| /* |
| * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README |
| */ |
| |
| #include <linux/time.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include "reiserfs.h" |
| #include <linux/buffer_head.h> |
| |
| /* |
| * To make any changes in the tree we find a node that contains item |
| * to be changed/deleted or position in the node we insert a new item |
| * to. We call this node S. To do balancing we need to decide what we |
| * will shift to left/right neighbor, or to a new node, where new item |
| * will be etc. To make this analysis simpler we build virtual |
| * node. Virtual node is an array of items, that will replace items of |
| * node S. (For instance if we are going to delete an item, virtual |
| * node does not contain it). Virtual node keeps information about |
| * item sizes and types, mergeability of first and last items, sizes |
| * of all entries in directory item. We use this array of items when |
| * calculating what we can shift to neighbors and how many nodes we |
| * have to have if we do not any shiftings, if we shift to left/right |
| * neighbor or to both. |
| */ |
| |
| /* |
| * Takes item number in virtual node, returns number of item |
| * that it has in source buffer |
| */ |
| static inline int old_item_num(int new_num, int affected_item_num, int mode) |
| { |
| if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num) |
| return new_num; |
| |
| if (mode == M_INSERT) { |
| |
| RFALSE(new_num == 0, |
| "vs-8005: for INSERT mode and item number of inserted item"); |
| |
| return new_num - 1; |
| } |
| |
| RFALSE(mode != M_DELETE, |
| "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'", |
| mode); |
| /* delete mode */ |
| return new_num + 1; |
| } |
| |
| static void create_virtual_node(struct tree_balance *tb, int h) |
| { |
| struct item_head *ih; |
| struct virtual_node *vn = tb->tb_vn; |
| int new_num; |
| struct buffer_head *Sh; /* this comes from tb->S[h] */ |
| |
| Sh = PATH_H_PBUFFER(tb->tb_path, h); |
| |
| /* size of changed node */ |
| vn->vn_size = |
| MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h]; |
| |
| /* for internal nodes array if virtual items is not created */ |
| if (h) { |
| vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE); |
| return; |
| } |
| |
| /* number of items in virtual node */ |
| vn->vn_nr_item = |
| B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) - |
| ((vn->vn_mode == M_DELETE) ? 1 : 0); |
| |
| /* first virtual item */ |
| vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1); |
| memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item)); |
| vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item); |
| |
| /* first item in the node */ |
| ih = item_head(Sh, 0); |
| |
| /* define the mergeability for 0-th item (if it is not being deleted) */ |
| if (op_is_left_mergeable(&ih->ih_key, Sh->b_size) |
| && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num)) |
| vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE; |
| |
| /* |
| * go through all items that remain in the virtual |
| * node (except for the new (inserted) one) |
| */ |
| for (new_num = 0; new_num < vn->vn_nr_item; new_num++) { |
| int j; |
| struct virtual_item *vi = vn->vn_vi + new_num; |
| int is_affected = |
| ((new_num != vn->vn_affected_item_num) ? 0 : 1); |
| |
| if (is_affected && vn->vn_mode == M_INSERT) |
| continue; |
| |
| /* get item number in source node */ |
| j = old_item_num(new_num, vn->vn_affected_item_num, |
| vn->vn_mode); |
| |
| vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE; |
| vi->vi_ih = ih + j; |
| vi->vi_item = ih_item_body(Sh, ih + j); |
| vi->vi_uarea = vn->vn_free_ptr; |
| |
| /* |
| * FIXME: there is no check that item operation did not |
| * consume too much memory |
| */ |
| vn->vn_free_ptr += |
| op_create_vi(vn, vi, is_affected, tb->insert_size[0]); |
| if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr) |
| reiserfs_panic(tb->tb_sb, "vs-8030", |
| "virtual node space consumed"); |
| |
| if (!is_affected) |
| /* this is not being changed */ |
| continue; |
| |
| if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) { |
| vn->vn_vi[new_num].vi_item_len += tb->insert_size[0]; |
| /* pointer to data which is going to be pasted */ |
| vi->vi_new_data = vn->vn_data; |
| } |
| } |
| |
| /* virtual inserted item is not defined yet */ |
| if (vn->vn_mode == M_INSERT) { |
| struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num; |
| |
| RFALSE(vn->vn_ins_ih == NULL, |
| "vs-8040: item header of inserted item is not specified"); |
| vi->vi_item_len = tb->insert_size[0]; |
| vi->vi_ih = vn->vn_ins_ih; |
| vi->vi_item = vn->vn_data; |
| vi->vi_uarea = vn->vn_free_ptr; |
| |
| op_create_vi(vn, vi, 0 /*not pasted or cut */ , |
| tb->insert_size[0]); |
| } |
| |
| /* |
| * set right merge flag we take right delimiting key and |
| * check whether it is a mergeable item |
| */ |
| if (tb->CFR[0]) { |
| struct reiserfs_key *key; |
| |
| key = internal_key(tb->CFR[0], tb->rkey[0]); |
| if (op_is_left_mergeable(key, Sh->b_size) |
| && (vn->vn_mode != M_DELETE |
| || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) |
| vn->vn_vi[vn->vn_nr_item - 1].vi_type |= |
| VI_TYPE_RIGHT_MERGEABLE; |
| |
| #ifdef CONFIG_REISERFS_CHECK |
| if (op_is_left_mergeable(key, Sh->b_size) && |
| !(vn->vn_mode != M_DELETE |
| || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) { |
| /* |
| * we delete last item and it could be merged |
| * with right neighbor's first item |
| */ |
| if (! |
| (B_NR_ITEMS(Sh) == 1 |
| && is_direntry_le_ih(item_head(Sh, 0)) |
| && ih_entry_count(item_head(Sh, 0)) == 1)) { |
| /* |
| * node contains more than 1 item, or item |
| * is not directory item, or this item |
| * contains more than 1 entry |
| */ |
| print_block(Sh, 0, -1, -1); |
| reiserfs_panic(tb->tb_sb, "vs-8045", |
| "rdkey %k, affected item==%d " |
| "(mode==%c) Must be %c", |
| key, vn->vn_affected_item_num, |
| vn->vn_mode, M_DELETE); |
| } |
| } |
| #endif |
| |
| } |
| } |
| |
| /* |
| * Using virtual node check, how many items can be |
| * shifted to left neighbor |
| */ |
| static void check_left(struct tree_balance *tb, int h, int cur_free) |
| { |
| int i; |
| struct virtual_node *vn = tb->tb_vn; |
| struct virtual_item *vi; |
| int d_size, ih_size; |
| |
| RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free); |
| |
| /* internal level */ |
| if (h > 0) { |
| tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE); |
| return; |
| } |
| |
| /* leaf level */ |
| |
| if (!cur_free || !vn->vn_nr_item) { |
| /* no free space or nothing to move */ |
| tb->lnum[h] = 0; |
| tb->lbytes = -1; |
| return; |
| } |
| |
| RFALSE(!PATH_H_PPARENT(tb->tb_path, 0), |
| "vs-8055: parent does not exist or invalid"); |
| |
| vi = vn->vn_vi; |
| if ((unsigned int)cur_free >= |
| (vn->vn_size - |
| ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) { |
| /* all contents of S[0] fits into L[0] */ |
| |
| RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, |
| "vs-8055: invalid mode or balance condition failed"); |
| |
| tb->lnum[0] = vn->vn_nr_item; |
| tb->lbytes = -1; |
| return; |
| } |
| |
| d_size = 0, ih_size = IH_SIZE; |
| |
| /* first item may be merge with last item in left neighbor */ |
| if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE) |
| d_size = -((int)IH_SIZE), ih_size = 0; |
| |
| tb->lnum[0] = 0; |
| for (i = 0; i < vn->vn_nr_item; |
| i++, ih_size = IH_SIZE, d_size = 0, vi++) { |
| d_size += vi->vi_item_len; |
| if (cur_free >= d_size) { |
| /* the item can be shifted entirely */ |
| cur_free -= d_size; |
| tb->lnum[0]++; |
| continue; |
| } |
| |
| /* the item cannot be shifted entirely, try to split it */ |
| /* |
| * check whether L[0] can hold ih and at least one byte |
| * of the item body |
| */ |
| |
| /* cannot shift even a part of the current item */ |
| if (cur_free <= ih_size) { |
| tb->lbytes = -1; |
| return; |
| } |
| cur_free -= ih_size; |
| |
| tb->lbytes = op_check_left(vi, cur_free, 0, 0); |
| if (tb->lbytes != -1) |
| /* count partially shifted item */ |
| tb->lnum[0]++; |
| |
| break; |
| } |
| |
| return; |
| } |
| |
| /* |
| * Using virtual node check, how many items can be |
| * shifted to right neighbor |
| */ |
| static void check_right(struct tree_balance *tb, int h, int cur_free) |
| { |
| int i; |
| struct virtual_node *vn = tb->tb_vn; |
| struct virtual_item *vi; |
| int d_size, ih_size; |
| |
| RFALSE(cur_free < 0, "vs-8070: cur_free < 0"); |
| |
| /* internal level */ |
| if (h > 0) { |
| tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE); |
| return; |
| } |
| |
| /* leaf level */ |
| |
| if (!cur_free || !vn->vn_nr_item) { |
| /* no free space */ |
| tb->rnum[h] = 0; |
| tb->rbytes = -1; |
| return; |
| } |
| |
| RFALSE(!PATH_H_PPARENT(tb->tb_path, 0), |
| "vs-8075: parent does not exist or invalid"); |
| |
| vi = vn->vn_vi + vn->vn_nr_item - 1; |
| if ((unsigned int)cur_free >= |
| (vn->vn_size - |
| ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) { |
| /* all contents of S[0] fits into R[0] */ |
| |
| RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, |
| "vs-8080: invalid mode or balance condition failed"); |
| |
| tb->rnum[h] = vn->vn_nr_item; |
| tb->rbytes = -1; |
| return; |
| } |
| |
| d_size = 0, ih_size = IH_SIZE; |
| |
| /* last item may be merge with first item in right neighbor */ |
| if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) |
| d_size = -(int)IH_SIZE, ih_size = 0; |
| |
| tb->rnum[0] = 0; |
| for (i = vn->vn_nr_item - 1; i >= 0; |
| i--, d_size = 0, ih_size = IH_SIZE, vi--) { |
| d_size += vi->vi_item_len; |
| if (cur_free >= d_size) { |
| /* the item can be shifted entirely */ |
| cur_free -= d_size; |
| tb->rnum[0]++; |
| continue; |
| } |
| |
| /* |
| * check whether R[0] can hold ih and at least one |
| * byte of the item body |
| */ |
| |
| /* cannot shift even a part of the current item */ |
| if (cur_free <= ih_size) { |
| tb->rbytes = -1; |
| return; |
| } |
| |
| /* |
| * R[0] can hold the header of the item and at least |
| * one byte of its body |
| */ |
| cur_free -= ih_size; /* cur_free is still > 0 */ |
| |
| tb->rbytes = op_check_right(vi, cur_free); |
| if (tb->rbytes != -1) |
| /* count partially shifted item */ |
| tb->rnum[0]++; |
| |
| break; |
| } |
| |
| return; |
| } |
| |
| /* |
| * from - number of items, which are shifted to left neighbor entirely |
| * to - number of item, which are shifted to right neighbor entirely |
| * from_bytes - number of bytes of boundary item (or directory entries) |
| * which are shifted to left neighbor |
| * to_bytes - number of bytes of boundary item (or directory entries) |
| * which are shifted to right neighbor |
| */ |
| static int get_num_ver(int mode, struct tree_balance *tb, int h, |
| int from, int from_bytes, |
| int to, int to_bytes, short *snum012, int flow) |
| { |
| int i; |
| int cur_free; |
| int units; |
| struct virtual_node *vn = tb->tb_vn; |
| int total_node_size, max_node_size, current_item_size; |
| int needed_nodes; |
| |
| /* position of item we start filling node from */ |
| int start_item; |
| |
| /* position of item we finish filling node by */ |
| int end_item; |
| |
| /* |
| * number of first bytes (entries for directory) of start_item-th item |
| * we do not include into node that is being filled |
| */ |
| int start_bytes; |
| |
| /* |
| * number of last bytes (entries for directory) of end_item-th item |
| * we do node include into node that is being filled |
| */ |
| int end_bytes; |
| |
| /* |
| * these are positions in virtual item of items, that are split |
| * between S[0] and S1new and S1new and S2new |
| */ |
| int split_item_positions[2]; |
| |
| split_item_positions[0] = -1; |
| split_item_positions[1] = -1; |
| |
| /* |
| * We only create additional nodes if we are in insert or paste mode |
| * or we are in replace mode at the internal level. If h is 0 and |
| * the mode is M_REPLACE then in fix_nodes we change the mode to |
| * paste or insert before we get here in the code. |
| */ |
| RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE), |
| "vs-8100: insert_size < 0 in overflow"); |
| |
| max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h)); |
| |
| /* |
| * snum012 [0-2] - number of items, that lay |
| * to S[0], first new node and second new node |
| */ |
| snum012[3] = -1; /* s1bytes */ |
| snum012[4] = -1; /* s2bytes */ |
| |
| /* internal level */ |
| if (h > 0) { |
| i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE); |
| if (i == max_node_size) |
| return 1; |
| return (i / max_node_size + 1); |
| } |
| |
| /* leaf level */ |
| needed_nodes = 1; |
| total_node_size = 0; |
| cur_free = max_node_size; |
| |
| /* start from 'from'-th item */ |
| start_item = from; |
| /* skip its first 'start_bytes' units */ |
| start_bytes = ((from_bytes != -1) ? from_bytes : 0); |
| |
| /* last included item is the 'end_item'-th one */ |
| end_item = vn->vn_nr_item - to - 1; |
| /* do not count last 'end_bytes' units of 'end_item'-th item */ |
| end_bytes = (to_bytes != -1) ? to_bytes : 0; |
| |
| /* |
| * go through all item beginning from the start_item-th item |
| * and ending by the end_item-th item. Do not count first |
| * 'start_bytes' units of 'start_item'-th item and last |
| * 'end_bytes' of 'end_item'-th item |
| */ |
| for (i = start_item; i <= end_item; i++) { |
| struct virtual_item *vi = vn->vn_vi + i; |
| int skip_from_end = ((i == end_item) ? end_bytes : 0); |
| |
| RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed"); |
| |
| /* get size of current item */ |
| current_item_size = vi->vi_item_len; |
| |
| /* |
| * do not take in calculation head part (from_bytes) |
| * of from-th item |
| */ |
| current_item_size -= |
| op_part_size(vi, 0 /*from start */ , start_bytes); |
| |
| /* do not take in calculation tail part of last item */ |
| current_item_size -= |
| op_part_size(vi, 1 /*from end */ , skip_from_end); |
| |
| /* if item fits into current node entierly */ |
| if (total_node_size + current_item_size <= max_node_size) { |
| snum012[needed_nodes - 1]++; |
| total_node_size += current_item_size; |
| start_bytes = 0; |
| continue; |
| } |
| |
| /* |
| * virtual item length is longer, than max size of item in |
| * a node. It is impossible for direct item |
| */ |
| if (current_item_size > max_node_size) { |
| RFALSE(is_direct_le_ih(vi->vi_ih), |
| "vs-8110: " |
| "direct item length is %d. It can not be longer than %d", |
| current_item_size, max_node_size); |
| /* we will try to split it */ |
| flow = 1; |
| } |
| |
| /* as we do not split items, take new node and continue */ |
| if (!flow) { |
| needed_nodes++; |
| i--; |
| total_node_size = 0; |
| continue; |
| } |
| |
| /* |
| * calculate number of item units which fit into node being |
| * filled |
| */ |
| { |
| int free_space; |
| |
| free_space = max_node_size - total_node_size - IH_SIZE; |
| units = |
| op_check_left(vi, free_space, start_bytes, |
| skip_from_end); |
| /* |
| * nothing fits into current node, take new |
| * node and continue |
| */ |
| if (units == -1) { |
| needed_nodes++, i--, total_node_size = 0; |
| continue; |
| } |
| } |
| |
| /* something fits into the current node */ |
| start_bytes += units; |
| snum012[needed_nodes - 1 + 3] = units; |
| |
| if (needed_nodes > 2) |
| reiserfs_warning(tb->tb_sb, "vs-8111", |
| "split_item_position is out of range"); |
| snum012[needed_nodes - 1]++; |
| split_item_positions[needed_nodes - 1] = i; |
| needed_nodes++; |
| /* continue from the same item with start_bytes != -1 */ |
| start_item = i; |
| i--; |
| total_node_size = 0; |
| } |
| |
| /* |
| * sum012[4] (if it is not -1) contains number of units of which |
| * are to be in S1new, snum012[3] - to be in S0. They are supposed |
| * to be S1bytes and S2bytes correspondingly, so recalculate |
| */ |
| if (snum012[4] > 0) { |
| int split_item_num; |
| int bytes_to_r, bytes_to_l; |
| int bytes_to_S1new; |
| |
| split_item_num = split_item_positions[1]; |
| bytes_to_l = |
| ((from == split_item_num |
| && from_bytes != -1) ? from_bytes : 0); |
| bytes_to_r = |
| ((end_item == split_item_num |
| && end_bytes != -1) ? end_bytes : 0); |
| bytes_to_S1new = |
| ((split_item_positions[0] == |
| split_item_positions[1]) ? snum012[3] : 0); |
| |
| /* s2bytes */ |
| snum012[4] = |
| op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] - |
| bytes_to_r - bytes_to_l - bytes_to_S1new; |
| |
| if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY && |
| vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT) |
| reiserfs_warning(tb->tb_sb, "vs-8115", |
| "not directory or indirect item"); |
| } |
| |
| /* now we know S2bytes, calculate S1bytes */ |
| if (snum012[3] > 0) { |
| int split_item_num; |
| int bytes_to_r, bytes_to_l; |
| int bytes_to_S2new; |
| |
| split_item_num = split_item_positions[0]; |
| bytes_to_l = |
| ((from == split_item_num |
| && from_bytes != -1) ? from_bytes : 0); |
| bytes_to_r = |
| ((end_item == split_item_num |
| && end_bytes != -1) ? end_bytes : 0); |
| bytes_to_S2new = |
| ((split_item_positions[0] == split_item_positions[1] |
| && snum012[4] != -1) ? snum012[4] : 0); |
| |
| /* s1bytes */ |
| snum012[3] = |
| op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] - |
| bytes_to_r - bytes_to_l - bytes_to_S2new; |
| } |
| |
| return needed_nodes; |
| } |
| |
| |
| /* |
| * Set parameters for balancing. |
| * Performs write of results of analysis of balancing into structure tb, |
| * where it will later be used by the functions that actually do the balancing. |
| * Parameters: |
| * tb tree_balance structure; |
| * h current level of the node; |
| * lnum number of items from S[h] that must be shifted to L[h]; |
| * rnum number of items from S[h] that must be shifted to R[h]; |
| * blk_num number of blocks that S[h] will be splitted into; |
| * s012 number of items that fall into splitted nodes. |
| * lbytes number of bytes which flow to the left neighbor from the |
| * item that is not not shifted entirely |
| * rbytes number of bytes which flow to the right neighbor from the |
| * item that is not not shifted entirely |
| * s1bytes number of bytes which flow to the first new node when |
| * S[0] splits (this number is contained in s012 array) |
| */ |
| |
| static void set_parameters(struct tree_balance *tb, int h, int lnum, |
| int rnum, int blk_num, short *s012, int lb, int rb) |
| { |
| |
| tb->lnum[h] = lnum; |
| tb->rnum[h] = rnum; |
| tb->blknum[h] = blk_num; |
| |
| /* only for leaf level */ |
| if (h == 0) { |
| if (s012 != NULL) { |
| tb->s0num = *s012++, |
| tb->s1num = *s012++, tb->s2num = *s012++; |
| tb->s1bytes = *s012++; |
| tb->s2bytes = *s012; |
| } |
| tb->lbytes = lb; |
| tb->rbytes = rb; |
| } |
| PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum); |
| PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum); |
| |
| PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb); |
| PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb); |
| } |
| |
| /* |
| * check if node disappears if we shift tb->lnum[0] items to left |
| * neighbor and tb->rnum[0] to the right one. |
| */ |
| static int is_leaf_removable(struct tree_balance *tb) |
| { |
| struct virtual_node *vn = tb->tb_vn; |
| int to_left, to_right; |
| int size; |
| int remain_items; |
| |
| /* |
| * number of items that will be shifted to left (right) neighbor |
| * entirely |
| */ |
| to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0); |
| to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0); |
| remain_items = vn->vn_nr_item; |
| |
| /* how many items remain in S[0] after shiftings to neighbors */ |
| remain_items -= (to_left + to_right); |
| |
| /* all content of node can be shifted to neighbors */ |
| if (remain_items < 1) { |
| set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0, |
| NULL, -1, -1); |
| return 1; |
| } |
| |
| /* S[0] is not removable */ |
| if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1) |
| return 0; |
| |
| /* check whether we can divide 1 remaining item between neighbors */ |
| |
| /* get size of remaining item (in item units) */ |
| size = op_unit_num(&vn->vn_vi[to_left]); |
| |
| if (tb->lbytes + tb->rbytes >= size) { |
| set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL, |
| tb->lbytes, -1); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* check whether L, S, R can be joined in one node */ |
| static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree) |
| { |
| struct virtual_node *vn = tb->tb_vn; |
| int ih_size; |
| struct buffer_head *S0; |
| |
| S0 = PATH_H_PBUFFER(tb->tb_path, 0); |
| |
| ih_size = 0; |
| if (vn->vn_nr_item) { |
| if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE) |
| ih_size += IH_SIZE; |
| |
| if (vn->vn_vi[vn->vn_nr_item - 1]. |
| vi_type & VI_TYPE_RIGHT_MERGEABLE) |
| ih_size += IH_SIZE; |
| } else { |
| /* there was only one item and it will be deleted */ |
| struct item_head *ih; |
| |
| RFALSE(B_NR_ITEMS(S0) != 1, |
| "vs-8125: item number must be 1: it is %d", |
| B_NR_ITEMS(S0)); |
| |
| ih = item_head(S0, 0); |
| if (tb->CFR[0] |
| && !comp_short_le_keys(&ih->ih_key, |
| internal_key(tb->CFR[0], |
| tb->rkey[0]))) |
| /* |
| * Directory must be in correct state here: that is |
| * somewhere at the left side should exist first |
| * directory item. But the item being deleted can |
| * not be that first one because its right neighbor |
| * is item of the same directory. (But first item |
| * always gets deleted in last turn). So, neighbors |
| * of deleted item can be merged, so we can save |
| * ih_size |
| */ |
| if (is_direntry_le_ih(ih)) { |
| ih_size = IH_SIZE; |
| |
| /* |
| * we might check that left neighbor exists |
| * and is of the same directory |
| */ |
| RFALSE(le_ih_k_offset(ih) == DOT_OFFSET, |
| "vs-8130: first directory item can not be removed until directory is not empty"); |
| } |
| |
| } |
| |
| if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) { |
| set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1); |
| PROC_INFO_INC(tb->tb_sb, leaves_removable); |
| return 1; |
| } |
| return 0; |
| |
| } |
| |
| /* when we do not split item, lnum and rnum are numbers of entire items */ |
| #define SET_PAR_SHIFT_LEFT \ |
| if (h)\ |
| {\ |
| int to_l;\ |
| \ |
| to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\ |
| (MAX_NR_KEY(Sh) + 1 - lpar);\ |
| \ |
| set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\ |
| }\ |
| else \ |
| {\ |
| if (lset==LEFT_SHIFT_FLOW)\ |
| set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\ |
| tb->lbytes, -1);\ |
| else\ |
| set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\ |
| -1, -1);\ |
| } |
| |
| #define SET_PAR_SHIFT_RIGHT \ |
| if (h)\ |
| {\ |
| int to_r;\ |
| \ |
| to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\ |
| \ |
| set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\ |
| }\ |
| else \ |
| {\ |
| if (rset==RIGHT_SHIFT_FLOW)\ |
| set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\ |
| -1, tb->rbytes);\ |
| else\ |
| set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\ |
| -1, -1);\ |
| } |
| |
| static void free_buffers_in_tb(struct tree_balance *tb) |
| { |
| int i; |
| |
| pathrelse(tb->tb_path); |
| |
| for (i = 0; i < MAX_HEIGHT; i++) { |
| brelse(tb->L[i]); |
| brelse(tb->R[i]); |
| brelse(tb->FL[i]); |
| brelse(tb->FR[i]); |
| brelse(tb->CFL[i]); |
| brelse(tb->CFR[i]); |
| |
| tb->L[i] = NULL; |
| tb->R[i] = NULL; |
| tb->FL[i] = NULL; |
| tb->FR[i] = NULL; |
| tb->CFL[i] = NULL; |
| tb->CFR[i] = NULL; |
| } |
| } |
| |
| /* |
| * Get new buffers for storing new nodes that are created while balancing. |
| * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; |
| * CARRY_ON - schedule didn't occur while the function worked; |
| * NO_DISK_SPACE - no disk space. |
| */ |
| /* The function is NOT SCHEDULE-SAFE! */ |
| static int get_empty_nodes(struct tree_balance *tb, int h) |
| { |
| struct buffer_head *new_bh, *Sh = PATH_H_PBUFFER(tb->tb_path, h); |
| b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, }; |
| int counter, number_of_freeblk; |
| int amount_needed; /* number of needed empty blocks */ |
| int retval = CARRY_ON; |
| struct super_block *sb = tb->tb_sb; |
| |
| /* |
| * number_of_freeblk is the number of empty blocks which have been |
| * acquired for use by the balancing algorithm minus the number of |
| * empty blocks used in the previous levels of the analysis, |
| * number_of_freeblk = tb->cur_blknum can be non-zero if a schedule |
| * occurs after empty blocks are acquired, and the balancing analysis |
| * is then restarted, amount_needed is the number needed by this |
| * level (h) of the balancing analysis. |
| * |
| * Note that for systems with many processes writing, it would be |
| * more layout optimal to calculate the total number needed by all |
| * levels and then to run reiserfs_new_blocks to get all of them at |
| * once. |
| */ |
| |
| /* |
| * Initiate number_of_freeblk to the amount acquired prior to the |
| * restart of the analysis or 0 if not restarted, then subtract the |
| * amount needed by all of the levels of the tree below h. |
| */ |
| /* blknum includes S[h], so we subtract 1 in this calculation */ |
| for (counter = 0, number_of_freeblk = tb->cur_blknum; |
| counter < h; counter++) |
| number_of_freeblk -= |
| (tb->blknum[counter]) ? (tb->blknum[counter] - |
| 1) : 0; |
| |
| /* Allocate missing empty blocks. */ |
| /* if Sh == 0 then we are getting a new root */ |
| amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1; |
| /* |
| * Amount_needed = the amount that we need more than the |
| * amount that we have. |
| */ |
| if (amount_needed > number_of_freeblk) |
| amount_needed -= number_of_freeblk; |
| else /* If we have enough already then there is nothing to do. */ |
| return CARRY_ON; |
| |
| /* |
| * No need to check quota - is not allocated for blocks used |
| * for formatted nodes |
| */ |
| if (reiserfs_new_form_blocknrs(tb, blocknrs, |
| amount_needed) == NO_DISK_SPACE) |
| return NO_DISK_SPACE; |
| |
| /* for each blocknumber we just got, get a buffer and stick it on FEB */ |
| for (blocknr = blocknrs, counter = 0; |
| counter < amount_needed; blocknr++, counter++) { |
| |
| RFALSE(!*blocknr, |
| "PAP-8135: reiserfs_new_blocknrs failed when got new blocks"); |
| |
| new_bh = sb_getblk(sb, *blocknr); |
| RFALSE(buffer_dirty(new_bh) || |
| buffer_journaled(new_bh) || |
| buffer_journal_dirty(new_bh), |
| "PAP-8140: journaled or dirty buffer %b for the new block", |
| new_bh); |
| |
| /* Put empty buffers into the array. */ |
| RFALSE(tb->FEB[tb->cur_blknum], |
| "PAP-8141: busy slot for new buffer"); |
| |
| set_buffer_journal_new(new_bh); |
| tb->FEB[tb->cur_blknum++] = new_bh; |
| } |
| |
| if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb)) |
| retval = REPEAT_SEARCH; |
| |
| return retval; |
| } |
| |
| /* |
| * Get free space of the left neighbor, which is stored in the parent |
| * node of the left neighbor. |
| */ |
| static int get_lfree(struct tree_balance *tb, int h) |
| { |
| struct buffer_head *l, *f; |
| int order; |
| |
| if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL || |
| (l = tb->FL[h]) == NULL) |
| return 0; |
| |
| if (f == l) |
| order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1; |
| else { |
| order = B_NR_ITEMS(l); |
| f = l; |
| } |
| |
| return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order))); |
| } |
| |
| /* |
| * Get free space of the right neighbor, |
| * which is stored in the parent node of the right neighbor. |
| */ |
| static int get_rfree(struct tree_balance *tb, int h) |
| { |
| struct buffer_head *r, *f; |
| int order; |
| |
| if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL || |
| (r = tb->FR[h]) == NULL) |
| return 0; |
| |
| if (f == r) |
| order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1; |
| else { |
| order = 0; |
| f = r; |
| } |
| |
| return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order))); |
| |
| } |
| |
| /* Check whether left neighbor is in memory. */ |
| static int is_left_neighbor_in_cache(struct tree_balance *tb, int h) |
| { |
| struct buffer_head *father, *left; |
| struct super_block *sb = tb->tb_sb; |
| b_blocknr_t left_neighbor_blocknr; |
| int left_neighbor_position; |
| |
| /* Father of the left neighbor does not exist. */ |
| if (!tb->FL[h]) |
| return 0; |
| |
| /* Calculate father of the node to be balanced. */ |
| father = PATH_H_PBUFFER(tb->tb_path, h + 1); |
| |
| RFALSE(!father || |
| !B_IS_IN_TREE(father) || |
| !B_IS_IN_TREE(tb->FL[h]) || |
| !buffer_uptodate(father) || |
| !buffer_uptodate(tb->FL[h]), |
| "vs-8165: F[h] (%b) or FL[h] (%b) is invalid", |
| father, tb->FL[h]); |
| |
| /* |
| * Get position of the pointer to the left neighbor |
| * into the left father. |
| */ |
| left_neighbor_position = (father == tb->FL[h]) ? |
| tb->lkey[h] : B_NR_ITEMS(tb->FL[h]); |
| /* Get left neighbor block number. */ |
| left_neighbor_blocknr = |
| B_N_CHILD_NUM(tb->FL[h], left_neighbor_position); |
| /* Look for the left neighbor in the cache. */ |
| if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) { |
| |
| RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left), |
| "vs-8170: left neighbor (%b %z) is not in the tree", |
| left, left); |
| put_bh(left); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| #define LEFT_PARENTS 'l' |
| #define RIGHT_PARENTS 'r' |
| |
| static void decrement_key(struct cpu_key *key) |
| { |
| /* call item specific function for this key */ |
| item_ops[cpu_key_k_type(key)]->decrement_key(key); |
| } |
| |
| /* |
| * Calculate far left/right parent of the left/right neighbor of the |
| * current node, that is calculate the left/right (FL[h]/FR[h]) neighbor |
| * of the parent F[h]. |
| * Calculate left/right common parent of the current node and L[h]/R[h]. |
| * Calculate left/right delimiting key position. |
| * Returns: PATH_INCORRECT - path in the tree is not correct |
| * SCHEDULE_OCCURRED - schedule occurred while the function worked |
| * CARRY_ON - schedule didn't occur while the function |
| * worked |
| */ |
| static int get_far_parent(struct tree_balance *tb, |
| int h, |
| struct buffer_head **pfather, |
| struct buffer_head **pcom_father, char c_lr_par) |
| { |
| struct buffer_head *parent; |
| INITIALIZE_PATH(s_path_to_neighbor_father); |
| struct treepath *path = tb->tb_path; |
| struct cpu_key s_lr_father_key; |
| int counter, |
| position = INT_MAX, |
| first_last_position = 0, |
| path_offset = PATH_H_PATH_OFFSET(path, h); |
| |
| /* |
| * Starting from F[h] go upwards in the tree, and look for the common |
| * ancestor of F[h], and its neighbor l/r, that should be obtained. |
| */ |
| |
| counter = path_offset; |
| |
| RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET, |
| "PAP-8180: invalid path length"); |
| |
| for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) { |
| /* |
| * Check whether parent of the current buffer in the path |
| * is really parent in the tree. |
| */ |
| if (!B_IS_IN_TREE |
| (parent = PATH_OFFSET_PBUFFER(path, counter - 1))) |
| return REPEAT_SEARCH; |
| |
| /* Check whether position in the parent is correct. */ |
| if ((position = |
| PATH_OFFSET_POSITION(path, |
| counter - 1)) > |
| B_NR_ITEMS(parent)) |
| return REPEAT_SEARCH; |
| |
| /* |
| * Check whether parent at the path really points |
| * to the child. |
| */ |
| if (B_N_CHILD_NUM(parent, position) != |
| PATH_OFFSET_PBUFFER(path, counter)->b_blocknr) |
| return REPEAT_SEARCH; |
| |
| /* |
| * Return delimiting key if position in the parent is not |
| * equal to first/last one. |
| */ |
| if (c_lr_par == RIGHT_PARENTS) |
| first_last_position = B_NR_ITEMS(parent); |
| if (position != first_last_position) { |
| *pcom_father = parent; |
| get_bh(*pcom_father); |
| /*(*pcom_father = parent)->b_count++; */ |
| break; |
| } |
| } |
| |
| /* if we are in the root of the tree, then there is no common father */ |
| if (counter == FIRST_PATH_ELEMENT_OFFSET) { |
| /* |
| * Check whether first buffer in the path is the |
| * root of the tree. |
| */ |
| if (PATH_OFFSET_PBUFFER |
| (tb->tb_path, |
| FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == |
| SB_ROOT_BLOCK(tb->tb_sb)) { |
| *pfather = *pcom_father = NULL; |
| return CARRY_ON; |
| } |
| return REPEAT_SEARCH; |
| } |
| |
| RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL, |
| "PAP-8185: (%b %z) level too small", |
| *pcom_father, *pcom_father); |
| |
| /* Check whether the common parent is locked. */ |
| |
| if (buffer_locked(*pcom_father)) { |
| |
| /* Release the write lock while the buffer is busy */ |
| int depth = reiserfs_write_unlock_nested(tb->tb_sb); |
| __wait_on_buffer(*pcom_father); |
| reiserfs_write_lock_nested(tb->tb_sb, depth); |
| if (FILESYSTEM_CHANGED_TB(tb)) { |
| brelse(*pcom_father); |
| return REPEAT_SEARCH; |
| } |
| } |
| |
| /* |
| * So, we got common parent of the current node and its |
| * left/right neighbor. Now we are getting the parent of the |
| * left/right neighbor. |
| */ |
| |
| /* Form key to get parent of the left/right neighbor. */ |
| le_key2cpu_key(&s_lr_father_key, |
| internal_key(*pcom_father, |
| (c_lr_par == |
| LEFT_PARENTS) ? (tb->lkey[h - 1] = |
| position - |
| 1) : (tb->rkey[h - |
| 1] = |
| position))); |
| |
| if (c_lr_par == LEFT_PARENTS) |
| decrement_key(&s_lr_father_key); |
| |
| if (search_by_key |
| (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father, |
| h + 1) == IO_ERROR) |
| /* path is released */ |
| return IO_ERROR; |
| |
| if (FILESYSTEM_CHANGED_TB(tb)) { |
| pathrelse(&s_path_to_neighbor_father); |
| brelse(*pcom_father); |
| return REPEAT_SEARCH; |
| } |
| |
| *pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father); |
| |
| RFALSE(B_LEVEL(*pfather) != h + 1, |
| "PAP-8190: (%b %z) level too small", *pfather, *pfather); |
| RFALSE(s_path_to_neighbor_father.path_length < |
| FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small"); |
| |
| s_path_to_neighbor_father.path_length--; |
| pathrelse(&s_path_to_neighbor_father); |
| return CARRY_ON; |
| } |
| |
| /* |
| * Get parents of neighbors of node in the path(S[path_offset]) and |
| * common parents of S[path_offset] and L[path_offset]/R[path_offset]: |
| * F[path_offset], FL[path_offset], FR[path_offset], CFL[path_offset], |
| * CFR[path_offset]. |
| * Calculate numbers of left and right delimiting keys position: |
| * lkey[path_offset], rkey[path_offset]. |
| * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked |
| * CARRY_ON - schedule didn't occur while the function worked |
| */ |
| static int get_parents(struct tree_balance *tb, int h) |
| { |
| struct treepath *path = tb->tb_path; |
| int position, |
| ret, |
| path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h); |
| struct buffer_head *curf, *curcf; |
| |
| /* Current node is the root of the tree or will be root of the tree */ |
| if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) { |
| /* |
| * The root can not have parents. |
| * Release nodes which previously were obtained as |
| * parents of the current node neighbors. |
| */ |
| brelse(tb->FL[h]); |
| brelse(tb->CFL[h]); |
| brelse(tb->FR[h]); |
| brelse(tb->CFR[h]); |
| tb->FL[h] = NULL; |
| tb->CFL[h] = NULL; |
| tb->FR[h] = NULL; |
| tb->CFR[h] = NULL; |
| return CARRY_ON; |
| } |
| |
| /* Get parent FL[path_offset] of L[path_offset]. */ |
| position = PATH_OFFSET_POSITION(path, path_offset - 1); |
| if (position) { |
| /* Current node is not the first child of its parent. */ |
| curf = PATH_OFFSET_PBUFFER(path, path_offset - 1); |
| curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1); |
| get_bh(curf); |
| get_bh(curf); |
| tb->lkey[h] = position - 1; |
| } else { |
| /* |
| * Calculate current parent of L[path_offset], which is the |
| * left neighbor of the current node. Calculate current |
| * common parent of L[path_offset] and the current node. |
| * Note that CFL[path_offset] not equal FL[path_offset] and |
| * CFL[path_offset] not equal F[path_offset]. |
| * Calculate lkey[path_offset]. |
| */ |
| if ((ret = get_far_parent(tb, h + 1, &curf, |
| &curcf, |
| LEFT_PARENTS)) != CARRY_ON) |
| return ret; |
| } |
| |
| brelse(tb->FL[h]); |
| tb->FL[h] = curf; /* New initialization of FL[h]. */ |
| brelse(tb->CFL[h]); |
| tb->CFL[h] = curcf; /* New initialization of CFL[h]. */ |
| |
| RFALSE((curf && !B_IS_IN_TREE(curf)) || |
| (curcf && !B_IS_IN_TREE(curcf)), |
| "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf); |
| |
| /* Get parent FR[h] of R[h]. */ |
| |
| /* Current node is the last child of F[h]. FR[h] != F[h]. */ |
| if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) { |
| /* |
| * Calculate current parent of R[h], which is the right |
| * neighbor of F[h]. Calculate current common parent of |
| * R[h] and current node. Note that CFR[h] not equal |
| * FR[path_offset] and CFR[h] not equal F[h]. |
| */ |
| if ((ret = |
| get_far_parent(tb, h + 1, &curf, &curcf, |
| RIGHT_PARENTS)) != CARRY_ON) |
| return ret; |
| } else { |
| /* Current node is not the last child of its parent F[h]. */ |
| curf = PATH_OFFSET_PBUFFER(path, path_offset - 1); |
| curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1); |
| get_bh(curf); |
| get_bh(curf); |
| tb->rkey[h] = position; |
| } |
| |
| brelse(tb->FR[h]); |
| /* New initialization of FR[path_offset]. */ |
| tb->FR[h] = curf; |
| |
| brelse(tb->CFR[h]); |
| /* New initialization of CFR[path_offset]. */ |
| tb->CFR[h] = curcf; |
| |
| RFALSE((curf && !B_IS_IN_TREE(curf)) || |
| (curcf && !B_IS_IN_TREE(curcf)), |
| "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf); |
| |
| return CARRY_ON; |
| } |
| |
| /* |
| * it is possible to remove node as result of shiftings to |
| * neighbors even when we insert or paste item. |
| */ |
| static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree, |
| struct tree_balance *tb, int h) |
| { |
| struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h); |
| int levbytes = tb->insert_size[h]; |
| struct item_head *ih; |
| struct reiserfs_key *r_key = NULL; |
| |
| ih = item_head(Sh, 0); |
| if (tb->CFR[h]) |
| r_key = internal_key(tb->CFR[h], tb->rkey[h]); |
| |
| if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes |
| /* shifting may merge items which might save space */ |
| - |
| ((!h |
| && op_is_left_mergeable(&ih->ih_key, Sh->b_size)) ? IH_SIZE : 0) |
| - |
| ((!h && r_key |
| && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0) |
| + ((h) ? KEY_SIZE : 0)) { |
| /* node can not be removed */ |
| if (sfree >= levbytes) { |
| /* new item fits into node S[h] without any shifting */ |
| if (!h) |
| tb->s0num = |
| B_NR_ITEMS(Sh) + |
| ((mode == M_INSERT) ? 1 : 0); |
| set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); |
| return NO_BALANCING_NEEDED; |
| } |
| } |
| PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]); |
| return !NO_BALANCING_NEEDED; |
| } |
| |
| /* |
| * Check whether current node S[h] is balanced when increasing its size by |
| * Inserting or Pasting. |
| * Calculate parameters for balancing for current level h. |
| * Parameters: |
| * tb tree_balance structure; |
| * h current level of the node; |
| * inum item number in S[h]; |
| * mode i - insert, p - paste; |
| * Returns: 1 - schedule occurred; |
| * 0 - balancing for higher levels needed; |
| * -1 - no balancing for higher levels needed; |
| * -2 - no disk space. |
| */ |
| /* ip means Inserting or Pasting */ |
| static int ip_check_balance(struct tree_balance *tb, int h) |
| { |
| struct virtual_node *vn = tb->tb_vn; |
| /* |
| * Number of bytes that must be inserted into (value is negative |
| * if bytes are deleted) buffer which contains node being balanced. |
| * The mnemonic is that the attempted change in node space used |
| * level is levbytes bytes. |
| */ |
| int levbytes; |
| int ret; |
| |
| int lfree, sfree, rfree /* free space in L, S and R */ ; |
| |
| /* |
| * nver is short for number of vertixes, and lnver is the number if |
| * we shift to the left, rnver is the number if we shift to the |
| * right, and lrnver is the number if we shift in both directions. |
| * The goal is to minimize first the number of vertixes, and second, |
| * the number of vertixes whose contents are changed by shifting, |
| * and third the number of uncached vertixes whose contents are |
| * changed by shifting and must be read from disk. |
| */ |
| int nver, lnver, rnver, lrnver; |
| |
| /* |
| * used at leaf level only, S0 = S[0] is the node being balanced, |
| * sInum [ I = 0,1,2 ] is the number of items that will |
| * remain in node SI after balancing. S1 and S2 are new |
| * nodes that might be created. |
| */ |
| |
| /* |
| * we perform 8 calls to get_num_ver(). For each call we |
| * calculate five parameters. where 4th parameter is s1bytes |
| * and 5th - s2bytes |
| * |
| * s0num, s1num, s2num for 8 cases |
| * 0,1 - do not shift and do not shift but bottle |
| * 2 - shift only whole item to left |
| * 3 - shift to left and bottle as much as possible |
| * 4,5 - shift to right (whole items and as much as possible |
| * 6,7 - shift to both directions (whole items and as much as possible) |
| */ |
| short snum012[40] = { 0, }; |
| |
| /* Sh is the node whose balance is currently being checked */ |
| struct buffer_head *Sh; |
| |
| Sh = PATH_H_PBUFFER(tb->tb_path, h); |
| levbytes = tb->insert_size[h]; |
| |
| /* Calculate balance parameters for creating new root. */ |
| if (!Sh) { |
| if (!h) |
| reiserfs_panic(tb->tb_sb, "vs-8210", |
| "S[0] can not be 0"); |
| switch (ret = get_empty_nodes(tb, h)) { |
| /* no balancing for higher levels needed */ |
| case CARRY_ON: |
| set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); |
| return NO_BALANCING_NEEDED; |
| |
| case NO_DISK_SPACE: |
| case REPEAT_SEARCH: |
| return ret; |
| default: |
| reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect " |
| "return value of get_empty_nodes"); |
| } |
| } |
| |
| /* get parents of S[h] neighbors. */ |
| ret = get_parents(tb, h); |
| if (ret != CARRY_ON) |
| return ret; |
| |
| sfree = B_FREE_SPACE(Sh); |
| |
| /* get free space of neighbors */ |
| rfree = get_rfree(tb, h); |
| lfree = get_lfree(tb, h); |
| |
| /* and new item fits into node S[h] without any shifting */ |
| if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) == |
| NO_BALANCING_NEEDED) |
| return NO_BALANCING_NEEDED; |
| |
| create_virtual_node(tb, h); |
| |
| /* |
| * determine maximal number of items we can shift to the left |
| * neighbor (in tb structure) and the maximal number of bytes |
| * that can flow to the left neighbor from the left most liquid |
| * item that cannot be shifted from S[0] entirely (returned value) |
| */ |
| check_left(tb, h, lfree); |
| |
| /* |
| * determine maximal number of items we can shift to the right |
| * neighbor (in tb structure) and the maximal number of bytes |
| * that can flow to the right neighbor from the right most liquid |
| * item that cannot be shifted from S[0] entirely (returned value) |
| */ |
| check_right(tb, h, rfree); |
| |
| /* |
| * all contents of internal node S[h] can be moved into its |
| * neighbors, S[h] will be removed after balancing |
| */ |
| if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) { |
| int to_r; |
| |
| /* |
| * Since we are working on internal nodes, and our internal |
| * nodes have fixed size entries, then we can balance by the |
| * number of items rather than the space they consume. In this |
| * routine we set the left node equal to the right node, |
| * allowing a difference of less than or equal to 1 child |
| * pointer. |
| */ |
| to_r = |
| ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] + |
| vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - |
| tb->rnum[h]); |
| set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, |
| -1, -1); |
| return CARRY_ON; |
| } |
| |
| /* |
| * this checks balance condition, that any two neighboring nodes |
| * can not fit in one node |
| */ |
| RFALSE(h && |
| (tb->lnum[h] >= vn->vn_nr_item + 1 || |
| tb->rnum[h] >= vn->vn_nr_item + 1), |
| "vs-8220: tree is not balanced on internal level"); |
| RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) || |
| (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))), |
| "vs-8225: tree is not balanced on leaf level"); |
| |
| /* |
| * all contents of S[0] can be moved into its neighbors |
| * S[0] will be removed after balancing. |
| */ |
| if (!h && is_leaf_removable(tb)) |
| return CARRY_ON; |
| |
| /* |
| * why do we perform this check here rather than earlier?? |
| * Answer: we can win 1 node in some cases above. Moreover we |
| * checked it above, when we checked, that S[0] is not removable |
| * in principle |
| */ |
| |
| /* new item fits into node S[h] without any shifting */ |
| if (sfree >= levbytes) { |
| if (!h) |
| tb->s0num = vn->vn_nr_item; |
| set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); |
| return NO_BALANCING_NEEDED; |
| } |
| |
| { |
| int lpar, rpar, nset, lset, rset, lrset; |
| /* regular overflowing of the node */ |
| |
| /* |
| * get_num_ver works in 2 modes (FLOW & NO_FLOW) |
| * lpar, rpar - number of items we can shift to left/right |
| * neighbor (including splitting item) |
| * nset, lset, rset, lrset - shows, whether flowing items |
| * give better packing |
| */ |
| #define FLOW 1 |
| #define NO_FLOW 0 /* do not any splitting */ |
| |
| /* we choose one of the following */ |
| #define NOTHING_SHIFT_NO_FLOW 0 |
| #define NOTHING_SHIFT_FLOW 5 |
| #define LEFT_SHIFT_NO_FLOW 10 |
| #define LEFT_SHIFT_FLOW 15 |
| #define RIGHT_SHIFT_NO_FLOW 20 |
| #define RIGHT_SHIFT_FLOW 25 |
| #define LR_SHIFT_NO_FLOW 30 |
| #define LR_SHIFT_FLOW 35 |
| |
| lpar = tb->lnum[h]; |
| rpar = tb->rnum[h]; |
| |
| /* |
| * calculate number of blocks S[h] must be split into when |
| * nothing is shifted to the neighbors, as well as number of |
| * items in each part of the split node (s012 numbers), |
| * and number of bytes (s1bytes) of the shared drop which |
| * flow to S1 if any |
| */ |
| nset = NOTHING_SHIFT_NO_FLOW; |
| nver = get_num_ver(vn->vn_mode, tb, h, |
| 0, -1, h ? vn->vn_nr_item : 0, -1, |
| snum012, NO_FLOW); |
| |
| if (!h) { |
| int nver1; |
| |
| /* |
| * note, that in this case we try to bottle |
| * between S[0] and S1 (S1 - the first new node) |
| */ |
| nver1 = get_num_ver(vn->vn_mode, tb, h, |
| 0, -1, 0, -1, |
| snum012 + NOTHING_SHIFT_FLOW, FLOW); |
| if (nver > nver1) |
| nset = NOTHING_SHIFT_FLOW, nver = nver1; |
| } |
| |
| /* |
| * calculate number of blocks S[h] must be split into when |
| * l_shift_num first items and l_shift_bytes of the right |
| * most liquid item to be shifted are shifted to the left |
| * neighbor, as well as number of items in each part of the |
| * splitted node (s012 numbers), and number of bytes |
| * (s1bytes) of the shared drop which flow to S1 if any |
| */ |
| lset = LEFT_SHIFT_NO_FLOW; |
| lnver = get_num_ver(vn->vn_mode, tb, h, |
| lpar - ((h || tb->lbytes == -1) ? 0 : 1), |
| -1, h ? vn->vn_nr_item : 0, -1, |
| snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW); |
| if (!h) { |
| int lnver1; |
| |
| lnver1 = get_num_ver(vn->vn_mode, tb, h, |
| lpar - |
| ((tb->lbytes != -1) ? 1 : 0), |
| tb->lbytes, 0, -1, |
| snum012 + LEFT_SHIFT_FLOW, FLOW); |
| if (lnver > lnver1) |
| lset = LEFT_SHIFT_FLOW, lnver = lnver1; |
| } |
| |
| /* |
| * calculate number of blocks S[h] must be split into when |
| * r_shift_num first items and r_shift_bytes of the left most |
| * liquid item to be shifted are shifted to the right neighbor, |
| * as well as number of items in each part of the splitted |
| * node (s012 numbers), and number of bytes (s1bytes) of the |
| * shared drop which flow to S1 if any |
| */ |
| rset = RIGHT_SHIFT_NO_FLOW; |
| rnver = get_num_ver(vn->vn_mode, tb, h, |
| 0, -1, |
| h ? (vn->vn_nr_item - rpar) : (rpar - |
| ((tb-> |
| rbytes != |
| -1) ? 1 : |
| 0)), -1, |
| snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW); |
| if (!h) { |
| int rnver1; |
| |
| rnver1 = get_num_ver(vn->vn_mode, tb, h, |
| 0, -1, |
| (rpar - |
| ((tb->rbytes != -1) ? 1 : 0)), |
| tb->rbytes, |
| snum012 + RIGHT_SHIFT_FLOW, FLOW); |
| |
| if (rnver > rnver1) |
| rset = RIGHT_SHIFT_FLOW, rnver = rnver1; |
| } |
| |
| /* |
| * calculate number of blocks S[h] must be split into when |
| * items are shifted in both directions, as well as number |
| * of items in each part of the splitted node (s012 numbers), |
| * and number of bytes (s1bytes) of the shared drop which |
| * flow to S1 if any |
| */ |
| lrset = LR_SHIFT_NO_FLOW; |
| lrnver = get_num_ver(vn->vn_mode, tb, h, |
| lpar - ((h || tb->lbytes == -1) ? 0 : 1), |
| -1, |
| h ? (vn->vn_nr_item - rpar) : (rpar - |
| ((tb-> |
| rbytes != |
| -1) ? 1 : |
| 0)), -1, |
| snum012 + LR_SHIFT_NO_FLOW, NO_FLOW); |
| if (!h) { |
| int lrnver1; |
| |
| lrnver1 = get_num_ver(vn->vn_mode, tb, h, |
| lpar - |
| ((tb->lbytes != -1) ? 1 : 0), |
| tb->lbytes, |
| (rpar - |
| ((tb->rbytes != -1) ? 1 : 0)), |
| tb->rbytes, |
| snum012 + LR_SHIFT_FLOW, FLOW); |
| if (lrnver > lrnver1) |
| lrset = LR_SHIFT_FLOW, lrnver = lrnver1; |
| } |
| |
| /* |
| * Our general shifting strategy is: |
| * 1) to minimized number of new nodes; |
| * 2) to minimized number of neighbors involved in shifting; |
| * 3) to minimized number of disk reads; |
| */ |
| |
| /* we can win TWO or ONE nodes by shifting in both directions */ |
| if (lrnver < lnver && lrnver < rnver) { |
| RFALSE(h && |
| (tb->lnum[h] != 1 || |
| tb->rnum[h] != 1 || |
| lrnver != 1 || rnver != 2 || lnver != 2 |
| || h != 1), "vs-8230: bad h"); |
| if (lrset == LR_SHIFT_FLOW) |
| set_parameters(tb, h, tb->lnum[h], tb->rnum[h], |
| lrnver, snum012 + lrset, |
| tb->lbytes, tb->rbytes); |
| else |
| set_parameters(tb, h, |
| tb->lnum[h] - |
| ((tb->lbytes == -1) ? 0 : 1), |
| tb->rnum[h] - |
| ((tb->rbytes == -1) ? 0 : 1), |
| lrnver, snum012 + lrset, -1, -1); |
| |
| return CARRY_ON; |
| } |
| |
| /* |
| * if shifting doesn't lead to better packing |
| * then don't shift |
| */ |
| if (nver == lrnver) { |
| set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1, |
| -1); |
| return CARRY_ON; |
| } |
| |
| /* |
| * now we know that for better packing shifting in only one |
| * direction either to the left or to the right is required |
| */ |
| |
| /* |
| * if shifting to the left is better than |
| * shifting to the right |
| */ |
| if (lnver < rnver) { |
| SET_PAR_SHIFT_LEFT; |
| return CARRY_ON; |
| } |
| |
| /* |
| * if shifting to the right is better than |
| * shifting to the left |
| */ |
| if (lnver > rnver) { |
| SET_PAR_SHIFT_RIGHT; |
| return CARRY_ON; |
| } |
| |
| /* |
| * now shifting in either direction gives the same number |
| * of nodes and we can make use of the cached neighbors |
| */ |
| if (is_left_neighbor_in_cache(tb, h)) { |
| SET_PAR_SHIFT_LEFT; |
| return CARRY_ON; |
| } |
| |
| /* |
| * shift to the right independently on whether the |
| * right neighbor in cache or not |
| */ |
| SET_PAR_SHIFT_RIGHT; |
| return CARRY_ON; |
| } |
| } |
| |
| /* |
| * Check whether current node S[h] is balanced when Decreasing its size by |
| * Deleting or Cutting for INTERNAL node of S+tree. |
| * Calculate parameters for balancing for current level h. |
| * Parameters: |
| * tb tree_balance structure; |
| * h current level of the node; |
| * inum item number in S[h]; |
| * mode i - insert, p - paste; |
| * Returns: 1 - schedule occurred; |
| * 0 - balancing for higher levels needed; |
| * -1 - no balancing for higher levels needed; |
| * -2 - no disk space. |
| * |
| * Note: Items of internal nodes have fixed size, so the balance condition for |
| * the internal part of S+tree is as for the B-trees. |
| */ |
| static int dc_check_balance_internal(struct tree_balance *tb, int h) |
| { |
| struct virtual_node *vn = tb->tb_vn; |
| |
| /* |
| * Sh is the node whose balance is currently being checked, |
| * and Fh is its father. |
| */ |
| struct buffer_head *Sh, *Fh; |
| int maxsize, ret; |
| int lfree, rfree /* free space in L and R */ ; |
| |
| Sh = PATH_H_PBUFFER(tb->tb_path, h); |
| Fh = PATH_H_PPARENT(tb->tb_path, h); |
| |
| maxsize = MAX_CHILD_SIZE(Sh); |
| |
| /* |
| * using tb->insert_size[h], which is negative in this case, |
| * create_virtual_node calculates: |
| * new_nr_item = number of items node would have if operation is |
| * performed without balancing (new_nr_item); |
| */ |
| create_virtual_node(tb, h); |
| |
| if (!Fh) { /* S[h] is the root. */ |
| /* no balancing for higher levels needed */ |
| if (vn->vn_nr_item > 0) { |
| set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); |
| return NO_BALANCING_NEEDED; |
| } |
| /* |
| * new_nr_item == 0. |
| * Current root will be deleted resulting in |
| * decrementing the tree height. |
| */ |
| set_parameters(tb, h, 0, 0, 0, NULL, -1, -1); |
| return CARRY_ON; |
| } |
| |
| if ((ret = get_parents(tb, h)) != CARRY_ON) |
| return ret; |
| |
| /* get free space of neighbors */ |
| rfree = get_rfree(tb, h); |
| lfree = get_lfree(tb, h); |
| |
| /* determine maximal number of items we can fit into neighbors */ |
| check_left(tb, h, lfree); |
| check_right(tb, h, rfree); |
| |
| /* |
| * Balance condition for the internal node is valid. |
| * In this case we balance only if it leads to better packing. |
| */ |
| if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) { |
| /* |
| * Here we join S[h] with one of its neighbors, |
| * which is impossible with greater values of new_nr_item. |
| */ |
| if (vn->vn_nr_item == MIN_NR_KEY(Sh)) { |
| /* All contents of S[h] can be moved to L[h]. */ |
| if (tb->lnum[h] >= vn->vn_nr_item + 1) { |
| int n; |
| int order_L; |
| |
| order_L = |
| ((n = |
| PATH_H_B_ITEM_ORDER(tb->tb_path, |
| h)) == |
| 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; |
| n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / |
| (DC_SIZE + KEY_SIZE); |
| set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, |
| -1); |
| return CARRY_ON; |
| } |
| |
| /* All contents of S[h] can be moved to R[h]. */ |
| if (tb->rnum[h] >= vn->vn_nr_item + 1) { |
| int n; |
| int order_R; |
| |
| order_R = |
| ((n = |
| PATH_H_B_ITEM_ORDER(tb->tb_path, |
| h)) == |
| B_NR_ITEMS(Fh)) ? 0 : n + 1; |
| n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / |
| (DC_SIZE + KEY_SIZE); |
| set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, |
| -1); |
| return CARRY_ON; |
| } |
| } |
| |
| /* |
| * All contents of S[h] can be moved to the neighbors |
| * (L[h] & R[h]). |
| */ |
| if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) { |
| int to_r; |
| |
| to_r = |
| ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - |
| tb->rnum[h] + vn->vn_nr_item + 1) / 2 - |
| (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); |
| set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, |
| 0, NULL, -1, -1); |
| return CARRY_ON; |
| } |
| |
| /* Balancing does not lead to better packing. */ |
| set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); |
| return NO_BALANCING_NEEDED; |
| } |
| |
| /* |
| * Current node contain insufficient number of items. |
| * Balancing is required. |
| */ |
| /* Check whether we can merge S[h] with left neighbor. */ |
| if (tb->lnum[h] >= vn->vn_nr_item + 1) |
| if (is_left_neighbor_in_cache(tb, h) |
| || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) { |
| int n; |
| int order_L; |
| |
| order_L = |
| ((n = |
| PATH_H_B_ITEM_ORDER(tb->tb_path, |
| h)) == |
| 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; |
| n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE + |
| KEY_SIZE); |
| set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1); |
| return CARRY_ON; |
| } |
| |
| /* Check whether we can merge S[h] with right neighbor. */ |
| if (tb->rnum[h] >= vn->vn_nr_item + 1) { |
| int n; |
| int order_R; |
| |
| order_R = |
| ((n = |
| PATH_H_B_ITEM_ORDER(tb->tb_path, |
| h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1); |
| n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE + |
| KEY_SIZE); |
| set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1); |
| return CARRY_ON; |
| } |
| |
| /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ |
| if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) { |
| int to_r; |
| |
| to_r = |
| ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] + |
| vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - |
| tb->rnum[h]); |
| set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, |
| -1, -1); |
| return CARRY_ON; |
| } |
| |
| /* For internal nodes try to borrow item from a neighbor */ |
| RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root"); |
| |
| /* Borrow one or two items from caching neighbor */ |
| if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) { |
| int from_l; |
| |
| from_l = |
| (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item + |
| 1) / 2 - (vn->vn_nr_item + 1); |
| set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1); |
| return CARRY_ON; |
| } |
| |
| set_parameters(tb, h, 0, |
| -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item + |
| 1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1); |
| return CARRY_ON; |
| } |
| |
| /* |
| * Check whether current node S[h] is balanced when Decreasing its size by |
| * Deleting or Truncating for LEAF node of S+tree. |
| * Calculate parameters for balancing for current level h. |
| * Parameters: |
| * tb tree_balance structure; |
| * h current level of the node; |
| * inum item number in S[h]; |
| * mode i - insert, p - paste; |
| * Returns: 1 - schedule occurred; |
| * 0 - balancing for higher levels needed; |
| * -1 - no balancing for higher levels needed; |
| * -2 - no disk space. |
| */ |
| static int dc_check_balance_leaf(struct tree_balance *tb, int h) |
| { |
| struct virtual_node *vn = tb->tb_vn; |
| |
| /* |
| * Number of bytes that must be deleted from |
| * (value is negative if bytes are deleted) buffer which |
| * contains node being balanced. The mnemonic is that the |
| * attempted change in node space used level is levbytes bytes. |
| */ |
| int levbytes; |
| |
| /* the maximal item size */ |
| int maxsize, ret; |
| |
| /* |
| * S0 is the node whose balance is currently being checked, |
| * and F0 is its father. |
| */ |
| struct buffer_head *S0, *F0; |
| int lfree, rfree /* free space in L and R */ ; |
| |
| S0 = PATH_H_PBUFFER(tb->tb_path, 0); |
| F0 = PATH_H_PPARENT(tb->tb_path, 0); |
| |
| levbytes = tb->insert_size[h]; |
| |
| maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */ |
| |
| if (!F0) { /* S[0] is the root now. */ |
| |
| RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0), |
| "vs-8240: attempt to create empty buffer tree"); |
| |
| set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); |
| return NO_BALANCING_NEEDED; |
| } |
| |
| if ((ret = get_parents(tb, h)) != CARRY_ON) |
| return ret; |
| |
| /* get free space of neighbors */ |
| rfree = get_rfree(tb, h); |
| lfree = get_lfree(tb, h); |
| |
| create_virtual_node(tb, h); |
| |
| /* if 3 leaves can be merge to one, set parameters and return */ |
| if (are_leaves_removable(tb, lfree, rfree)) |
| return CARRY_ON; |
| |
| /* |
| * determine maximal number of items we can shift to the left/right |
| * neighbor and the maximal number of bytes that can flow to the |
| * left/right neighbor from the left/right most liquid item that |
| * cannot be shifted from S[0] entirely |
| */ |
| check_left(tb, h, lfree); |
| check_right(tb, h, rfree); |
| |
| /* check whether we can merge S with left neighbor. */ |
| if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1) |
| if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */ |
| !tb->FR[h]) { |
| |
| RFALSE(!tb->FL[h], |
| "vs-8245: dc_check_balance_leaf: FL[h] must exist"); |
| |
| /* set parameter to merge S[0] with its left neighbor */ |
| set_parameters(tb, h, -1, 0, 0, NULL, -1, -1); |
| return CARRY_ON; |
| } |
| |
| /* check whether we can merge S[0] with right neighbor. */ |
| if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) { |
| set_parameters(tb, h, 0, -1, 0, NULL, -1, -1); |
| return CARRY_ON; |
| } |
| |
| /* |
| * All contents of S[0] can be moved to the neighbors (L[0] & R[0]). |
| * Set parameters and return |
| */ |
| if (is_leaf_removable(tb)) |
| return CARRY_ON; |
| |
| /* Balancing is not required. */ |
| tb->s0num = vn->vn_nr_item; |
| set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); |
| return NO_BALANCING_NEEDED; |
| } |
| |
| /* |
| * Check whether current node S[h] is balanced when Decreasing its size by |
| * Deleting or Cutting. |
| * Calculate parameters for balancing for current level h. |
| * Parameters: |
| * tb tree_balance structure; |
| * h current level of the node; |
| * inum item number in S[h]; |
| * mode d - delete, c - cut. |
| * Returns: 1 - schedule occurred; |
| * 0 - balancing for higher levels needed; |
| * -1 - no balancing for higher levels needed; |
| * -2 - no disk space. |
| */ |
| static int dc_check_balance(struct tree_balance *tb, int h) |
| { |
| RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)), |
| "vs-8250: S is not initialized"); |
| |
| if (h) |
| return dc_check_balance_internal(tb, h); |
| else |
| return dc_check_balance_leaf(tb, h); |
| } |
| |
| /* |
| * Check whether current node S[h] is balanced. |
| * Calculate parameters for balancing for current level h. |
| * Parameters: |
| * |
| * tb tree_balance structure: |
| * |
| * tb is a large structure that must be read about in the header |
| * file at the same time as this procedure if the reader is |
| * to successfully understand this procedure |
| * |
| * h current level of the node; |
| * inum item number in S[h]; |
| * mode i - insert, p - paste, d - delete, c - cut. |
| * Returns: 1 - schedule occurred; |
| * 0 - balancing for higher levels needed; |
| * -1 - no balancing for higher levels needed; |
| * -2 - no disk space. |
| */ |
| static int check_balance(int mode, |
| struct tree_balance *tb, |
| int h, |
| int inum, |
| int pos_in_item, |
| struct item_head *ins_ih, const void *data) |
| { |
| struct virtual_node *vn; |
| |
| vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf); |
| vn->vn_free_ptr = (char *)(tb->tb_vn + 1); |
| vn->vn_mode = mode; |
| vn->vn_affected_item_num = inum; |
| vn->vn_pos_in_item = pos_in_item; |
| vn->vn_ins_ih = ins_ih; |
| vn->vn_data = data; |
| |
| RFALSE(mode == M_INSERT && !vn->vn_ins_ih, |
| "vs-8255: ins_ih can not be 0 in insert mode"); |
| |
| /* Calculate balance parameters when size of node is increasing. */ |
| if (tb->insert_size[h] > 0) |
| return ip_check_balance(tb, h); |
| |
| /* Calculate balance parameters when size of node is decreasing. */ |
| return dc_check_balance(tb, h); |
| } |
| |
| /* Check whether parent at the path is the really parent of the current node.*/ |
| static int get_direct_parent(struct tree_balance *tb, int h) |
| { |
| struct buffer_head *bh; |
| struct treepath *path = tb->tb_path; |
| int position, |
| path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h); |
| |
| /* We are in the root or in the new root. */ |
| if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) { |
| |
| RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1, |
| "PAP-8260: invalid offset in the path"); |
| |
| if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)-> |
| b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) { |
| /* Root is not changed. */ |
| PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL; |
| PATH_OFFSET_POSITION(path, path_offset - 1) = 0; |
| return CARRY_ON; |
| } |
| /* Root is changed and we must recalculate the path. */ |
| return REPEAT_SEARCH; |
| } |
| |
| /* Parent in the path is not in the tree. */ |
| if (!B_IS_IN_TREE |
| (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1))) |
| return REPEAT_SEARCH; |
| |
| if ((position = |
| PATH_OFFSET_POSITION(path, |
| path_offset - 1)) > B_NR_ITEMS(bh)) |
| return REPEAT_SEARCH; |
| |
| /* Parent in the path is not parent of the current node in the tree. */ |
| if (B_N_CHILD_NUM(bh, position) != |
| PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr) |
| return REPEAT_SEARCH; |
| |
| if (buffer_locked(bh)) { |
| int depth = reiserfs_write_unlock_nested(tb->tb_sb); |
| __wait_on_buffer(bh); |
| reiserfs_write_lock_nested(tb->tb_sb, depth); |
| if (FILESYSTEM_CHANGED_TB(tb)) |
| return REPEAT_SEARCH; |
| } |
| |
| /* |
| * Parent in the path is unlocked and really parent |
| * of the current node. |
| */ |
| return CARRY_ON; |
| } |
| |
| /* |
| * Using lnum[h] and rnum[h] we should determine what neighbors |
| * of S[h] we |
| * need in order to balance S[h], and get them if necessary. |
| * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; |
| * CARRY_ON - schedule didn't occur while the function worked; |
| */ |
| static int get_neighbors(struct tree_balance *tb, int h) |
| { |
| int child_position, |
| path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1); |
| unsigned long son_number; |
| struct super_block *sb = tb->tb_sb; |
| struct buffer_head *bh; |
| int depth; |
| |
| PROC_INFO_INC(sb, get_neighbors[h]); |
| |
| if (tb->lnum[h]) { |
| /* We need left neighbor to balance S[h]. */ |
| PROC_INFO_INC(sb, need_l_neighbor[h]); |
| bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset); |
| |
| RFALSE(bh == tb->FL[h] && |
| !PATH_OFFSET_POSITION(tb->tb_path, path_offset), |
| "PAP-8270: invalid position in the parent"); |
| |
| child_position = |
| (bh == |
| tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb-> |
| FL[h]); |
| son_number = B_N_CHILD_NUM(tb->FL[h], child_position); |
| depth = reiserfs_write_unlock_nested(tb->tb_sb); |
| bh = sb_bread(sb, son_number); |
| reiserfs_write_lock_nested(tb->tb_sb, depth); |
| if (!bh) |
| return IO_ERROR; |
| if (FILESYSTEM_CHANGED_TB(tb)) { |
| brelse(bh); |
| PROC_INFO_INC(sb, get_neighbors_restart[h]); |
| return REPEAT_SEARCH; |
| } |
| |
| RFALSE(!B_IS_IN_TREE(tb->FL[h]) || |
| child_position > B_NR_ITEMS(tb->FL[h]) || |
| B_N_CHILD_NUM(tb->FL[h], child_position) != |
| bh->b_blocknr, "PAP-8275: invalid parent"); |
| RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child"); |
| RFALSE(!h && |
| B_FREE_SPACE(bh) != |
| MAX_CHILD_SIZE(bh) - |
| dc_size(B_N_CHILD(tb->FL[0], child_position)), |
| "PAP-8290: invalid child size of left neighbor"); |
| |
| brelse(tb->L[h]); |
| tb->L[h] = bh; |
| } |
| |
| /* We need right neighbor to balance S[path_offset]. */ |
| if (tb->rnum[h]) { |
| PROC_INFO_INC(sb, need_r_neighbor[h]); |
| bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset); |
| |
| RFALSE(bh == tb->FR[h] && |
| PATH_OFFSET_POSITION(tb->tb_path, |
| path_offset) >= |
| B_NR_ITEMS(bh), |
| "PAP-8295: invalid position in the parent"); |
| |
| child_position = |
| (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0; |
| son_number = B_N_CHILD_NUM(tb->FR[h], child_position); |
| depth = reiserfs_write_unlock_nested(tb->tb_sb); |
| bh = sb_bread(sb, son_number); |
| reiserfs_write_lock_nested(tb->tb_sb, depth); |
| if (!bh) |
| return IO_ERROR; |
| if (FILESYSTEM_CHANGED_TB(tb)) { |
| brelse(bh); |
| PROC_INFO_INC(sb, get_neighbors_restart[h]); |
| return REPEAT_SEARCH; |
| } |
| brelse(tb->R[h]); |
| tb->R[h] = bh; |
| |
| RFALSE(!h |
| && B_FREE_SPACE(bh) != |
| MAX_CHILD_SIZE(bh) - |
| dc_size(B_N_CHILD(tb->FR[0], child_position)), |
| "PAP-8300: invalid child size of right neighbor (%d != %d - %d)", |
| B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh), |
| dc_size(B_N_CHILD(tb->FR[0], child_position))); |
| |
| } |
| return CARRY_ON; |
| } |
| |
| static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh) |
| { |
| int max_num_of_items; |
| int max_num_of_entries; |
| unsigned long blocksize = sb->s_blocksize; |
| |
| #define MIN_NAME_LEN 1 |
| |
| max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN); |
| max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) / |
| (DEH_SIZE + MIN_NAME_LEN); |
| |
| return sizeof(struct virtual_node) + |
| max(max_num_of_items * sizeof(struct virtual_item), |
| sizeof(struct virtual_item) + sizeof(struct direntry_uarea) + |
| (max_num_of_entries - 1) * sizeof(__u16)); |
| } |
| |
| /* |
| * maybe we should fail balancing we are going to perform when kmalloc |
| * fails several times. But now it will loop until kmalloc gets |
| * required memory |
| */ |
| static int get_mem_for_virtual_node(struct tree_balance *tb) |
| { |
| int check_fs = 0; |
| int size; |
| char *buf; |
| |
| size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path)); |
| |
| /* we have to allocate more memory for virtual node */ |
| if (size > tb->vn_buf_size) { |
| if (tb->vn_buf) { |
| /* free memory allocated before */ |
| kfree(tb->vn_buf); |
| /* this is not needed if kfree is atomic */ |
| check_fs = 1; |
| } |
| |
| /* virtual node requires now more memory */ |
| tb->vn_buf_size = size; |
| |
| /* get memory for virtual item */ |
| buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN); |
| if (!buf) { |
| /* |
| * getting memory with GFP_KERNEL priority may involve |
| * balancing now (due to indirect_to_direct conversion |
| * on dcache shrinking). So, release path and collected |
| * resources here |
| */ |
| free_buffers_in_tb(tb); |
| buf = kmalloc(size, GFP_NOFS); |
| if (!buf) { |
| tb->vn_buf_size = 0; |
| } |
| tb->vn_buf = buf; |
| schedule(); |
| return REPEAT_SEARCH; |
| } |
| |
| tb->vn_buf = buf; |
| } |
| |
| if (check_fs && FILESYSTEM_CHANGED_TB(tb)) |
| return REPEAT_SEARCH; |
| |
| return CARRY_ON; |
| } |
| |
| #ifdef CONFIG_REISERFS_CHECK |
| static void tb_buffer_sanity_check(struct super_block *sb, |
| struct buffer_head *bh, |
| const char *descr, int level) |
| { |
| if (bh) { |
| if (atomic_read(&(bh->b_count)) <= 0) |
| |
| reiserfs_panic(sb, "jmacd-1", "negative or zero " |
| "reference counter for buffer %s[%d] " |
| "(%b)", descr, level, bh); |
| |
| if (!buffer_uptodate(bh)) |
| reiserfs_panic(sb, "jmacd-2", "buffer is not up " |
| "to date %s[%d] (%b)", |
| descr, level, bh); |
| |
| if (!B_IS_IN_TREE(bh)) |
| reiserfs_panic(sb, "jmacd-3", "buffer is not " |
| "in tree %s[%d] (%b)", |
| descr, level, bh); |
| |
| if (bh->b_bdev != sb->s_bdev) |
| reiserfs_panic(sb, "jmacd-4", "buffer has wrong " |
| "device %s[%d] (%b)", |
| descr, level, bh); |
| |
| if (bh->b_size != sb->s_blocksize) |
| reiserfs_panic(sb, "jmacd-5", "buffer has wrong " |
| "blocksize %s[%d] (%b)", |
| descr, level, bh); |
| |
| if (bh->b_blocknr > SB_BLOCK_COUNT(sb)) |
| reiserfs_panic(sb, "jmacd-6", "buffer block " |
| "number too high %s[%d] (%b)", |
| descr, level, bh); |
| } |
| } |
| #else |
| static void tb_buffer_sanity_check(struct super_block *sb, |
| struct buffer_head *bh, |
| const char *descr, int level) |
| {; |
| } |
| #endif |
| |
| static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh) |
| { |
| return reiserfs_prepare_for_journal(s, bh, 0); |
| } |
| |
| static int wait_tb_buffers_until_unlocked(struct tree_balance *tb) |
| { |
| struct buffer_head *locked; |
| #ifdef CONFIG_REISERFS_CHECK |
| int repeat_counter = 0; |
| #endif |
| int i; |
| |
| do { |
| |
| locked = NULL; |
| |
| for (i = tb->tb_path->path_length; |
| !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) { |
| if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) { |
| /* |
| * if I understand correctly, we can only |
| * be sure the last buffer in the path is |
| * in the tree --clm |
| */ |
| #ifdef CONFIG_REISERFS_CHECK |
| if (PATH_PLAST_BUFFER(tb->tb_path) == |
| PATH_OFFSET_PBUFFER(tb->tb_path, i)) |
| tb_buffer_sanity_check(tb->tb_sb, |
| PATH_OFFSET_PBUFFER |
| (tb->tb_path, |
| i), "S", |
| tb->tb_path-> |
| path_length - i); |
| #endif |
| if (!clear_all_dirty_bits(tb->tb_sb, |
| PATH_OFFSET_PBUFFER |
| (tb->tb_path, |
| i))) { |
| locked = |
| PATH_OFFSET_PBUFFER(tb->tb_path, |
| i); |
| } |
| } |
| } |
| |
| for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i]; |
| i++) { |
| |
| if (tb->lnum[i]) { |
| |
| if (tb->L[i]) { |
| tb_buffer_sanity_check(tb->tb_sb, |
| tb->L[i], |
| "L", i); |
| if (!clear_all_dirty_bits |
| (tb->tb_sb, tb->L[i])) |
| locked = tb->L[i]; |
| } |
| |
| if (!locked && tb->FL[i]) { |
| tb_buffer_sanity_check(tb->tb_sb, |
| tb->FL[i], |
| "FL", i); |
| if (!clear_all_dirty_bits |
| (tb->tb_sb, tb->FL[i])) |
| locked = tb->FL[i]; |
| } |
| |
| if (!locked && tb->CFL[i]) { |
| tb_buffer_sanity_check(tb->tb_sb, |
| tb->CFL[i], |
| "CFL", i); |
| if (!clear_all_dirty_bits |
| (tb->tb_sb, tb->CFL[i])) |
| locked = tb->CFL[i]; |
| } |
| |
| } |
| |
| if (!locked && (tb->rnum[i])) { |
| |
| if (tb->R[i]) { |
| tb_buffer_sanity_check(tb->tb_sb, |
| tb->R[i], |
| "R", i); |
| if (!clear_all_dirty_bits |
| (tb->tb_sb, tb->R[i])) |
| locked = tb->R[i]; |
| } |
| |
| if (!locked && tb->FR[i]) { |
| tb_buffer_sanity_check(tb->tb_sb, |
| tb->FR[i], |
| "FR", i); |
| if (!clear_all_dirty_bits |
| (tb->tb_sb, tb->FR[i])) |
| locked = tb->FR[i]; |
| } |
| |
| if (!locked && tb->CFR[i]) { |
| tb_buffer_sanity_check(tb->tb_sb, |
| tb->CFR[i], |
| "CFR", i); |
| if (!clear_all_dirty_bits |
| (tb->tb_sb, tb->CFR[i])) |
| locked = tb->CFR[i]; |
| } |
| } |
| } |
| |
| /* |
| * as far as I can tell, this is not required. The FEB list |
| * seems to be full of newly allocated nodes, which will |
| * never be locked, dirty, or anything else. |
| * To be safe, I'm putting in the checks and waits in. |
| * For the moment, they are needed to keep the code in |
| * journal.c from complaining about the buffer. |
| * That code is inside CONFIG_REISERFS_CHECK as well. --clm |
| */ |
| for (i = 0; !locked && i < MAX_FEB_SIZE; i++) { |
| if (tb->FEB[i]) { |
| if (!clear_all_dirty_bits |
| (tb->tb_sb, tb->FEB[i])) |
| locked = tb->FEB[i]; |
| } |
| } |
| |
| if (locked) { |
| int depth; |
| #ifdef CONFIG_REISERFS_CHECK |
| repeat_counter++; |
| if ((repeat_counter % 10000) == 0) { |
| reiserfs_warning(tb->tb_sb, "reiserfs-8200", |
| "too many iterations waiting " |
| "for buffer to unlock " |
| "(%b)", locked); |
| |
| /* Don't loop forever. Try to recover from possible error. */ |
| |
| return (FILESYSTEM_CHANGED_TB(tb)) ? |
| REPEAT_SEARCH : CARRY_ON; |
| } |
| #endif |
| depth = reiserfs_write_unlock_nested(tb->tb_sb); |
| __wait_on_buffer(locked); |
| reiserfs_write_lock_nested(tb->tb_sb, depth); |
| if (FILESYSTEM_CHANGED_TB(tb)) |
| return REPEAT_SEARCH; |
| } |
| |
| } while (locked); |
| |
| return CARRY_ON; |
| } |
| |
| /* |
| * Prepare for balancing, that is |
| * get all necessary parents, and neighbors; |
| * analyze what and where should be moved; |
| * get sufficient number of new nodes; |
| * Balancing will start only after all resources will be collected at a time. |
| * |
| * When ported to SMP kernels, only at the last moment after all needed nodes |
| * are collected in cache, will the resources be locked using the usual |
| * textbook ordered lock acquisition algorithms. Note that ensuring that |
| * this code neither write locks what it does not need to write lock nor locks |
| * out of order will be a pain in the butt that could have been avoided. |
| * Grumble grumble. -Hans |
| * |
| * fix is meant in the sense of render unchanging |
| * |
| * Latency might be improved by first gathering a list of what buffers |
| * are needed and then getting as many of them in parallel as possible? -Hans |
| * |
| * Parameters: |
| * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append) |
| * tb tree_balance structure; |
| * inum item number in S[h]; |
| * pos_in_item - comment this if you can |
| * ins_ih item head of item being inserted |
| * data inserted item or data to be pasted |
| * Returns: 1 - schedule occurred while the function worked; |
| * 0 - schedule didn't occur while the function worked; |
| * -1 - if no_disk_space |
| */ |
| |
| int fix_nodes(int op_mode, struct tree_balance *tb, |
| struct item_head *ins_ih, const void *data) |
| { |
| int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path); |
| int pos_in_item; |
| |
| /* |
| * we set wait_tb_buffers_run when we have to restore any dirty |
| * bits cleared during wait_tb_buffers_run |
| */ |
| int wait_tb_buffers_run = 0; |
| struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); |
| |
| ++REISERFS_SB(tb->tb_sb)->s_fix_nodes; |
| |
| pos_in_item = tb->tb_path->pos_in_item; |
| |
| tb->fs_gen = get_generation(tb->tb_sb); |
| |
| /* |
| * we prepare and log the super here so it will already be in the |
| * transaction when do_balance needs to change it. |
| * This way do_balance won't have to schedule when trying to prepare |
| * the super for logging |
| */ |
| reiserfs_prepare_for_journal(tb->tb_sb, |
| SB_BUFFER_WITH_SB(tb->tb_sb), 1); |
| journal_mark_dirty(tb->transaction_handle, |
| SB_BUFFER_WITH_SB(tb->tb_sb)); |
| if (FILESYSTEM_CHANGED_TB(tb)) |
| return REPEAT_SEARCH; |
| |
| /* if it possible in indirect_to_direct conversion */ |
| if (buffer_locked(tbS0)) { |
| int depth = reiserfs_write_unlock_nested(tb->tb_sb); |
| __wait_on_buffer(tbS0); |
| reiserfs_write_lock_nested(tb->tb_sb, depth); |
| if (FILESYSTEM_CHANGED_TB(tb)) |
| return REPEAT_SEARCH; |
| } |
| #ifdef CONFIG_REISERFS_CHECK |
| if (REISERFS_SB(tb->tb_sb)->cur_tb) { |
| print_cur_tb("fix_nodes"); |
| reiserfs_panic(tb->tb_sb, "PAP-8305", |
| "there is pending do_balance"); |
| } |
| |
| if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0)) |
| reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is " |
| "not uptodate at the beginning of fix_nodes " |
| "or not in tree (mode %c)", |
| tbS0, tbS0, op_mode); |
| |
| /* Check parameters. */ |
| switch (op_mode) { |
| case M_INSERT: |
| if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0)) |
| reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect " |
| "item number %d (in S0 - %d) in case " |
| "of insert", item_num, |
| B_NR_ITEMS(tbS0)); |
| break; |
| case M_PASTE: |
| case M_DELETE: |
| case M_CUT: |
| if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) { |
| print_block(tbS0, 0, -1, -1); |
| reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect " |
| "item number(%d); mode = %c " |
| "insert_size = %d", |
| item_num, op_mode, |
| tb->insert_size[0]); |
| } |
| break; |
| default: |
| reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode " |
| "of operation"); |
| } |
| #endif |
| |
| if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH) |
| /* FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat */ |
| return REPEAT_SEARCH; |
| |
| /* Starting from the leaf level; for all levels h of the tree. */ |
| for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) { |
| ret = get_direct_parent(tb, h); |
| if (ret != CARRY_ON) |
| goto repeat; |
| |
| ret = check_balance(op_mode, tb, h, item_num, |
| pos_in_item, ins_ih, data); |
| if (ret != CARRY_ON) { |
| if (ret == NO_BALANCING_NEEDED) { |
| /* No balancing for higher levels needed. */ |
| ret = get_neighbors(tb, h); |
| if (ret != CARRY_ON) |
| goto repeat; |
| if (h != MAX_HEIGHT - 1) |
| tb->insert_size[h + 1] = 0; |
| /* |
| * ok, analysis and resource gathering |
| * are complete |
| */ |
| break; |
| } |
| goto repeat; |
| } |
| |
| ret = get_neighbors(tb, h); |
| if (ret != CARRY_ON) |
| goto repeat; |
| |
| /* |
| * No disk space, or schedule occurred and analysis may be |
| * invalid and needs to be redone. |
| */ |
| ret = get_empty_nodes(tb, h); |
| if (ret != CARRY_ON) |
| goto repeat; |
| |
| /* |
| * We have a positive insert size but no nodes exist on this |
| * level, this means that we are creating a new root. |
| */ |
| if (!PATH_H_PBUFFER(tb->tb_path, h)) { |
| |
| RFALSE(tb->blknum[h] != 1, |
| "PAP-8350: creating new empty root"); |
| |
| if (h < MAX_HEIGHT - 1) |
| tb->insert_size[h + 1] = 0; |
| } else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) { |
| /* |
| * The tree needs to be grown, so this node S[h] |
| * which is the root node is split into two nodes, |
| * and a new node (S[h+1]) will be created to |
| * become the root node. |
| */ |
| if (tb->blknum[h] > 1) { |
| |
| RFALSE(h == MAX_HEIGHT - 1, |
| "PAP-8355: attempt to create too high of a tree"); |
| |
| tb->insert_size[h + 1] = |
| (DC_SIZE + |
| KEY_SIZE) * (tb->blknum[h] - 1) + |
| DC_SIZE; |
| } else if (h < MAX_HEIGHT - 1) |
| tb->insert_size[h + 1] = 0; |
| } else |
| tb->insert_size[h + 1] = |
| (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1); |
| } |
| |
| ret = wait_tb_buffers_until_unlocked(tb); |
| if (ret == CARRY_ON) { |
| if (FILESYSTEM_CHANGED_TB(tb)) { |
| wait_tb_buffers_run = 1; |
| ret = REPEAT_SEARCH; |
| goto repeat; |
| } else { |
| return CARRY_ON; |
| } |
| } else { |
| wait_tb_buffers_run = 1; |
| goto repeat; |
| } |
| |
| repeat: |
| /* |
| * fix_nodes was unable to perform its calculation due to |
| * filesystem got changed under us, lack of free disk space or i/o |
| * failure. If the first is the case - the search will be |
| * repeated. For now - free all resources acquired so far except |
| * for the new allocated nodes |
| */ |
| { |
| int i; |
| |
| /* Release path buffers. */ |
| if (wait_tb_buffers_run) { |
| pathrelse_and_restore(tb->tb_sb, tb->tb_path); |
| } else { |
| pathrelse(tb->tb_path); |
| } |
| /* brelse all resources collected for balancing */ |
| for (i = 0; i < MAX_HEIGHT; i++) { |
| if (wait_tb_buffers_run) { |
| reiserfs_restore_prepared_buffer(tb->tb_sb, |
| tb->L[i]); |
| reiserfs_restore_prepared_buffer(tb->tb_sb, |
| tb->R[i]); |
| reiserfs_restore_prepared_buffer(tb->tb_sb, |
| tb->FL[i]); |
| reiserfs_restore_prepared_buffer(tb->tb_sb, |
| tb->FR[i]); |
| reiserfs_restore_prepared_buffer(tb->tb_sb, |
| tb-> |
| CFL[i]); |
| reiserfs_restore_prepared_buffer(tb->tb_sb, |
| tb-> |
| CFR[i]); |
| } |
| |
| brelse(tb->L[i]); |
| brelse(tb->R[i]); |
| brelse(tb->FL[i]); |
| brelse(tb->FR[i]); |
| brelse(tb->CFL[i]); |
| brelse(tb->CFR[i]); |
| |
| tb->L[i] = NULL; |
| tb->R[i] = NULL; |
| tb->FL[i] = NULL; |
| tb->FR[i] = NULL; |
| tb->CFL[i] = NULL; |
| tb->CFR[i] = NULL; |
| } |
| |
| if (wait_tb_buffers_run) { |
| for (i = 0; i < MAX_FEB_SIZE; i++) { |
| if (tb->FEB[i]) |
| reiserfs_restore_prepared_buffer |
| (tb->tb_sb, tb->FEB[i]); |
| } |
| } |
| return ret; |
| } |
| |
| } |
| |
| void unfix_nodes(struct tree_balance *tb) |
| { |
| int i; |
| |
| /* Release path buffers. */ |
| pathrelse_and_restore(tb->tb_sb, tb->tb_path); |
| |
| /* brelse all resources collected for balancing */ |
| for (i = 0; i < MAX_HEIGHT; i++) { |
| reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]); |
| reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]); |
| reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]); |
| reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]); |
| reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]); |
| reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]); |
| |
| brelse(tb->L[i]); |
| brelse(tb->R[i]); |
| brelse(tb->FL[i]); |
| brelse(tb->FR[i]); |
| brelse(tb->CFL[i]); |
| brelse(tb->CFR[i]); |
| } |
| |
| /* deal with list of allocated (used and unused) nodes */ |
| for (i = 0; i < MAX_FEB_SIZE; i++) { |
| if (tb->FEB[i]) { |
| b_blocknr_t blocknr = tb->FEB[i]->b_blocknr; |
| /* |
| * de-allocated block which was not used by |
| * balancing and bforget about buffer for it |
| */ |
| brelse(tb->FEB[i]); |
| reiserfs_free_block(tb->transaction_handle, NULL, |
| blocknr, 0); |
| } |
| if (tb->used[i]) { |
| /* release used as new nodes including a new root */ |
| brelse(tb->used[i]); |
| } |
| } |
| |
| kfree(tb->vn_buf); |
| |
| } |