| /* |
| * Copyright (C) 2002 ARM Ltd. |
| * Copyright (C) 2008 STMicroelctronics. |
| * Copyright (C) 2009 ST-Ericsson. |
| * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com> |
| * |
| * This file is based on arm realview platform |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/init.h> |
| #include <linux/errno.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/smp.h> |
| #include <linux/io.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/localtimer.h> |
| #include <asm/smp_scu.h> |
| #include <mach/hardware.h> |
| |
| /* |
| * control for which core is the next to come out of the secondary |
| * boot "holding pen" |
| */ |
| volatile int __cpuinitdata pen_release = -1; |
| |
| static unsigned int __init get_core_count(void) |
| { |
| return scu_get_core_count(__io_address(UX500_SCU_BASE)); |
| } |
| |
| static DEFINE_SPINLOCK(boot_lock); |
| |
| void __cpuinit platform_secondary_init(unsigned int cpu) |
| { |
| trace_hardirqs_off(); |
| |
| /* |
| * if any interrupts are already enabled for the primary |
| * core (e.g. timer irq), then they will not have been enabled |
| * for us: do so |
| */ |
| gic_cpu_init(0, __io_address(UX500_GIC_CPU_BASE)); |
| |
| /* |
| * let the primary processor know we're out of the |
| * pen, then head off into the C entry point |
| */ |
| pen_release = -1; |
| |
| /* |
| * Synchronise with the boot thread. |
| */ |
| spin_lock(&boot_lock); |
| spin_unlock(&boot_lock); |
| } |
| |
| int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle) |
| { |
| unsigned long timeout; |
| |
| /* |
| * set synchronisation state between this boot processor |
| * and the secondary one |
| */ |
| spin_lock(&boot_lock); |
| |
| /* |
| * The secondary processor is waiting to be released from |
| * the holding pen - release it, then wait for it to flag |
| * that it has been released by resetting pen_release. |
| */ |
| pen_release = cpu; |
| __cpuc_flush_dcache_area((void *)&pen_release, sizeof(pen_release)); |
| outer_clean_range(__pa(&pen_release), __pa(&pen_release) + 1); |
| |
| smp_cross_call(cpumask_of(cpu), 1); |
| |
| timeout = jiffies + (1 * HZ); |
| while (time_before(jiffies, timeout)) { |
| if (pen_release == -1) |
| break; |
| } |
| |
| /* |
| * now the secondary core is starting up let it run its |
| * calibrations, then wait for it to finish |
| */ |
| spin_unlock(&boot_lock); |
| |
| return pen_release != -1 ? -ENOSYS : 0; |
| } |
| |
| static void __init wakeup_secondary(void) |
| { |
| /* nobody is to be released from the pen yet */ |
| pen_release = -1; |
| |
| /* |
| * write the address of secondary startup into the backup ram register |
| * at offset 0x1FF4, then write the magic number 0xA1FEED01 to the |
| * backup ram register at offset 0x1FF0, which is what boot rom code |
| * is waiting for. This would wake up the secondary core from WFE |
| */ |
| #define U8500_CPU1_JUMPADDR_OFFSET 0x1FF4 |
| __raw_writel(virt_to_phys(u8500_secondary_startup), |
| __io_address(UX500_BACKUPRAM0_BASE) + |
| U8500_CPU1_JUMPADDR_OFFSET); |
| |
| #define U8500_CPU1_WAKEMAGIC_OFFSET 0x1FF0 |
| __raw_writel(0xA1FEED01, |
| __io_address(UX500_BACKUPRAM0_BASE) + |
| U8500_CPU1_WAKEMAGIC_OFFSET); |
| |
| /* make sure write buffer is drained */ |
| mb(); |
| } |
| |
| /* |
| * Initialise the CPU possible map early - this describes the CPUs |
| * which may be present or become present in the system. |
| */ |
| void __init smp_init_cpus(void) |
| { |
| unsigned int i, ncores = get_core_count(); |
| |
| /* sanity check */ |
| if (ncores == 0) { |
| printk(KERN_ERR |
| "U8500: strange CM count of 0? Default to 1\n"); |
| ncores = 1; |
| } |
| |
| if (ncores > NR_CPUS) { |
| printk(KERN_WARNING |
| "U8500: no. of cores (%d) greater than configured " |
| "maximum of %d - clipping\n", |
| ncores, NR_CPUS); |
| ncores = NR_CPUS; |
| } |
| |
| for (i = 0; i < ncores; i++) |
| set_cpu_possible(i, true); |
| } |
| |
| void __init smp_prepare_cpus(unsigned int max_cpus) |
| { |
| unsigned int ncores = num_possible_cpus(); |
| unsigned int cpu = smp_processor_id(); |
| int i; |
| |
| smp_store_cpu_info(cpu); |
| |
| /* |
| * are we trying to boot more cores than exist? |
| */ |
| if (max_cpus > ncores) |
| max_cpus = ncores; |
| |
| /* |
| * Initialise the present map, which describes the set of CPUs |
| * actually populated at the present time. |
| */ |
| for (i = 0; i < max_cpus; i++) |
| set_cpu_present(i, true); |
| |
| if (max_cpus > 1) { |
| /* |
| * Enable the local timer or broadcast device for the |
| * boot CPU, but only if we have more than one CPU. |
| */ |
| percpu_timer_setup(); |
| scu_enable(__io_address(UX500_SCU_BASE)); |
| wakeup_secondary(); |
| } |
| } |