| /* |
| * Copyright (C) 2004 Embedded Edge, LLC |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/platform_device.h> |
| #include <asm/io.h> |
| #include <asm/mach-au1x00/au1000.h> |
| #include <asm/mach-au1x00/au1550nd.h> |
| |
| |
| struct au1550nd_ctx { |
| struct nand_chip chip; |
| |
| int cs; |
| void __iomem *base; |
| void (*write_byte)(struct nand_chip *, u_char); |
| }; |
| |
| /** |
| * au_read_byte - read one byte from the chip |
| * @this: NAND chip object |
| * |
| * read function for 8bit buswidth |
| */ |
| static u_char au_read_byte(struct nand_chip *this) |
| { |
| u_char ret = readb(this->legacy.IO_ADDR_R); |
| wmb(); /* drain writebuffer */ |
| return ret; |
| } |
| |
| /** |
| * au_write_byte - write one byte to the chip |
| * @this: NAND chip object |
| * @byte: pointer to data byte to write |
| * |
| * write function for 8it buswidth |
| */ |
| static void au_write_byte(struct nand_chip *this, u_char byte) |
| { |
| writeb(byte, this->legacy.IO_ADDR_W); |
| wmb(); /* drain writebuffer */ |
| } |
| |
| /** |
| * au_read_byte16 - read one byte endianness aware from the chip |
| * @this: NAND chip object |
| * |
| * read function for 16bit buswidth with endianness conversion |
| */ |
| static u_char au_read_byte16(struct nand_chip *this) |
| { |
| u_char ret = (u_char) cpu_to_le16(readw(this->legacy.IO_ADDR_R)); |
| wmb(); /* drain writebuffer */ |
| return ret; |
| } |
| |
| /** |
| * au_write_byte16 - write one byte endianness aware to the chip |
| * @this: NAND chip object |
| * @byte: pointer to data byte to write |
| * |
| * write function for 16bit buswidth with endianness conversion |
| */ |
| static void au_write_byte16(struct nand_chip *this, u_char byte) |
| { |
| writew(le16_to_cpu((u16) byte), this->legacy.IO_ADDR_W); |
| wmb(); /* drain writebuffer */ |
| } |
| |
| /** |
| * au_write_buf - write buffer to chip |
| * @this: NAND chip object |
| * @buf: data buffer |
| * @len: number of bytes to write |
| * |
| * write function for 8bit buswidth |
| */ |
| static void au_write_buf(struct nand_chip *this, const u_char *buf, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| writeb(buf[i], this->legacy.IO_ADDR_W); |
| wmb(); /* drain writebuffer */ |
| } |
| } |
| |
| /** |
| * au_read_buf - read chip data into buffer |
| * @this: NAND chip object |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| * |
| * read function for 8bit buswidth |
| */ |
| static void au_read_buf(struct nand_chip *this, u_char *buf, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| buf[i] = readb(this->legacy.IO_ADDR_R); |
| wmb(); /* drain writebuffer */ |
| } |
| } |
| |
| /** |
| * au_write_buf16 - write buffer to chip |
| * @this: NAND chip object |
| * @buf: data buffer |
| * @len: number of bytes to write |
| * |
| * write function for 16bit buswidth |
| */ |
| static void au_write_buf16(struct nand_chip *this, const u_char *buf, int len) |
| { |
| int i; |
| u16 *p = (u16 *) buf; |
| len >>= 1; |
| |
| for (i = 0; i < len; i++) { |
| writew(p[i], this->legacy.IO_ADDR_W); |
| wmb(); /* drain writebuffer */ |
| } |
| |
| } |
| |
| /** |
| * au_read_buf16 - read chip data into buffer |
| * @mtd: MTD device structure |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| * |
| * read function for 16bit buswidth |
| */ |
| static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| int i; |
| struct nand_chip *this = mtd_to_nand(mtd); |
| u16 *p = (u16 *) buf; |
| len >>= 1; |
| |
| for (i = 0; i < len; i++) { |
| p[i] = readw(this->legacy.IO_ADDR_R); |
| wmb(); /* drain writebuffer */ |
| } |
| } |
| |
| /* Select the chip by setting nCE to low */ |
| #define NAND_CTL_SETNCE 1 |
| /* Deselect the chip by setting nCE to high */ |
| #define NAND_CTL_CLRNCE 2 |
| /* Select the command latch by setting CLE to high */ |
| #define NAND_CTL_SETCLE 3 |
| /* Deselect the command latch by setting CLE to low */ |
| #define NAND_CTL_CLRCLE 4 |
| /* Select the address latch by setting ALE to high */ |
| #define NAND_CTL_SETALE 5 |
| /* Deselect the address latch by setting ALE to low */ |
| #define NAND_CTL_CLRALE 6 |
| |
| static void au1550_hwcontrol(struct mtd_info *mtd, int cmd) |
| { |
| struct nand_chip *this = mtd_to_nand(mtd); |
| struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx, |
| chip); |
| |
| switch (cmd) { |
| |
| case NAND_CTL_SETCLE: |
| this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_CMD; |
| break; |
| |
| case NAND_CTL_CLRCLE: |
| this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_DATA; |
| break; |
| |
| case NAND_CTL_SETALE: |
| this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_ADDR; |
| break; |
| |
| case NAND_CTL_CLRALE: |
| this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_DATA; |
| /* FIXME: Nobody knows why this is necessary, |
| * but it works only that way */ |
| udelay(1); |
| break; |
| |
| case NAND_CTL_SETNCE: |
| /* assert (force assert) chip enable */ |
| alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL); |
| break; |
| |
| case NAND_CTL_CLRNCE: |
| /* deassert chip enable */ |
| alchemy_wrsmem(0, AU1000_MEM_STNDCTL); |
| break; |
| } |
| |
| this->legacy.IO_ADDR_R = this->legacy.IO_ADDR_W; |
| |
| wmb(); /* Drain the writebuffer */ |
| } |
| |
| int au1550_device_ready(struct nand_chip *this) |
| { |
| return (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) ? 1 : 0; |
| } |
| |
| /** |
| * au1550_select_chip - control -CE line |
| * Forbid driving -CE manually permitting the NAND controller to do this. |
| * Keeping -CE asserted during the whole sector reads interferes with the |
| * NOR flash and PCMCIA drivers as it causes contention on the static bus. |
| * We only have to hold -CE low for the NAND read commands since the flash |
| * chip needs it to be asserted during chip not ready time but the NAND |
| * controller keeps it released. |
| * |
| * @this: NAND chip object |
| * @chip: chipnumber to select, -1 for deselect |
| */ |
| static void au1550_select_chip(struct nand_chip *this, int chip) |
| { |
| } |
| |
| /** |
| * au1550_command - Send command to NAND device |
| * @this: NAND chip object |
| * @command: the command to be sent |
| * @column: the column address for this command, -1 if none |
| * @page_addr: the page address for this command, -1 if none |
| */ |
| static void au1550_command(struct nand_chip *this, unsigned command, |
| int column, int page_addr) |
| { |
| struct mtd_info *mtd = nand_to_mtd(this); |
| struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx, |
| chip); |
| int ce_override = 0, i; |
| unsigned long flags = 0; |
| |
| /* Begin command latch cycle */ |
| au1550_hwcontrol(mtd, NAND_CTL_SETCLE); |
| /* |
| * Write out the command to the device. |
| */ |
| if (command == NAND_CMD_SEQIN) { |
| int readcmd; |
| |
| if (column >= mtd->writesize) { |
| /* OOB area */ |
| column -= mtd->writesize; |
| readcmd = NAND_CMD_READOOB; |
| } else if (column < 256) { |
| /* First 256 bytes --> READ0 */ |
| readcmd = NAND_CMD_READ0; |
| } else { |
| column -= 256; |
| readcmd = NAND_CMD_READ1; |
| } |
| ctx->write_byte(this, readcmd); |
| } |
| ctx->write_byte(this, command); |
| |
| /* Set ALE and clear CLE to start address cycle */ |
| au1550_hwcontrol(mtd, NAND_CTL_CLRCLE); |
| |
| if (column != -1 || page_addr != -1) { |
| au1550_hwcontrol(mtd, NAND_CTL_SETALE); |
| |
| /* Serially input address */ |
| if (column != -1) { |
| /* Adjust columns for 16 bit buswidth */ |
| if (this->options & NAND_BUSWIDTH_16 && |
| !nand_opcode_8bits(command)) |
| column >>= 1; |
| ctx->write_byte(this, column); |
| } |
| if (page_addr != -1) { |
| ctx->write_byte(this, (u8)(page_addr & 0xff)); |
| |
| if (command == NAND_CMD_READ0 || |
| command == NAND_CMD_READ1 || |
| command == NAND_CMD_READOOB) { |
| /* |
| * NAND controller will release -CE after |
| * the last address byte is written, so we'll |
| * have to forcibly assert it. No interrupts |
| * are allowed while we do this as we don't |
| * want the NOR flash or PCMCIA drivers to |
| * steal our precious bytes of data... |
| */ |
| ce_override = 1; |
| local_irq_save(flags); |
| au1550_hwcontrol(mtd, NAND_CTL_SETNCE); |
| } |
| |
| ctx->write_byte(this, (u8)(page_addr >> 8)); |
| |
| if (this->options & NAND_ROW_ADDR_3) |
| ctx->write_byte(this, |
| ((page_addr >> 16) & 0x0f)); |
| } |
| /* Latch in address */ |
| au1550_hwcontrol(mtd, NAND_CTL_CLRALE); |
| } |
| |
| /* |
| * Program and erase have their own busy handlers. |
| * Status and sequential in need no delay. |
| */ |
| switch (command) { |
| |
| case NAND_CMD_PAGEPROG: |
| case NAND_CMD_ERASE1: |
| case NAND_CMD_ERASE2: |
| case NAND_CMD_SEQIN: |
| case NAND_CMD_STATUS: |
| return; |
| |
| case NAND_CMD_RESET: |
| break; |
| |
| case NAND_CMD_READ0: |
| case NAND_CMD_READ1: |
| case NAND_CMD_READOOB: |
| /* Check if we're really driving -CE low (just in case) */ |
| if (unlikely(!ce_override)) |
| break; |
| |
| /* Apply a short delay always to ensure that we do wait tWB. */ |
| ndelay(100); |
| /* Wait for a chip to become ready... */ |
| for (i = this->legacy.chip_delay; |
| !this->legacy.dev_ready(this) && i > 0; --i) |
| udelay(1); |
| |
| /* Release -CE and re-enable interrupts. */ |
| au1550_hwcontrol(mtd, NAND_CTL_CLRNCE); |
| local_irq_restore(flags); |
| return; |
| } |
| /* Apply this short delay always to ensure that we do wait tWB. */ |
| ndelay(100); |
| |
| while(!this->legacy.dev_ready(this)); |
| } |
| |
| static int find_nand_cs(unsigned long nand_base) |
| { |
| void __iomem *base = |
| (void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR); |
| unsigned long addr, staddr, start, mask, end; |
| int i; |
| |
| for (i = 0; i < 4; i++) { |
| addr = 0x1000 + (i * 0x10); /* CSx */ |
| staddr = __raw_readl(base + addr + 0x08); /* STADDRx */ |
| /* figure out the decoded range of this CS */ |
| start = (staddr << 4) & 0xfffc0000; |
| mask = (staddr << 18) & 0xfffc0000; |
| end = (start | (start - 1)) & ~(start ^ mask); |
| if ((nand_base >= start) && (nand_base < end)) |
| return i; |
| } |
| |
| return -ENODEV; |
| } |
| |
| static int au1550nd_probe(struct platform_device *pdev) |
| { |
| struct au1550nd_platdata *pd; |
| struct au1550nd_ctx *ctx; |
| struct nand_chip *this; |
| struct mtd_info *mtd; |
| struct resource *r; |
| int ret, cs; |
| |
| pd = dev_get_platdata(&pdev->dev); |
| if (!pd) { |
| dev_err(&pdev->dev, "missing platform data\n"); |
| return -ENODEV; |
| } |
| |
| ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); |
| if (!ctx) |
| return -ENOMEM; |
| |
| r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!r) { |
| dev_err(&pdev->dev, "no NAND memory resource\n"); |
| ret = -ENODEV; |
| goto out1; |
| } |
| if (request_mem_region(r->start, resource_size(r), "au1550-nand")) { |
| dev_err(&pdev->dev, "cannot claim NAND memory area\n"); |
| ret = -ENOMEM; |
| goto out1; |
| } |
| |
| ctx->base = ioremap_nocache(r->start, 0x1000); |
| if (!ctx->base) { |
| dev_err(&pdev->dev, "cannot remap NAND memory area\n"); |
| ret = -ENODEV; |
| goto out2; |
| } |
| |
| this = &ctx->chip; |
| mtd = nand_to_mtd(this); |
| mtd->dev.parent = &pdev->dev; |
| |
| /* figure out which CS# r->start belongs to */ |
| cs = find_nand_cs(r->start); |
| if (cs < 0) { |
| dev_err(&pdev->dev, "cannot detect NAND chipselect\n"); |
| ret = -ENODEV; |
| goto out3; |
| } |
| ctx->cs = cs; |
| |
| this->legacy.dev_ready = au1550_device_ready; |
| this->select_chip = au1550_select_chip; |
| this->legacy.cmdfunc = au1550_command; |
| |
| /* 30 us command delay time */ |
| this->legacy.chip_delay = 30; |
| this->ecc.mode = NAND_ECC_SOFT; |
| this->ecc.algo = NAND_ECC_HAMMING; |
| |
| if (pd->devwidth) |
| this->options |= NAND_BUSWIDTH_16; |
| |
| this->legacy.read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte; |
| ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte; |
| this->legacy.write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf; |
| this->legacy.read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf; |
| |
| ret = nand_scan(this, 1); |
| if (ret) { |
| dev_err(&pdev->dev, "NAND scan failed with %d\n", ret); |
| goto out3; |
| } |
| |
| mtd_device_register(mtd, pd->parts, pd->num_parts); |
| |
| platform_set_drvdata(pdev, ctx); |
| |
| return 0; |
| |
| out3: |
| iounmap(ctx->base); |
| out2: |
| release_mem_region(r->start, resource_size(r)); |
| out1: |
| kfree(ctx); |
| return ret; |
| } |
| |
| static int au1550nd_remove(struct platform_device *pdev) |
| { |
| struct au1550nd_ctx *ctx = platform_get_drvdata(pdev); |
| struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| |
| nand_release(&ctx->chip); |
| iounmap(ctx->base); |
| release_mem_region(r->start, 0x1000); |
| kfree(ctx); |
| return 0; |
| } |
| |
| static struct platform_driver au1550nd_driver = { |
| .driver = { |
| .name = "au1550-nand", |
| }, |
| .probe = au1550nd_probe, |
| .remove = au1550nd_remove, |
| }; |
| |
| module_platform_driver(au1550nd_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Embedded Edge, LLC"); |
| MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board"); |