| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef __LINUX_COMPILER_H |
| #define __LINUX_COMPILER_H |
| |
| #include <linux/compiler_types.h> |
| |
| #ifndef __ASSEMBLY__ |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code |
| * to disable branch tracing on a per file basis. |
| */ |
| #if defined(CONFIG_TRACE_BRANCH_PROFILING) \ |
| && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__) |
| void ftrace_likely_update(struct ftrace_likely_data *f, int val, |
| int expect, int is_constant); |
| |
| #define likely_notrace(x) __builtin_expect(!!(x), 1) |
| #define unlikely_notrace(x) __builtin_expect(!!(x), 0) |
| |
| #define __branch_check__(x, expect, is_constant) ({ \ |
| long ______r; \ |
| static struct ftrace_likely_data \ |
| __aligned(4) \ |
| __section(_ftrace_annotated_branch) \ |
| ______f = { \ |
| .data.func = __func__, \ |
| .data.file = __FILE__, \ |
| .data.line = __LINE__, \ |
| }; \ |
| ______r = __builtin_expect(!!(x), expect); \ |
| ftrace_likely_update(&______f, ______r, \ |
| expect, is_constant); \ |
| ______r; \ |
| }) |
| |
| /* |
| * Using __builtin_constant_p(x) to ignore cases where the return |
| * value is always the same. This idea is taken from a similar patch |
| * written by Daniel Walker. |
| */ |
| # ifndef likely |
| # define likely(x) (__branch_check__(x, 1, __builtin_constant_p(x))) |
| # endif |
| # ifndef unlikely |
| # define unlikely(x) (__branch_check__(x, 0, __builtin_constant_p(x))) |
| # endif |
| |
| #ifdef CONFIG_PROFILE_ALL_BRANCHES |
| /* |
| * "Define 'is'", Bill Clinton |
| * "Define 'if'", Steven Rostedt |
| */ |
| #define if(cond, ...) if ( __trace_if_var( !!(cond , ## __VA_ARGS__) ) ) |
| |
| #define __trace_if_var(cond) (__builtin_constant_p(cond) ? (cond) : __trace_if_value(cond)) |
| |
| #define __trace_if_value(cond) ({ \ |
| static struct ftrace_branch_data \ |
| __aligned(4) \ |
| __section(_ftrace_branch) \ |
| __if_trace = { \ |
| .func = __func__, \ |
| .file = __FILE__, \ |
| .line = __LINE__, \ |
| }; \ |
| (cond) ? \ |
| (__if_trace.miss_hit[1]++,1) : \ |
| (__if_trace.miss_hit[0]++,0); \ |
| }) |
| |
| #endif /* CONFIG_PROFILE_ALL_BRANCHES */ |
| |
| #else |
| # define likely(x) __builtin_expect(!!(x), 1) |
| # define unlikely(x) __builtin_expect(!!(x), 0) |
| #endif |
| |
| /* Optimization barrier */ |
| #ifndef barrier |
| # define barrier() __memory_barrier() |
| #endif |
| |
| #ifndef barrier_data |
| # define barrier_data(ptr) barrier() |
| #endif |
| |
| /* workaround for GCC PR82365 if needed */ |
| #ifndef barrier_before_unreachable |
| # define barrier_before_unreachable() do { } while (0) |
| #endif |
| |
| /* Unreachable code */ |
| #ifdef CONFIG_STACK_VALIDATION |
| /* |
| * These macros help objtool understand GCC code flow for unreachable code. |
| * The __COUNTER__ based labels are a hack to make each instance of the macros |
| * unique, to convince GCC not to merge duplicate inline asm statements. |
| */ |
| #define annotate_reachable() ({ \ |
| asm volatile("%c0:\n\t" \ |
| ".pushsection .discard.reachable\n\t" \ |
| ".long %c0b - .\n\t" \ |
| ".popsection\n\t" : : "i" (__COUNTER__)); \ |
| }) |
| #define annotate_unreachable() ({ \ |
| asm volatile("%c0:\n\t" \ |
| ".pushsection .discard.unreachable\n\t" \ |
| ".long %c0b - .\n\t" \ |
| ".popsection\n\t" : : "i" (__COUNTER__)); \ |
| }) |
| #define ASM_UNREACHABLE \ |
| "999:\n\t" \ |
| ".pushsection .discard.unreachable\n\t" \ |
| ".long 999b - .\n\t" \ |
| ".popsection\n\t" |
| |
| /* Annotate a C jump table to allow objtool to follow the code flow */ |
| #define __annotate_jump_table __section(.rodata..c_jump_table) |
| |
| #ifdef CONFIG_DEBUG_ENTRY |
| /* Begin/end of an instrumentation safe region */ |
| #define instrumentation_begin() ({ \ |
| asm volatile("%c0: nop\n\t" \ |
| ".pushsection .discard.instr_begin\n\t" \ |
| ".long %c0b - .\n\t" \ |
| ".popsection\n\t" : : "i" (__COUNTER__)); \ |
| }) |
| |
| /* |
| * Because instrumentation_{begin,end}() can nest, objtool validation considers |
| * _begin() a +1 and _end() a -1 and computes a sum over the instructions. |
| * When the value is greater than 0, we consider instrumentation allowed. |
| * |
| * There is a problem with code like: |
| * |
| * noinstr void foo() |
| * { |
| * instrumentation_begin(); |
| * ... |
| * if (cond) { |
| * instrumentation_begin(); |
| * ... |
| * instrumentation_end(); |
| * } |
| * bar(); |
| * instrumentation_end(); |
| * } |
| * |
| * If instrumentation_end() would be an empty label, like all the other |
| * annotations, the inner _end(), which is at the end of a conditional block, |
| * would land on the instruction after the block. |
| * |
| * If we then consider the sum of the !cond path, we'll see that the call to |
| * bar() is with a 0-value, even though, we meant it to happen with a positive |
| * value. |
| * |
| * To avoid this, have _end() be a NOP instruction, this ensures it will be |
| * part of the condition block and does not escape. |
| */ |
| #define instrumentation_end() ({ \ |
| asm volatile("%c0: nop\n\t" \ |
| ".pushsection .discard.instr_end\n\t" \ |
| ".long %c0b - .\n\t" \ |
| ".popsection\n\t" : : "i" (__COUNTER__)); \ |
| }) |
| #endif /* CONFIG_DEBUG_ENTRY */ |
| |
| #else |
| #define annotate_reachable() |
| #define annotate_unreachable() |
| #define __annotate_jump_table |
| #endif |
| |
| #ifndef instrumentation_begin |
| #define instrumentation_begin() do { } while(0) |
| #define instrumentation_end() do { } while(0) |
| #endif |
| |
| #ifndef ASM_UNREACHABLE |
| # define ASM_UNREACHABLE |
| #endif |
| #ifndef unreachable |
| # define unreachable() do { \ |
| annotate_unreachable(); \ |
| __builtin_unreachable(); \ |
| } while (0) |
| #endif |
| |
| /* |
| * KENTRY - kernel entry point |
| * This can be used to annotate symbols (functions or data) that are used |
| * without their linker symbol being referenced explicitly. For example, |
| * interrupt vector handlers, or functions in the kernel image that are found |
| * programatically. |
| * |
| * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those |
| * are handled in their own way (with KEEP() in linker scripts). |
| * |
| * KENTRY can be avoided if the symbols in question are marked as KEEP() in the |
| * linker script. For example an architecture could KEEP() its entire |
| * boot/exception vector code rather than annotate each function and data. |
| */ |
| #ifndef KENTRY |
| # define KENTRY(sym) \ |
| extern typeof(sym) sym; \ |
| static const unsigned long __kentry_##sym \ |
| __used \ |
| __section("___kentry" "+" #sym ) \ |
| = (unsigned long)&sym; |
| #endif |
| |
| #ifndef RELOC_HIDE |
| # define RELOC_HIDE(ptr, off) \ |
| ({ unsigned long __ptr; \ |
| __ptr = (unsigned long) (ptr); \ |
| (typeof(ptr)) (__ptr + (off)); }) |
| #endif |
| |
| #ifndef OPTIMIZER_HIDE_VAR |
| /* Make the optimizer believe the variable can be manipulated arbitrarily. */ |
| #define OPTIMIZER_HIDE_VAR(var) \ |
| __asm__ ("" : "=r" (var) : "0" (var)) |
| #endif |
| |
| /* Not-quite-unique ID. */ |
| #ifndef __UNIQUE_ID |
| # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__) |
| #endif |
| |
| /* |
| * Prevent the compiler from merging or refetching reads or writes. The |
| * compiler is also forbidden from reordering successive instances of |
| * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some |
| * particular ordering. One way to make the compiler aware of ordering is to |
| * put the two invocations of READ_ONCE or WRITE_ONCE in different C |
| * statements. |
| * |
| * These two macros will also work on aggregate data types like structs or |
| * unions. |
| * |
| * Their two major use cases are: (1) Mediating communication between |
| * process-level code and irq/NMI handlers, all running on the same CPU, |
| * and (2) Ensuring that the compiler does not fold, spindle, or otherwise |
| * mutilate accesses that either do not require ordering or that interact |
| * with an explicit memory barrier or atomic instruction that provides the |
| * required ordering. |
| */ |
| #include <asm/barrier.h> |
| #include <linux/kasan-checks.h> |
| #include <linux/kcsan-checks.h> |
| |
| /** |
| * data_race - mark an expression as containing intentional data races |
| * |
| * This data_race() macro is useful for situations in which data races |
| * should be forgiven. One example is diagnostic code that accesses |
| * shared variables but is not a part of the core synchronization design. |
| * |
| * This macro *does not* affect normal code generation, but is a hint |
| * to tooling that data races here are to be ignored. |
| */ |
| #define data_race(expr) \ |
| ({ \ |
| __unqual_scalar_typeof(({ expr; })) __v = ({ \ |
| __kcsan_disable_current(); \ |
| expr; \ |
| }); \ |
| __kcsan_enable_current(); \ |
| __v; \ |
| }) |
| |
| /* |
| * Use __READ_ONCE() instead of READ_ONCE() if you do not require any |
| * atomicity or dependency ordering guarantees. Note that this may result |
| * in tears! |
| */ |
| #define __READ_ONCE(x) (*(const volatile __unqual_scalar_typeof(x) *)&(x)) |
| |
| #define __READ_ONCE_SCALAR(x) \ |
| ({ \ |
| __unqual_scalar_typeof(x) __x = __READ_ONCE(x); \ |
| smp_read_barrier_depends(); \ |
| (typeof(x))__x; \ |
| }) |
| |
| #define READ_ONCE(x) \ |
| ({ \ |
| compiletime_assert_rwonce_type(x); \ |
| __READ_ONCE_SCALAR(x); \ |
| }) |
| |
| #define __WRITE_ONCE(x, val) \ |
| do { \ |
| *(volatile typeof(x) *)&(x) = (val); \ |
| } while (0) |
| |
| #define WRITE_ONCE(x, val) \ |
| do { \ |
| compiletime_assert_rwonce_type(x); \ |
| __WRITE_ONCE(x, val); \ |
| } while (0) |
| |
| static __no_sanitize_or_inline |
| unsigned long __read_once_word_nocheck(const void *addr) |
| { |
| return __READ_ONCE(*(unsigned long *)addr); |
| } |
| |
| /* |
| * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need to load a |
| * word from memory atomically but without telling KASAN/KCSAN. This is |
| * usually used by unwinding code when walking the stack of a running process. |
| */ |
| #define READ_ONCE_NOCHECK(x) \ |
| ({ \ |
| unsigned long __x; \ |
| compiletime_assert(sizeof(x) == sizeof(__x), \ |
| "Unsupported access size for READ_ONCE_NOCHECK()."); \ |
| __x = __read_once_word_nocheck(&(x)); \ |
| smp_read_barrier_depends(); \ |
| (typeof(x))__x; \ |
| }) |
| |
| static __no_kasan_or_inline |
| unsigned long read_word_at_a_time(const void *addr) |
| { |
| kasan_check_read(addr, 1); |
| return *(unsigned long *)addr; |
| } |
| |
| #endif /* __KERNEL__ */ |
| |
| /* |
| * Force the compiler to emit 'sym' as a symbol, so that we can reference |
| * it from inline assembler. Necessary in case 'sym' could be inlined |
| * otherwise, or eliminated entirely due to lack of references that are |
| * visible to the compiler. |
| */ |
| #define __ADDRESSABLE(sym) \ |
| static void * __section(.discard.addressable) __used \ |
| __PASTE(__addressable_##sym, __LINE__) = (void *)&sym; |
| |
| /** |
| * offset_to_ptr - convert a relative memory offset to an absolute pointer |
| * @off: the address of the 32-bit offset value |
| */ |
| static inline void *offset_to_ptr(const int *off) |
| { |
| return (void *)((unsigned long)off + *off); |
| } |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| /* Compile time object size, -1 for unknown */ |
| #ifndef __compiletime_object_size |
| # define __compiletime_object_size(obj) -1 |
| #endif |
| #ifndef __compiletime_warning |
| # define __compiletime_warning(message) |
| #endif |
| #ifndef __compiletime_error |
| # define __compiletime_error(message) |
| #endif |
| |
| #ifdef __OPTIMIZE__ |
| # define __compiletime_assert(condition, msg, prefix, suffix) \ |
| do { \ |
| extern void prefix ## suffix(void) __compiletime_error(msg); \ |
| if (!(condition)) \ |
| prefix ## suffix(); \ |
| } while (0) |
| #else |
| # define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0) |
| #endif |
| |
| #define _compiletime_assert(condition, msg, prefix, suffix) \ |
| __compiletime_assert(condition, msg, prefix, suffix) |
| |
| /** |
| * compiletime_assert - break build and emit msg if condition is false |
| * @condition: a compile-time constant condition to check |
| * @msg: a message to emit if condition is false |
| * |
| * In tradition of POSIX assert, this macro will break the build if the |
| * supplied condition is *false*, emitting the supplied error message if the |
| * compiler has support to do so. |
| */ |
| #define compiletime_assert(condition, msg) \ |
| _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__) |
| |
| #define compiletime_assert_atomic_type(t) \ |
| compiletime_assert(__native_word(t), \ |
| "Need native word sized stores/loads for atomicity.") |
| |
| /* |
| * Yes, this permits 64-bit accesses on 32-bit architectures. These will |
| * actually be atomic in some cases (namely Armv7 + LPAE), but for others we |
| * rely on the access being split into 2x32-bit accesses for a 32-bit quantity |
| * (e.g. a virtual address) and a strong prevailing wind. |
| */ |
| #define compiletime_assert_rwonce_type(t) \ |
| compiletime_assert(__native_word(t) || sizeof(t) == sizeof(long long), \ |
| "Unsupported access size for {READ,WRITE}_ONCE().") |
| |
| /* &a[0] degrades to a pointer: a different type from an array */ |
| #define __must_be_array(a) BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0])) |
| |
| /* |
| * This is needed in functions which generate the stack canary, see |
| * arch/x86/kernel/smpboot.c::start_secondary() for an example. |
| */ |
| #define prevent_tail_call_optimization() mb() |
| |
| #endif /* __LINUX_COMPILER_H */ |