| /* |
| * fs/f2fs/inode.c |
| * |
| * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com/ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/fs.h> |
| #include <linux/f2fs_fs.h> |
| #include <linux/buffer_head.h> |
| #include <linux/backing-dev.h> |
| #include <linux/writeback.h> |
| |
| #include "f2fs.h" |
| #include "node.h" |
| #include "segment.h" |
| |
| #include <trace/events/f2fs.h> |
| |
| void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync) |
| { |
| if (is_inode_flag_set(inode, FI_NEW_INODE)) |
| return; |
| |
| if (f2fs_inode_dirtied(inode, sync)) |
| return; |
| |
| mark_inode_dirty_sync(inode); |
| } |
| |
| void f2fs_set_inode_flags(struct inode *inode) |
| { |
| unsigned int flags = F2FS_I(inode)->i_flags; |
| unsigned int new_fl = 0; |
| |
| if (flags & F2FS_SYNC_FL) |
| new_fl |= S_SYNC; |
| if (flags & F2FS_APPEND_FL) |
| new_fl |= S_APPEND; |
| if (flags & F2FS_IMMUTABLE_FL) |
| new_fl |= S_IMMUTABLE; |
| if (flags & F2FS_NOATIME_FL) |
| new_fl |= S_NOATIME; |
| if (flags & F2FS_DIRSYNC_FL) |
| new_fl |= S_DIRSYNC; |
| if (f2fs_encrypted_inode(inode)) |
| new_fl |= S_ENCRYPTED; |
| inode_set_flags(inode, new_fl, |
| S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC| |
| S_ENCRYPTED); |
| } |
| |
| static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri) |
| { |
| int extra_size = get_extra_isize(inode); |
| |
| if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || |
| S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { |
| if (ri->i_addr[extra_size]) |
| inode->i_rdev = old_decode_dev( |
| le32_to_cpu(ri->i_addr[extra_size])); |
| else |
| inode->i_rdev = new_decode_dev( |
| le32_to_cpu(ri->i_addr[extra_size + 1])); |
| } |
| } |
| |
| static bool __written_first_block(struct f2fs_inode *ri) |
| { |
| block_t addr = le32_to_cpu(ri->i_addr[offset_in_addr(ri)]); |
| |
| if (addr != NEW_ADDR && addr != NULL_ADDR) |
| return true; |
| return false; |
| } |
| |
| static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri) |
| { |
| int extra_size = get_extra_isize(inode); |
| |
| if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { |
| if (old_valid_dev(inode->i_rdev)) { |
| ri->i_addr[extra_size] = |
| cpu_to_le32(old_encode_dev(inode->i_rdev)); |
| ri->i_addr[extra_size + 1] = 0; |
| } else { |
| ri->i_addr[extra_size] = 0; |
| ri->i_addr[extra_size + 1] = |
| cpu_to_le32(new_encode_dev(inode->i_rdev)); |
| ri->i_addr[extra_size + 2] = 0; |
| } |
| } |
| } |
| |
| static void __recover_inline_status(struct inode *inode, struct page *ipage) |
| { |
| void *inline_data = inline_data_addr(inode, ipage); |
| __le32 *start = inline_data; |
| __le32 *end = start + MAX_INLINE_DATA(inode) / sizeof(__le32); |
| |
| while (start < end) { |
| if (*start++) { |
| f2fs_wait_on_page_writeback(ipage, NODE, true); |
| |
| set_inode_flag(inode, FI_DATA_EXIST); |
| set_raw_inline(inode, F2FS_INODE(ipage)); |
| set_page_dirty(ipage); |
| return; |
| } |
| } |
| return; |
| } |
| |
| static bool f2fs_enable_inode_chksum(struct f2fs_sb_info *sbi, struct page *page) |
| { |
| struct f2fs_inode *ri = &F2FS_NODE(page)->i; |
| |
| if (!f2fs_sb_has_inode_chksum(sbi->sb)) |
| return false; |
| |
| if (!RAW_IS_INODE(F2FS_NODE(page)) || !(ri->i_inline & F2FS_EXTRA_ATTR)) |
| return false; |
| |
| if (!F2FS_FITS_IN_INODE(ri, le16_to_cpu(ri->i_extra_isize), |
| i_inode_checksum)) |
| return false; |
| |
| return true; |
| } |
| |
| static __u32 f2fs_inode_chksum(struct f2fs_sb_info *sbi, struct page *page) |
| { |
| struct f2fs_node *node = F2FS_NODE(page); |
| struct f2fs_inode *ri = &node->i; |
| __le32 ino = node->footer.ino; |
| __le32 gen = ri->i_generation; |
| __u32 chksum, chksum_seed; |
| __u32 dummy_cs = 0; |
| unsigned int offset = offsetof(struct f2fs_inode, i_inode_checksum); |
| unsigned int cs_size = sizeof(dummy_cs); |
| |
| chksum = f2fs_chksum(sbi, sbi->s_chksum_seed, (__u8 *)&ino, |
| sizeof(ino)); |
| chksum_seed = f2fs_chksum(sbi, chksum, (__u8 *)&gen, sizeof(gen)); |
| |
| chksum = f2fs_chksum(sbi, chksum_seed, (__u8 *)ri, offset); |
| chksum = f2fs_chksum(sbi, chksum, (__u8 *)&dummy_cs, cs_size); |
| offset += cs_size; |
| chksum = f2fs_chksum(sbi, chksum, (__u8 *)ri + offset, |
| F2FS_BLKSIZE - offset); |
| return chksum; |
| } |
| |
| bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page) |
| { |
| struct f2fs_inode *ri; |
| __u32 provided, calculated; |
| |
| if (!f2fs_enable_inode_chksum(sbi, page) || |
| PageDirty(page) || PageWriteback(page)) |
| return true; |
| |
| ri = &F2FS_NODE(page)->i; |
| provided = le32_to_cpu(ri->i_inode_checksum); |
| calculated = f2fs_inode_chksum(sbi, page); |
| |
| if (provided != calculated) |
| f2fs_msg(sbi->sb, KERN_WARNING, |
| "checksum invalid, ino = %x, %x vs. %x", |
| ino_of_node(page), provided, calculated); |
| |
| return provided == calculated; |
| } |
| |
| void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page) |
| { |
| struct f2fs_inode *ri = &F2FS_NODE(page)->i; |
| |
| if (!f2fs_enable_inode_chksum(sbi, page)) |
| return; |
| |
| ri->i_inode_checksum = cpu_to_le32(f2fs_inode_chksum(sbi, page)); |
| } |
| |
| static int do_read_inode(struct inode *inode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct f2fs_inode_info *fi = F2FS_I(inode); |
| struct page *node_page; |
| struct f2fs_inode *ri; |
| projid_t i_projid; |
| |
| /* Check if ino is within scope */ |
| if (check_nid_range(sbi, inode->i_ino)) { |
| f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu", |
| (unsigned long) inode->i_ino); |
| WARN_ON(1); |
| return -EINVAL; |
| } |
| |
| node_page = get_node_page(sbi, inode->i_ino); |
| if (IS_ERR(node_page)) |
| return PTR_ERR(node_page); |
| |
| ri = F2FS_INODE(node_page); |
| |
| inode->i_mode = le16_to_cpu(ri->i_mode); |
| i_uid_write(inode, le32_to_cpu(ri->i_uid)); |
| i_gid_write(inode, le32_to_cpu(ri->i_gid)); |
| set_nlink(inode, le32_to_cpu(ri->i_links)); |
| inode->i_size = le64_to_cpu(ri->i_size); |
| inode->i_blocks = SECTOR_FROM_BLOCK(le64_to_cpu(ri->i_blocks) - 1); |
| |
| inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime); |
| inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime); |
| inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime); |
| inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec); |
| inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec); |
| inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec); |
| inode->i_generation = le32_to_cpu(ri->i_generation); |
| |
| fi->i_current_depth = le32_to_cpu(ri->i_current_depth); |
| fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid); |
| fi->i_flags = le32_to_cpu(ri->i_flags); |
| fi->flags = 0; |
| fi->i_advise = ri->i_advise; |
| fi->i_pino = le32_to_cpu(ri->i_pino); |
| fi->i_dir_level = ri->i_dir_level; |
| |
| if (f2fs_init_extent_tree(inode, &ri->i_ext)) |
| set_page_dirty(node_page); |
| |
| get_inline_info(inode, ri); |
| |
| fi->i_extra_isize = f2fs_has_extra_attr(inode) ? |
| le16_to_cpu(ri->i_extra_isize) : 0; |
| |
| if (f2fs_sb_has_flexible_inline_xattr(sbi->sb)) { |
| f2fs_bug_on(sbi, !f2fs_has_extra_attr(inode)); |
| fi->i_inline_xattr_size = le16_to_cpu(ri->i_inline_xattr_size); |
| } else if (f2fs_has_inline_xattr(inode) || |
| f2fs_has_inline_dentry(inode)) { |
| fi->i_inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; |
| } else { |
| |
| /* |
| * Previous inline data or directory always reserved 200 bytes |
| * in inode layout, even if inline_xattr is disabled. In order |
| * to keep inline_dentry's structure for backward compatibility, |
| * we get the space back only from inline_data. |
| */ |
| fi->i_inline_xattr_size = 0; |
| } |
| |
| /* check data exist */ |
| if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode)) |
| __recover_inline_status(inode, node_page); |
| |
| /* get rdev by using inline_info */ |
| __get_inode_rdev(inode, ri); |
| |
| if (__written_first_block(ri)) |
| set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); |
| |
| if (!need_inode_block_update(sbi, inode->i_ino)) |
| fi->last_disk_size = inode->i_size; |
| |
| if (fi->i_flags & F2FS_PROJINHERIT_FL) |
| set_inode_flag(inode, FI_PROJ_INHERIT); |
| |
| if (f2fs_has_extra_attr(inode) && f2fs_sb_has_project_quota(sbi->sb) && |
| F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) |
| i_projid = (projid_t)le32_to_cpu(ri->i_projid); |
| else |
| i_projid = F2FS_DEF_PROJID; |
| fi->i_projid = make_kprojid(&init_user_ns, i_projid); |
| |
| if (f2fs_has_extra_attr(inode) && f2fs_sb_has_inode_crtime(sbi->sb) && |
| F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { |
| fi->i_crtime.tv_sec = le64_to_cpu(ri->i_crtime); |
| fi->i_crtime.tv_nsec = le32_to_cpu(ri->i_crtime_nsec); |
| } |
| |
| F2FS_I(inode)->i_disk_time[0] = inode->i_atime; |
| F2FS_I(inode)->i_disk_time[1] = inode->i_ctime; |
| F2FS_I(inode)->i_disk_time[2] = inode->i_mtime; |
| F2FS_I(inode)->i_disk_time[3] = F2FS_I(inode)->i_crtime; |
| f2fs_put_page(node_page, 1); |
| |
| stat_inc_inline_xattr(inode); |
| stat_inc_inline_inode(inode); |
| stat_inc_inline_dir(inode); |
| |
| return 0; |
| } |
| |
| struct inode *f2fs_iget(struct super_block *sb, unsigned long ino) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| struct inode *inode; |
| int ret = 0; |
| |
| inode = iget_locked(sb, ino); |
| if (!inode) |
| return ERR_PTR(-ENOMEM); |
| |
| if (!(inode->i_state & I_NEW)) { |
| trace_f2fs_iget(inode); |
| return inode; |
| } |
| if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi)) |
| goto make_now; |
| |
| ret = do_read_inode(inode); |
| if (ret) |
| goto bad_inode; |
| make_now: |
| if (ino == F2FS_NODE_INO(sbi)) { |
| inode->i_mapping->a_ops = &f2fs_node_aops; |
| mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); |
| } else if (ino == F2FS_META_INO(sbi)) { |
| inode->i_mapping->a_ops = &f2fs_meta_aops; |
| mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); |
| } else if (S_ISREG(inode->i_mode)) { |
| inode->i_op = &f2fs_file_inode_operations; |
| inode->i_fop = &f2fs_file_operations; |
| inode->i_mapping->a_ops = &f2fs_dblock_aops; |
| } else if (S_ISDIR(inode->i_mode)) { |
| inode->i_op = &f2fs_dir_inode_operations; |
| inode->i_fop = &f2fs_dir_operations; |
| inode->i_mapping->a_ops = &f2fs_dblock_aops; |
| inode_nohighmem(inode); |
| } else if (S_ISLNK(inode->i_mode)) { |
| if (f2fs_encrypted_inode(inode)) |
| inode->i_op = &f2fs_encrypted_symlink_inode_operations; |
| else |
| inode->i_op = &f2fs_symlink_inode_operations; |
| inode_nohighmem(inode); |
| inode->i_mapping->a_ops = &f2fs_dblock_aops; |
| } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || |
| S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { |
| inode->i_op = &f2fs_special_inode_operations; |
| init_special_inode(inode, inode->i_mode, inode->i_rdev); |
| } else { |
| ret = -EIO; |
| goto bad_inode; |
| } |
| f2fs_set_inode_flags(inode); |
| unlock_new_inode(inode); |
| trace_f2fs_iget(inode); |
| return inode; |
| |
| bad_inode: |
| iget_failed(inode); |
| trace_f2fs_iget_exit(inode, ret); |
| return ERR_PTR(ret); |
| } |
| |
| struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino) |
| { |
| struct inode *inode; |
| retry: |
| inode = f2fs_iget(sb, ino); |
| if (IS_ERR(inode)) { |
| if (PTR_ERR(inode) == -ENOMEM) { |
| congestion_wait(BLK_RW_ASYNC, HZ/50); |
| goto retry; |
| } |
| } |
| return inode; |
| } |
| |
| void update_inode(struct inode *inode, struct page *node_page) |
| { |
| struct f2fs_inode *ri; |
| struct extent_tree *et = F2FS_I(inode)->extent_tree; |
| |
| f2fs_wait_on_page_writeback(node_page, NODE, true); |
| set_page_dirty(node_page); |
| |
| f2fs_inode_synced(inode); |
| |
| ri = F2FS_INODE(node_page); |
| |
| ri->i_mode = cpu_to_le16(inode->i_mode); |
| ri->i_advise = F2FS_I(inode)->i_advise; |
| ri->i_uid = cpu_to_le32(i_uid_read(inode)); |
| ri->i_gid = cpu_to_le32(i_gid_read(inode)); |
| ri->i_links = cpu_to_le32(inode->i_nlink); |
| ri->i_size = cpu_to_le64(i_size_read(inode)); |
| ri->i_blocks = cpu_to_le64(SECTOR_TO_BLOCK(inode->i_blocks) + 1); |
| |
| if (et) { |
| read_lock(&et->lock); |
| set_raw_extent(&et->largest, &ri->i_ext); |
| read_unlock(&et->lock); |
| } else { |
| memset(&ri->i_ext, 0, sizeof(ri->i_ext)); |
| } |
| set_raw_inline(inode, ri); |
| |
| ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec); |
| ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec); |
| ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec); |
| ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); |
| ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); |
| ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); |
| ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth); |
| ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid); |
| ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags); |
| ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino); |
| ri->i_generation = cpu_to_le32(inode->i_generation); |
| ri->i_dir_level = F2FS_I(inode)->i_dir_level; |
| |
| if (f2fs_has_extra_attr(inode)) { |
| ri->i_extra_isize = cpu_to_le16(F2FS_I(inode)->i_extra_isize); |
| |
| if (f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(inode)->sb)) |
| ri->i_inline_xattr_size = |
| cpu_to_le16(F2FS_I(inode)->i_inline_xattr_size); |
| |
| if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)->sb) && |
| F2FS_FITS_IN_INODE(ri, F2FS_I(inode)->i_extra_isize, |
| i_projid)) { |
| projid_t i_projid; |
| |
| i_projid = from_kprojid(&init_user_ns, |
| F2FS_I(inode)->i_projid); |
| ri->i_projid = cpu_to_le32(i_projid); |
| } |
| |
| if (f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)->sb) && |
| F2FS_FITS_IN_INODE(ri, F2FS_I(inode)->i_extra_isize, |
| i_crtime)) { |
| ri->i_crtime = |
| cpu_to_le64(F2FS_I(inode)->i_crtime.tv_sec); |
| ri->i_crtime_nsec = |
| cpu_to_le32(F2FS_I(inode)->i_crtime.tv_nsec); |
| } |
| } |
| |
| __set_inode_rdev(inode, ri); |
| |
| /* deleted inode */ |
| if (inode->i_nlink == 0) |
| clear_inline_node(node_page); |
| |
| F2FS_I(inode)->i_disk_time[0] = inode->i_atime; |
| F2FS_I(inode)->i_disk_time[1] = inode->i_ctime; |
| F2FS_I(inode)->i_disk_time[2] = inode->i_mtime; |
| F2FS_I(inode)->i_disk_time[3] = F2FS_I(inode)->i_crtime; |
| } |
| |
| void update_inode_page(struct inode *inode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct page *node_page; |
| retry: |
| node_page = get_node_page(sbi, inode->i_ino); |
| if (IS_ERR(node_page)) { |
| int err = PTR_ERR(node_page); |
| if (err == -ENOMEM) { |
| cond_resched(); |
| goto retry; |
| } else if (err != -ENOENT) { |
| f2fs_stop_checkpoint(sbi, false); |
| } |
| return; |
| } |
| update_inode(inode, node_page); |
| f2fs_put_page(node_page, 1); |
| } |
| |
| int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| |
| if (inode->i_ino == F2FS_NODE_INO(sbi) || |
| inode->i_ino == F2FS_META_INO(sbi)) |
| return 0; |
| |
| if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) |
| return 0; |
| |
| /* |
| * We need to balance fs here to prevent from producing dirty node pages |
| * during the urgent cleaning time when runing out of free sections. |
| */ |
| update_inode_page(inode); |
| if (wbc && wbc->nr_to_write) |
| f2fs_balance_fs(sbi, true); |
| return 0; |
| } |
| |
| /* |
| * Called at the last iput() if i_nlink is zero |
| */ |
| void f2fs_evict_inode(struct inode *inode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| nid_t xnid = F2FS_I(inode)->i_xattr_nid; |
| int err = 0; |
| |
| /* some remained atomic pages should discarded */ |
| if (f2fs_is_atomic_file(inode)) |
| drop_inmem_pages(inode); |
| |
| trace_f2fs_evict_inode(inode); |
| truncate_inode_pages_final(&inode->i_data); |
| |
| if (inode->i_ino == F2FS_NODE_INO(sbi) || |
| inode->i_ino == F2FS_META_INO(sbi)) |
| goto out_clear; |
| |
| f2fs_bug_on(sbi, get_dirty_pages(inode)); |
| remove_dirty_inode(inode); |
| |
| f2fs_destroy_extent_tree(inode); |
| |
| if (inode->i_nlink || is_bad_inode(inode)) |
| goto no_delete; |
| |
| dquot_initialize(inode); |
| |
| remove_ino_entry(sbi, inode->i_ino, APPEND_INO); |
| remove_ino_entry(sbi, inode->i_ino, UPDATE_INO); |
| remove_ino_entry(sbi, inode->i_ino, FLUSH_INO); |
| |
| sb_start_intwrite(inode->i_sb); |
| set_inode_flag(inode, FI_NO_ALLOC); |
| i_size_write(inode, 0); |
| retry: |
| if (F2FS_HAS_BLOCKS(inode)) |
| err = f2fs_truncate(inode); |
| |
| #ifdef CONFIG_F2FS_FAULT_INJECTION |
| if (time_to_inject(sbi, FAULT_EVICT_INODE)) { |
| f2fs_show_injection_info(FAULT_EVICT_INODE); |
| err = -EIO; |
| } |
| #endif |
| if (!err) { |
| f2fs_lock_op(sbi); |
| err = remove_inode_page(inode); |
| f2fs_unlock_op(sbi); |
| if (err == -ENOENT) |
| err = 0; |
| } |
| |
| /* give more chances, if ENOMEM case */ |
| if (err == -ENOMEM) { |
| err = 0; |
| goto retry; |
| } |
| |
| if (err) |
| update_inode_page(inode); |
| dquot_free_inode(inode); |
| sb_end_intwrite(inode->i_sb); |
| no_delete: |
| dquot_drop(inode); |
| |
| stat_dec_inline_xattr(inode); |
| stat_dec_inline_dir(inode); |
| stat_dec_inline_inode(inode); |
| |
| if (likely(!is_set_ckpt_flags(sbi, CP_ERROR_FLAG))) |
| f2fs_bug_on(sbi, is_inode_flag_set(inode, FI_DIRTY_INODE)); |
| else |
| f2fs_inode_synced(inode); |
| |
| /* ino == 0, if f2fs_new_inode() was failed t*/ |
| if (inode->i_ino) |
| invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, |
| inode->i_ino); |
| if (xnid) |
| invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid); |
| if (inode->i_nlink) { |
| if (is_inode_flag_set(inode, FI_APPEND_WRITE)) |
| add_ino_entry(sbi, inode->i_ino, APPEND_INO); |
| if (is_inode_flag_set(inode, FI_UPDATE_WRITE)) |
| add_ino_entry(sbi, inode->i_ino, UPDATE_INO); |
| } |
| if (is_inode_flag_set(inode, FI_FREE_NID)) { |
| alloc_nid_failed(sbi, inode->i_ino); |
| clear_inode_flag(inode, FI_FREE_NID); |
| } else { |
| f2fs_bug_on(sbi, err && |
| !exist_written_data(sbi, inode->i_ino, ORPHAN_INO)); |
| } |
| out_clear: |
| fscrypt_put_encryption_info(inode); |
| clear_inode(inode); |
| } |
| |
| /* caller should call f2fs_lock_op() */ |
| void handle_failed_inode(struct inode *inode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct node_info ni; |
| |
| /* |
| * clear nlink of inode in order to release resource of inode |
| * immediately. |
| */ |
| clear_nlink(inode); |
| |
| /* |
| * we must call this to avoid inode being remained as dirty, resulting |
| * in a panic when flushing dirty inodes in gdirty_list. |
| */ |
| update_inode_page(inode); |
| f2fs_inode_synced(inode); |
| |
| /* don't make bad inode, since it becomes a regular file. */ |
| unlock_new_inode(inode); |
| |
| /* |
| * Note: we should add inode to orphan list before f2fs_unlock_op() |
| * so we can prevent losing this orphan when encoutering checkpoint |
| * and following suddenly power-off. |
| */ |
| get_node_info(sbi, inode->i_ino, &ni); |
| |
| if (ni.blk_addr != NULL_ADDR) { |
| int err = acquire_orphan_inode(sbi); |
| if (err) { |
| set_sbi_flag(sbi, SBI_NEED_FSCK); |
| f2fs_msg(sbi->sb, KERN_WARNING, |
| "Too many orphan inodes, run fsck to fix."); |
| } else { |
| add_orphan_inode(inode); |
| } |
| alloc_nid_done(sbi, inode->i_ino); |
| } else { |
| set_inode_flag(inode, FI_FREE_NID); |
| } |
| |
| f2fs_unlock_op(sbi); |
| |
| /* iput will drop the inode object */ |
| iput(inode); |
| } |