entry
* must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the
*_PAGE_HASHPTE bit (if used). -- paulus
*/
#define __swp_type(entry) ((entry).val & 0x1f)
#define __swp_offset(entry) ((entry).val >> 5)
#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
/* Encode and decode a nonlinear file mapping entry */
#define PTE_FILE_MAX_BITS 29
#define pte_to_pgoff(pte) (pte_val(pte) >> 3)
#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE })
/*
* No page table caches to initialise
*/
#define pgtable_cache_init() do { } while (0)
extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep,
pmd_t **pmdp);
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_POWERPC_PGTABLE_PPC32_H */