| #ifndef LIST_H |
| #define LIST_H |
| |
| /* |
| * Copied from include/linux/... |
| */ |
| |
| #undef offsetof |
| #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER) |
| |
| /** |
| * container_of - cast a member of a structure out to the containing structure |
| * @ptr: the pointer to the member. |
| * @type: the type of the container struct this is embedded in. |
| * @member: the name of the member within the struct. |
| * |
| */ |
| #define container_of(ptr, type, member) ({ \ |
| const typeof( ((type *)0)->member ) *__mptr = (ptr); \ |
| (type *)( (char *)__mptr - offsetof(type,member) );}) |
| |
| |
| struct list_head { |
| struct list_head *next, *prev; |
| }; |
| |
| |
| #define LIST_HEAD_INIT(name) { &(name), &(name) } |
| |
| #define LIST_HEAD(name) \ |
| struct list_head name = LIST_HEAD_INIT(name) |
| |
| /** |
| * list_entry - get the struct for this entry |
| * @ptr: the &struct list_head pointer. |
| * @type: the type of the struct this is embedded in. |
| * @member: the name of the list_struct within the struct. |
| */ |
| #define list_entry(ptr, type, member) \ |
| container_of(ptr, type, member) |
| |
| /** |
| * list_for_each_entry - iterate over list of given type |
| * @pos: the type * to use as a loop cursor. |
| * @head: the head for your list. |
| * @member: the name of the list_struct within the struct. |
| */ |
| #define list_for_each_entry(pos, head, member) \ |
| for (pos = list_entry((head)->next, typeof(*pos), member); \ |
| &pos->member != (head); \ |
| pos = list_entry(pos->member.next, typeof(*pos), member)) |
| |
| /** |
| * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry |
| * @pos: the type * to use as a loop cursor. |
| * @n: another type * to use as temporary storage |
| * @head: the head for your list. |
| * @member: the name of the list_struct within the struct. |
| */ |
| #define list_for_each_entry_safe(pos, n, head, member) \ |
| for (pos = list_entry((head)->next, typeof(*pos), member), \ |
| n = list_entry(pos->member.next, typeof(*pos), member); \ |
| &pos->member != (head); \ |
| pos = n, n = list_entry(n->member.next, typeof(*n), member)) |
| |
| /** |
| * list_empty - tests whether a list is empty |
| * @head: the list to test. |
| */ |
| static inline int list_empty(const struct list_head *head) |
| { |
| return head->next == head; |
| } |
| |
| /* |
| * Insert a new entry between two known consecutive entries. |
| * |
| * This is only for internal list manipulation where we know |
| * the prev/next entries already! |
| */ |
| static inline void __list_add(struct list_head *_new, |
| struct list_head *prev, |
| struct list_head *next) |
| { |
| next->prev = _new; |
| _new->next = next; |
| _new->prev = prev; |
| prev->next = _new; |
| } |
| |
| /** |
| * list_add_tail - add a new entry |
| * @new: new entry to be added |
| * @head: list head to add it before |
| * |
| * Insert a new entry before the specified head. |
| * This is useful for implementing queues. |
| */ |
| static inline void list_add_tail(struct list_head *_new, struct list_head *head) |
| { |
| __list_add(_new, head->prev, head); |
| } |
| |
| /* |
| * Delete a list entry by making the prev/next entries |
| * point to each other. |
| * |
| * This is only for internal list manipulation where we know |
| * the prev/next entries already! |
| */ |
| static inline void __list_del(struct list_head *prev, struct list_head *next) |
| { |
| next->prev = prev; |
| prev->next = next; |
| } |
| |
| #define LIST_POISON1 ((void *) 0x00100100) |
| #define LIST_POISON2 ((void *) 0x00200200) |
| /** |
| * list_del - deletes entry from list. |
| * @entry: the element to delete from the list. |
| * Note: list_empty() on entry does not return true after this, the entry is |
| * in an undefined state. |
| */ |
| static inline void list_del(struct list_head *entry) |
| { |
| __list_del(entry->prev, entry->next); |
| entry->next = LIST_POISON1; |
| entry->prev = LIST_POISON2; |
| } |
| #endif |