| /* |
| * Procedures for maintaining information about logical memory blocks. |
| * |
| * Peter Bergner, IBM Corp. June 2001. |
| * Copyright (C) 2001 Peter Bergner. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/bitops.h> |
| #include <linux/poison.h> |
| #include <linux/pfn.h> |
| #include <linux/debugfs.h> |
| #include <linux/seq_file.h> |
| #include <linux/memblock.h> |
| |
| #include <asm-generic/sections.h> |
| |
| static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; |
| static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; |
| |
| struct memblock memblock __initdata_memblock = { |
| .memory.regions = memblock_memory_init_regions, |
| .memory.cnt = 1, /* empty dummy entry */ |
| .memory.max = INIT_MEMBLOCK_REGIONS, |
| |
| .reserved.regions = memblock_reserved_init_regions, |
| .reserved.cnt = 1, /* empty dummy entry */ |
| .reserved.max = INIT_MEMBLOCK_REGIONS, |
| |
| .bottom_up = false, |
| .current_limit = MEMBLOCK_ALLOC_ANYWHERE, |
| }; |
| |
| int memblock_debug __initdata_memblock; |
| #ifdef CONFIG_MOVABLE_NODE |
| bool movable_node_enabled __initdata_memblock = false; |
| #endif |
| static int memblock_can_resize __initdata_memblock; |
| static int memblock_memory_in_slab __initdata_memblock = 0; |
| static int memblock_reserved_in_slab __initdata_memblock = 0; |
| |
| /* inline so we don't get a warning when pr_debug is compiled out */ |
| static __init_memblock const char * |
| memblock_type_name(struct memblock_type *type) |
| { |
| if (type == &memblock.memory) |
| return "memory"; |
| else if (type == &memblock.reserved) |
| return "reserved"; |
| else |
| return "unknown"; |
| } |
| |
| /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ |
| static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) |
| { |
| return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); |
| } |
| |
| /* |
| * Address comparison utilities |
| */ |
| static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, |
| phys_addr_t base2, phys_addr_t size2) |
| { |
| return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); |
| } |
| |
| static long __init_memblock memblock_overlaps_region(struct memblock_type *type, |
| phys_addr_t base, phys_addr_t size) |
| { |
| unsigned long i; |
| |
| for (i = 0; i < type->cnt; i++) { |
| phys_addr_t rgnbase = type->regions[i].base; |
| phys_addr_t rgnsize = type->regions[i].size; |
| if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) |
| break; |
| } |
| |
| return (i < type->cnt) ? i : -1; |
| } |
| |
| /* |
| * __memblock_find_range_bottom_up - find free area utility in bottom-up |
| * @start: start of candidate range |
| * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} |
| * @size: size of free area to find |
| * @align: alignment of free area to find |
| * @nid: nid of the free area to find, %MAX_NUMNODES for any node |
| * |
| * Utility called from memblock_find_in_range_node(), find free area bottom-up. |
| * |
| * RETURNS: |
| * Found address on success, 0 on failure. |
| */ |
| static phys_addr_t __init_memblock |
| __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, |
| phys_addr_t size, phys_addr_t align, int nid) |
| { |
| phys_addr_t this_start, this_end, cand; |
| u64 i; |
| |
| for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) { |
| this_start = clamp(this_start, start, end); |
| this_end = clamp(this_end, start, end); |
| |
| cand = round_up(this_start, align); |
| if (cand < this_end && this_end - cand >= size) |
| return cand; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * __memblock_find_range_top_down - find free area utility, in top-down |
| * @start: start of candidate range |
| * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} |
| * @size: size of free area to find |
| * @align: alignment of free area to find |
| * @nid: nid of the free area to find, %MAX_NUMNODES for any node |
| * |
| * Utility called from memblock_find_in_range_node(), find free area top-down. |
| * |
| * RETURNS: |
| * Found address on success, 0 on failure. |
| */ |
| static phys_addr_t __init_memblock |
| __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, |
| phys_addr_t size, phys_addr_t align, int nid) |
| { |
| phys_addr_t this_start, this_end, cand; |
| u64 i; |
| |
| for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) { |
| this_start = clamp(this_start, start, end); |
| this_end = clamp(this_end, start, end); |
| |
| if (this_end < size) |
| continue; |
| |
| cand = round_down(this_end - size, align); |
| if (cand >= this_start) |
| return cand; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * memblock_find_in_range_node - find free area in given range and node |
| * @size: size of free area to find |
| * @align: alignment of free area to find |
| * @start: start of candidate range |
| * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} |
| * @nid: nid of the free area to find, %MAX_NUMNODES for any node |
| * |
| * Find @size free area aligned to @align in the specified range and node. |
| * |
| * When allocation direction is bottom-up, the @start should be greater |
| * than the end of the kernel image. Otherwise, it will be trimmed. The |
| * reason is that we want the bottom-up allocation just near the kernel |
| * image so it is highly likely that the allocated memory and the kernel |
| * will reside in the same node. |
| * |
| * If bottom-up allocation failed, will try to allocate memory top-down. |
| * |
| * RETURNS: |
| * Found address on success, 0 on failure. |
| */ |
| phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, |
| phys_addr_t align, phys_addr_t start, |
| phys_addr_t end, int nid) |
| { |
| int ret; |
| phys_addr_t kernel_end; |
| |
| /* pump up @end */ |
| if (end == MEMBLOCK_ALLOC_ACCESSIBLE) |
| end = memblock.current_limit; |
| |
| /* avoid allocating the first page */ |
| start = max_t(phys_addr_t, start, PAGE_SIZE); |
| end = max(start, end); |
| kernel_end = __pa_symbol(_end); |
| |
| /* |
| * try bottom-up allocation only when bottom-up mode |
| * is set and @end is above the kernel image. |
| */ |
| if (memblock_bottom_up() && end > kernel_end) { |
| phys_addr_t bottom_up_start; |
| |
| /* make sure we will allocate above the kernel */ |
| bottom_up_start = max(start, kernel_end); |
| |
| /* ok, try bottom-up allocation first */ |
| ret = __memblock_find_range_bottom_up(bottom_up_start, end, |
| size, align, nid); |
| if (ret) |
| return ret; |
| |
| /* |
| * we always limit bottom-up allocation above the kernel, |
| * but top-down allocation doesn't have the limit, so |
| * retrying top-down allocation may succeed when bottom-up |
| * allocation failed. |
| * |
| * bottom-up allocation is expected to be fail very rarely, |
| * so we use WARN_ONCE() here to see the stack trace if |
| * fail happens. |
| */ |
| WARN_ONCE(1, "memblock: bottom-up allocation failed, " |
| "memory hotunplug may be affected\n"); |
| } |
| |
| return __memblock_find_range_top_down(start, end, size, align, nid); |
| } |
| |
| /** |
| * memblock_find_in_range - find free area in given range |
| * @start: start of candidate range |
| * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} |
| * @size: size of free area to find |
| * @align: alignment of free area to find |
| * |
| * Find @size free area aligned to @align in the specified range. |
| * |
| * RETURNS: |
| * Found address on success, 0 on failure. |
| */ |
| phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, |
| phys_addr_t end, phys_addr_t size, |
| phys_addr_t align) |
| { |
| return memblock_find_in_range_node(size, align, start, end, |
| MAX_NUMNODES); |
| } |
| |
| static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) |
| { |
| type->total_size -= type->regions[r].size; |
| memmove(&type->regions[r], &type->regions[r + 1], |
| (type->cnt - (r + 1)) * sizeof(type->regions[r])); |
| type->cnt--; |
| |
| /* Special case for empty arrays */ |
| if (type->cnt == 0) { |
| WARN_ON(type->total_size != 0); |
| type->cnt = 1; |
| type->regions[0].base = 0; |
| type->regions[0].size = 0; |
| type->regions[0].flags = 0; |
| memblock_set_region_node(&type->regions[0], MAX_NUMNODES); |
| } |
| } |
| |
| phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( |
| phys_addr_t *addr) |
| { |
| if (memblock.reserved.regions == memblock_reserved_init_regions) |
| return 0; |
| |
| /* |
| * Don't allow nobootmem allocator to free reserved memory regions |
| * array if |
| * - CONFIG_DEBUG_FS is enabled; |
| * - CONFIG_ARCH_DISCARD_MEMBLOCK is not enabled; |
| * - reserved memory regions array have been resized during boot. |
| * Otherwise debug_fs entry "sys/kernel/debug/memblock/reserved" |
| * will show garbage instead of state of memory reservations. |
| */ |
| if (IS_ENABLED(CONFIG_DEBUG_FS) && |
| !IS_ENABLED(CONFIG_ARCH_DISCARD_MEMBLOCK)) |
| return 0; |
| |
| *addr = __pa(memblock.reserved.regions); |
| |
| return PAGE_ALIGN(sizeof(struct memblock_region) * |
| memblock.reserved.max); |
| } |
| |
| /** |
| * memblock_double_array - double the size of the memblock regions array |
| * @type: memblock type of the regions array being doubled |
| * @new_area_start: starting address of memory range to avoid overlap with |
| * @new_area_size: size of memory range to avoid overlap with |
| * |
| * Double the size of the @type regions array. If memblock is being used to |
| * allocate memory for a new reserved regions array and there is a previously |
| * allocated memory range [@new_area_start,@new_area_start+@new_area_size] |
| * waiting to be reserved, ensure the memory used by the new array does |
| * not overlap. |
| * |
| * RETURNS: |
| * 0 on success, -1 on failure. |
| */ |
| static int __init_memblock memblock_double_array(struct memblock_type *type, |
| phys_addr_t new_area_start, |
| phys_addr_t new_area_size) |
| { |
| struct memblock_region *new_array, *old_array; |
| phys_addr_t old_alloc_size, new_alloc_size; |
| phys_addr_t old_size, new_size, addr; |
| int use_slab = slab_is_available(); |
| int *in_slab; |
| |
| /* We don't allow resizing until we know about the reserved regions |
| * of memory that aren't suitable for allocation |
| */ |
| if (!memblock_can_resize) |
| return -1; |
| |
| /* Calculate new doubled size */ |
| old_size = type->max * sizeof(struct memblock_region); |
| new_size = old_size << 1; |
| /* |
| * We need to allocated new one align to PAGE_SIZE, |
| * so we can free them completely later. |
| */ |
| old_alloc_size = PAGE_ALIGN(old_size); |
| new_alloc_size = PAGE_ALIGN(new_size); |
| |
| /* Retrieve the slab flag */ |
| if (type == &memblock.memory) |
| in_slab = &memblock_memory_in_slab; |
| else |
| in_slab = &memblock_reserved_in_slab; |
| |
| /* Try to find some space for it. |
| * |
| * WARNING: We assume that either slab_is_available() and we use it or |
| * we use MEMBLOCK for allocations. That means that this is unsafe to |
| * use when bootmem is currently active (unless bootmem itself is |
| * implemented on top of MEMBLOCK which isn't the case yet) |
| * |
| * This should however not be an issue for now, as we currently only |
| * call into MEMBLOCK while it's still active, or much later when slab |
| * is active for memory hotplug operations |
| */ |
| if (use_slab) { |
| new_array = kmalloc(new_size, GFP_KERNEL); |
| addr = new_array ? __pa(new_array) : 0; |
| } else { |
| /* only exclude range when trying to double reserved.regions */ |
| if (type != &memblock.reserved) |
| new_area_start = new_area_size = 0; |
| |
| addr = memblock_find_in_range(new_area_start + new_area_size, |
| memblock.current_limit, |
| new_alloc_size, PAGE_SIZE); |
| if (!addr && new_area_size) |
| addr = memblock_find_in_range(0, |
| min(new_area_start, memblock.current_limit), |
| new_alloc_size, PAGE_SIZE); |
| |
| new_array = addr ? __va(addr) : NULL; |
| } |
| if (!addr) { |
| pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", |
| memblock_type_name(type), type->max, type->max * 2); |
| return -1; |
| } |
| |
| memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]", |
| memblock_type_name(type), type->max * 2, (u64)addr, |
| (u64)addr + new_size - 1); |
| |
| /* |
| * Found space, we now need to move the array over before we add the |
| * reserved region since it may be our reserved array itself that is |
| * full. |
| */ |
| memcpy(new_array, type->regions, old_size); |
| memset(new_array + type->max, 0, old_size); |
| old_array = type->regions; |
| type->regions = new_array; |
| type->max <<= 1; |
| |
| /* Free old array. We needn't free it if the array is the static one */ |
| if (*in_slab) |
| kfree(old_array); |
| else if (old_array != memblock_memory_init_regions && |
| old_array != memblock_reserved_init_regions) |
| memblock_free(__pa(old_array), old_alloc_size); |
| |
| /* |
| * Reserve the new array if that comes from the memblock. Otherwise, we |
| * needn't do it |
| */ |
| if (!use_slab) |
| BUG_ON(memblock_reserve(addr, new_alloc_size)); |
| |
| /* Update slab flag */ |
| *in_slab = use_slab; |
| |
| return 0; |
| } |
| |
| /** |
| * memblock_merge_regions - merge neighboring compatible regions |
| * @type: memblock type to scan |
| * |
| * Scan @type and merge neighboring compatible regions. |
| */ |
| static void __init_memblock memblock_merge_regions(struct memblock_type *type) |
| { |
| int i = 0; |
| |
| /* cnt never goes below 1 */ |
| while (i < type->cnt - 1) { |
| struct memblock_region *this = &type->regions[i]; |
| struct memblock_region *next = &type->regions[i + 1]; |
| |
| if (this->base + this->size != next->base || |
| memblock_get_region_node(this) != |
| memblock_get_region_node(next) || |
| this->flags != next->flags) { |
| BUG_ON(this->base + this->size > next->base); |
| i++; |
| continue; |
| } |
| |
| this->size += next->size; |
| /* move forward from next + 1, index of which is i + 2 */ |
| memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); |
| type->cnt--; |
| } |
| } |
| |
| /** |
| * memblock_insert_region - insert new memblock region |
| * @type: memblock type to insert into |
| * @idx: index for the insertion point |
| * @base: base address of the new region |
| * @size: size of the new region |
| * @nid: node id of the new region |
| * @flags: flags of the new region |
| * |
| * Insert new memblock region [@base,@base+@size) into @type at @idx. |
| * @type must already have extra room to accomodate the new region. |
| */ |
| static void __init_memblock memblock_insert_region(struct memblock_type *type, |
| int idx, phys_addr_t base, |
| phys_addr_t size, |
| int nid, unsigned long flags) |
| { |
| struct memblock_region *rgn = &type->regions[idx]; |
| |
| BUG_ON(type->cnt >= type->max); |
| memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); |
| rgn->base = base; |
| rgn->size = size; |
| rgn->flags = flags; |
| memblock_set_region_node(rgn, nid); |
| type->cnt++; |
| type->total_size += size; |
| } |
| |
| /** |
| * memblock_add_region - add new memblock region |
| * @type: memblock type to add new region into |
| * @base: base address of the new region |
| * @size: size of the new region |
| * @nid: nid of the new region |
| * @flags: flags of the new region |
| * |
| * Add new memblock region [@base,@base+@size) into @type. The new region |
| * is allowed to overlap with existing ones - overlaps don't affect already |
| * existing regions. @type is guaranteed to be minimal (all neighbouring |
| * compatible regions are merged) after the addition. |
| * |
| * RETURNS: |
| * 0 on success, -errno on failure. |
| */ |
| static int __init_memblock memblock_add_region(struct memblock_type *type, |
| phys_addr_t base, phys_addr_t size, |
| int nid, unsigned long flags) |
| { |
| bool insert = false; |
| phys_addr_t obase = base; |
| phys_addr_t end = base + memblock_cap_size(base, &size); |
| int i, nr_new; |
| |
| if (!size) |
| return 0; |
| |
| /* special case for empty array */ |
| if (type->regions[0].size == 0) { |
| WARN_ON(type->cnt != 1 || type->total_size); |
| type->regions[0].base = base; |
| type->regions[0].size = size; |
| type->regions[0].flags = flags; |
| memblock_set_region_node(&type->regions[0], nid); |
| type->total_size = size; |
| return 0; |
| } |
| repeat: |
| /* |
| * The following is executed twice. Once with %false @insert and |
| * then with %true. The first counts the number of regions needed |
| * to accomodate the new area. The second actually inserts them. |
| */ |
| base = obase; |
| nr_new = 0; |
| |
| for (i = 0; i < type->cnt; i++) { |
| struct memblock_region *rgn = &type->regions[i]; |
| phys_addr_t rbase = rgn->base; |
| phys_addr_t rend = rbase + rgn->size; |
| |
| if (rbase >= end) |
| break; |
| if (rend <= base) |
| continue; |
| /* |
| * @rgn overlaps. If it separates the lower part of new |
| * area, insert that portion. |
| */ |
| if (rbase > base) { |
| nr_new++; |
| if (insert) |
| memblock_insert_region(type, i++, base, |
| rbase - base, nid, |
| flags); |
| } |
| /* area below @rend is dealt with, forget about it */ |
| base = min(rend, end); |
| } |
| |
| /* insert the remaining portion */ |
| if (base < end) { |
| nr_new++; |
| if (insert) |
| memblock_insert_region(type, i, base, end - base, |
| nid, flags); |
| } |
| |
| /* |
| * If this was the first round, resize array and repeat for actual |
| * insertions; otherwise, merge and return. |
| */ |
| if (!insert) { |
| while (type->cnt + nr_new > type->max) |
| if (memblock_double_array(type, obase, size) < 0) |
| return -ENOMEM; |
| insert = true; |
| goto repeat; |
| } else { |
| memblock_merge_regions(type); |
| return 0; |
| } |
| } |
| |
| int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, |
| int nid) |
| { |
| return memblock_add_region(&memblock.memory, base, size, nid, 0); |
| } |
| |
| int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) |
| { |
| return memblock_add_region(&memblock.memory, base, size, |
| MAX_NUMNODES, 0); |
| } |
| |
| /** |
| * memblock_isolate_range - isolate given range into disjoint memblocks |
| * @type: memblock type to isolate range for |
| * @base: base of range to isolate |
| * @size: size of range to isolate |
| * @start_rgn: out parameter for the start of isolated region |
| * @end_rgn: out parameter for the end of isolated region |
| * |
| * Walk @type and ensure that regions don't cross the boundaries defined by |
| * [@base,@base+@size). Crossing regions are split at the boundaries, |
| * which may create at most two more regions. The index of the first |
| * region inside the range is returned in *@start_rgn and end in *@end_rgn. |
| * |
| * RETURNS: |
| * 0 on success, -errno on failure. |
| */ |
| static int __init_memblock memblock_isolate_range(struct memblock_type *type, |
| phys_addr_t base, phys_addr_t size, |
| int *start_rgn, int *end_rgn) |
| { |
| phys_addr_t end = base + memblock_cap_size(base, &size); |
| int i; |
| |
| *start_rgn = *end_rgn = 0; |
| |
| if (!size) |
| return 0; |
| |
| /* we'll create at most two more regions */ |
| while (type->cnt + 2 > type->max) |
| if (memblock_double_array(type, base, size) < 0) |
| return -ENOMEM; |
| |
| for (i = 0; i < type->cnt; i++) { |
| struct memblock_region *rgn = &type->regions[i]; |
| phys_addr_t rbase = rgn->base; |
| phys_addr_t rend = rbase + rgn->size; |
| |
| if (rbase >= end) |
| break; |
| if (rend <= base) |
| continue; |
| |
| if (rbase < base) { |
| /* |
| * @rgn intersects from below. Split and continue |
| * to process the next region - the new top half. |
| */ |
| rgn->base = base; |
| rgn->size -= base - rbase; |
| type->total_size -= base - rbase; |
| memblock_insert_region(type, i, rbase, base - rbase, |
| memblock_get_region_node(rgn), |
| rgn->flags); |
| } else if (rend > end) { |
| /* |
| * @rgn intersects from above. Split and redo the |
| * current region - the new bottom half. |
| */ |
| rgn->base = end; |
| rgn->size -= end - rbase; |
| type->total_size -= end - rbase; |
| memblock_insert_region(type, i--, rbase, end - rbase, |
| memblock_get_region_node(rgn), |
| rgn->flags); |
| } else { |
| /* @rgn is fully contained, record it */ |
| if (!*end_rgn) |
| *start_rgn = i; |
| *end_rgn = i + 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int __init_memblock __memblock_remove(struct memblock_type *type, |
| phys_addr_t base, phys_addr_t size) |
| { |
| int start_rgn, end_rgn; |
| int i, ret; |
| |
| ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
| if (ret) |
| return ret; |
| |
| for (i = end_rgn - 1; i >= start_rgn; i--) |
| memblock_remove_region(type, i); |
| return 0; |
| } |
| |
| int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) |
| { |
| return __memblock_remove(&memblock.memory, base, size); |
| } |
| |
| int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) |
| { |
| memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", |
| (unsigned long long)base, |
| (unsigned long long)base + size - 1, |
| (void *)_RET_IP_); |
| |
| return __memblock_remove(&memblock.reserved, base, size); |
| } |
| |
| static int __init_memblock memblock_reserve_region(phys_addr_t base, |
| phys_addr_t size, |
| int nid, |
| unsigned long flags) |
| { |
| struct memblock_type *_rgn = &memblock.reserved; |
| |
| memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n", |
| (unsigned long long)base, |
| (unsigned long long)base + size - 1, |
| flags, (void *)_RET_IP_); |
| |
| return memblock_add_region(_rgn, base, size, nid, flags); |
| } |
| |
| int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) |
| { |
| return memblock_reserve_region(base, size, MAX_NUMNODES, 0); |
| } |
| |
| /** |
| * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. |
| * @base: the base phys addr of the region |
| * @size: the size of the region |
| * |
| * This function isolates region [@base, @base + @size), and mark it with flag |
| * MEMBLOCK_HOTPLUG. |
| * |
| * Return 0 on succees, -errno on failure. |
| */ |
| int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) |
| { |
| struct memblock_type *type = &memblock.memory; |
| int i, ret, start_rgn, end_rgn; |
| |
| ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
| if (ret) |
| return ret; |
| |
| for (i = start_rgn; i < end_rgn; i++) |
| memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG); |
| |
| memblock_merge_regions(type); |
| return 0; |
| } |
| |
| /** |
| * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. |
| * @base: the base phys addr of the region |
| * @size: the size of the region |
| * |
| * This function isolates region [@base, @base + @size), and clear flag |
| * MEMBLOCK_HOTPLUG for the isolated regions. |
| * |
| * Return 0 on succees, -errno on failure. |
| */ |
| int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) |
| { |
| struct memblock_type *type = &memblock.memory; |
| int i, ret, start_rgn, end_rgn; |
| |
| ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
| if (ret) |
| return ret; |
| |
| for (i = start_rgn; i < end_rgn; i++) |
| memblock_clear_region_flags(&type->regions[i], |
| MEMBLOCK_HOTPLUG); |
| |
| memblock_merge_regions(type); |
| return 0; |
| } |
| |
| /** |
| * __next_free_mem_range - next function for for_each_free_mem_range() |
| * @idx: pointer to u64 loop variable |
| * @nid: node selector, %MAX_NUMNODES for all nodes |
| * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL |
| * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL |
| * @out_nid: ptr to int for nid of the range, can be %NULL |
| * |
| * Find the first free area from *@idx which matches @nid, fill the out |
| * parameters, and update *@idx for the next iteration. The lower 32bit of |
| * *@idx contains index into memory region and the upper 32bit indexes the |
| * areas before each reserved region. For example, if reserved regions |
| * look like the following, |
| * |
| * 0:[0-16), 1:[32-48), 2:[128-130) |
| * |
| * The upper 32bit indexes the following regions. |
| * |
| * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) |
| * |
| * As both region arrays are sorted, the function advances the two indices |
| * in lockstep and returns each intersection. |
| */ |
| void __init_memblock __next_free_mem_range(u64 *idx, int nid, |
| phys_addr_t *out_start, |
| phys_addr_t *out_end, int *out_nid) |
| { |
| struct memblock_type *mem = &memblock.memory; |
| struct memblock_type *rsv = &memblock.reserved; |
| int mi = *idx & 0xffffffff; |
| int ri = *idx >> 32; |
| |
| for ( ; mi < mem->cnt; mi++) { |
| struct memblock_region *m = &mem->regions[mi]; |
| phys_addr_t m_start = m->base; |
| phys_addr_t m_end = m->base + m->size; |
| |
| /* only memory regions are associated with nodes, check it */ |
| if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) |
| continue; |
| |
| /* scan areas before each reservation for intersection */ |
| for ( ; ri < rsv->cnt + 1; ri++) { |
| struct memblock_region *r = &rsv->regions[ri]; |
| phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; |
| phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; |
| |
| /* if ri advanced past mi, break out to advance mi */ |
| if (r_start >= m_end) |
| break; |
| /* if the two regions intersect, we're done */ |
| if (m_start < r_end) { |
| if (out_start) |
| *out_start = max(m_start, r_start); |
| if (out_end) |
| *out_end = min(m_end, r_end); |
| if (out_nid) |
| *out_nid = memblock_get_region_node(m); |
| /* |
| * The region which ends first is advanced |
| * for the next iteration. |
| */ |
| if (m_end <= r_end) |
| mi++; |
| else |
| ri++; |
| *idx = (u32)mi | (u64)ri << 32; |
| return; |
| } |
| } |
| } |
| |
| /* signal end of iteration */ |
| *idx = ULLONG_MAX; |
| } |
| |
| /** |
| * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse() |
| * @idx: pointer to u64 loop variable |
| * @nid: nid: node selector, %MAX_NUMNODES for all nodes |
| * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL |
| * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL |
| * @out_nid: ptr to int for nid of the range, can be %NULL |
| * |
| * Reverse of __next_free_mem_range(). |
| * |
| * Linux kernel cannot migrate pages used by itself. Memory hotplug users won't |
| * be able to hot-remove hotpluggable memory used by the kernel. So this |
| * function skip hotpluggable regions if needed when allocating memory for the |
| * kernel. |
| */ |
| void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid, |
| phys_addr_t *out_start, |
| phys_addr_t *out_end, int *out_nid) |
| { |
| struct memblock_type *mem = &memblock.memory; |
| struct memblock_type *rsv = &memblock.reserved; |
| int mi = *idx & 0xffffffff; |
| int ri = *idx >> 32; |
| |
| if (*idx == (u64)ULLONG_MAX) { |
| mi = mem->cnt - 1; |
| ri = rsv->cnt; |
| } |
| |
| for ( ; mi >= 0; mi--) { |
| struct memblock_region *m = &mem->regions[mi]; |
| phys_addr_t m_start = m->base; |
| phys_addr_t m_end = m->base + m->size; |
| |
| /* only memory regions are associated with nodes, check it */ |
| if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) |
| continue; |
| |
| /* skip hotpluggable memory regions if needed */ |
| if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) |
| continue; |
| |
| /* scan areas before each reservation for intersection */ |
| for ( ; ri >= 0; ri--) { |
| struct memblock_region *r = &rsv->regions[ri]; |
| phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; |
| phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; |
| |
| /* if ri advanced past mi, break out to advance mi */ |
| if (r_end <= m_start) |
| break; |
| /* if the two regions intersect, we're done */ |
| if (m_end > r_start) { |
| if (out_start) |
| *out_start = max(m_start, r_start); |
| if (out_end) |
| *out_end = min(m_end, r_end); |
| if (out_nid) |
| *out_nid = memblock_get_region_node(m); |
| |
| if (m_start >= r_start) |
| mi--; |
| else |
| ri--; |
| *idx = (u32)mi | (u64)ri << 32; |
| return; |
| } |
| } |
| } |
| |
| *idx = ULLONG_MAX; |
| } |
| |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
| /* |
| * Common iterator interface used to define for_each_mem_range(). |
| */ |
| void __init_memblock __next_mem_pfn_range(int *idx, int nid, |
| unsigned long *out_start_pfn, |
| unsigned long *out_end_pfn, int *out_nid) |
| { |
| struct memblock_type *type = &memblock.memory; |
| struct memblock_region *r; |
| |
| while (++*idx < type->cnt) { |
| r = &type->regions[*idx]; |
| |
| if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) |
| continue; |
| if (nid == MAX_NUMNODES || nid == r->nid) |
| break; |
| } |
| if (*idx >= type->cnt) { |
| *idx = -1; |
| return; |
| } |
| |
| if (out_start_pfn) |
| *out_start_pfn = PFN_UP(r->base); |
| if (out_end_pfn) |
| *out_end_pfn = PFN_DOWN(r->base + r->size); |
| if (out_nid) |
| *out_nid = r->nid; |
| } |
| |
| /** |
| * memblock_set_node - set node ID on memblock regions |
| * @base: base of area to set node ID for |
| * @size: size of area to set node ID for |
| * @type: memblock type to set node ID for |
| * @nid: node ID to set |
| * |
| * Set the nid of memblock @type regions in [@base,@base+@size) to @nid. |
| * Regions which cross the area boundaries are split as necessary. |
| * |
| * RETURNS: |
| * 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, |
| struct memblock_type *type, int nid) |
| { |
| int start_rgn, end_rgn; |
| int i, ret; |
| |
| ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
| if (ret) |
| return ret; |
| |
| for (i = start_rgn; i < end_rgn; i++) |
| memblock_set_region_node(&type->regions[i], nid); |
| |
| memblock_merge_regions(type); |
| return 0; |
| } |
| #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
| |
| static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, |
| phys_addr_t align, phys_addr_t max_addr, |
| int nid) |
| { |
| phys_addr_t found; |
| |
| if (!align) |
| align = SMP_CACHE_BYTES; |
| |
| /* align @size to avoid excessive fragmentation on reserved array */ |
| size = round_up(size, align); |
| |
| found = memblock_find_in_range_node(size, align, 0, max_addr, nid); |
| if (found && !memblock_reserve(found, size)) |
| return found; |
| |
| return 0; |
| } |
| |
| phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) |
| { |
| return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid); |
| } |
| |
| phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) |
| { |
| return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES); |
| } |
| |
| phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) |
| { |
| phys_addr_t alloc; |
| |
| alloc = __memblock_alloc_base(size, align, max_addr); |
| |
| if (alloc == 0) |
| panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", |
| (unsigned long long) size, (unsigned long long) max_addr); |
| |
| return alloc; |
| } |
| |
| phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) |
| { |
| return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); |
| } |
| |
| phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) |
| { |
| phys_addr_t res = memblock_alloc_nid(size, align, nid); |
| |
| if (res) |
| return res; |
| return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); |
| } |
| |
| |
| /* |
| * Remaining API functions |
| */ |
| |
| phys_addr_t __init memblock_phys_mem_size(void) |
| { |
| return memblock.memory.total_size; |
| } |
| |
| phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) |
| { |
| unsigned long pages = 0; |
| struct memblock_region *r; |
| unsigned long start_pfn, end_pfn; |
| |
| for_each_memblock(memory, r) { |
| start_pfn = memblock_region_memory_base_pfn(r); |
| end_pfn = memblock_region_memory_end_pfn(r); |
| start_pfn = min_t(unsigned long, start_pfn, limit_pfn); |
| end_pfn = min_t(unsigned long, end_pfn, limit_pfn); |
| pages += end_pfn - start_pfn; |
| } |
| |
| return (phys_addr_t)pages << PAGE_SHIFT; |
| } |
| |
| /* lowest address */ |
| phys_addr_t __init_memblock memblock_start_of_DRAM(void) |
| { |
| return memblock.memory.regions[0].base; |
| } |
| |
| phys_addr_t __init_memblock memblock_end_of_DRAM(void) |
| { |
| int idx = memblock.memory.cnt - 1; |
| |
| return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); |
| } |
| |
| void __init memblock_enforce_memory_limit(phys_addr_t limit) |
| { |
| unsigned long i; |
| phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; |
| |
| if (!limit) |
| return; |
| |
| /* find out max address */ |
| for (i = 0; i < memblock.memory.cnt; i++) { |
| struct memblock_region *r = &memblock.memory.regions[i]; |
| |
| if (limit <= r->size) { |
| max_addr = r->base + limit; |
| break; |
| } |
| limit -= r->size; |
| } |
| |
| /* truncate both memory and reserved regions */ |
| __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX); |
| __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX); |
| } |
| |
| static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) |
| { |
| unsigned int left = 0, right = type->cnt; |
| |
| do { |
| unsigned int mid = (right + left) / 2; |
| |
| if (addr < type->regions[mid].base) |
| right = mid; |
| else if (addr >= (type->regions[mid].base + |
| type->regions[mid].size)) |
| left = mid + 1; |
| else |
| return mid; |
| } while (left < right); |
| return -1; |
| } |
| |
| int __init memblock_is_reserved(phys_addr_t addr) |
| { |
| return memblock_search(&memblock.reserved, addr) != -1; |
| } |
| |
| int __init_memblock memblock_is_memory(phys_addr_t addr) |
| { |
| return memblock_search(&memblock.memory, addr) != -1; |
| } |
| |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
| int __init_memblock memblock_search_pfn_nid(unsigned long pfn, |
| unsigned long *start_pfn, unsigned long *end_pfn) |
| { |
| struct memblock_type *type = &memblock.memory; |
| int mid = memblock_search(type, (phys_addr_t)pfn << PAGE_SHIFT); |
| |
| if (mid == -1) |
| return -1; |
| |
| *start_pfn = type->regions[mid].base >> PAGE_SHIFT; |
| *end_pfn = (type->regions[mid].base + type->regions[mid].size) |
| >> PAGE_SHIFT; |
| |
| return type->regions[mid].nid; |
| } |
| #endif |
| |
| /** |
| * memblock_is_region_memory - check if a region is a subset of memory |
| * @base: base of region to check |
| * @size: size of region to check |
| * |
| * Check if the region [@base, @base+@size) is a subset of a memory block. |
| * |
| * RETURNS: |
| * 0 if false, non-zero if true |
| */ |
| int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) |
| { |
| int idx = memblock_search(&memblock.memory, base); |
| phys_addr_t end = base + memblock_cap_size(base, &size); |
| |
| if (idx == -1) |
| return 0; |
| return memblock.memory.regions[idx].base <= base && |
| (memblock.memory.regions[idx].base + |
| memblock.memory.regions[idx].size) >= end; |
| } |
| |
| /** |
| * memblock_is_region_reserved - check if a region intersects reserved memory |
| * @base: base of region to check |
| * @size: size of region to check |
| * |
| * Check if the region [@base, @base+@size) intersects a reserved memory block. |
| * |
| * RETURNS: |
| * 0 if false, non-zero if true |
| */ |
| int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) |
| { |
| memblock_cap_size(base, &size); |
| return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; |
| } |
| |
| void __init_memblock memblock_trim_memory(phys_addr_t align) |
| { |
| int i; |
| phys_addr_t start, end, orig_start, orig_end; |
| struct memblock_type *mem = &memblock.memory; |
| |
| for (i = 0; i < mem->cnt; i++) { |
| orig_start = mem->regions[i].base; |
| orig_end = mem->regions[i].base + mem->regions[i].size; |
| start = round_up(orig_start, align); |
| end = round_down(orig_end, align); |
| |
| if (start == orig_start && end == orig_end) |
| continue; |
| |
| if (start < end) { |
| mem->regions[i].base = start; |
| mem->regions[i].size = end - start; |
| } else { |
| memblock_remove_region(mem, i); |
| i--; |
| } |
| } |
| } |
| |
| void __init_memblock memblock_set_current_limit(phys_addr_t limit) |
| { |
| memblock.current_limit = limit; |
| } |
| |
| static void __init_memblock memblock_dump(struct memblock_type *type, char *name) |
| { |
| unsigned long long base, size; |
| unsigned long flags; |
| int i; |
| |
| pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); |
| |
| for (i = 0; i < type->cnt; i++) { |
| struct memblock_region *rgn = &type->regions[i]; |
| char nid_buf[32] = ""; |
| |
| base = rgn->base; |
| size = rgn->size; |
| flags = rgn->flags; |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
| if (memblock_get_region_node(rgn) != MAX_NUMNODES) |
| snprintf(nid_buf, sizeof(nid_buf), " on node %d", |
| memblock_get_region_node(rgn)); |
| #endif |
| pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n", |
| name, i, base, base + size - 1, size, nid_buf, flags); |
| } |
| } |
| |
| void __init_memblock __memblock_dump_all(void) |
| { |
| pr_info("MEMBLOCK configuration:\n"); |
| pr_info(" memory size = %#llx reserved size = %#llx\n", |
| (unsigned long long)memblock.memory.total_size, |
| (unsigned long long)memblock.reserved.total_size); |
| |
| memblock_dump(&memblock.memory, "memory"); |
| memblock_dump(&memblock.reserved, "reserved"); |
| } |
| |
| void __init memblock_allow_resize(void) |
| { |
| memblock_can_resize = 1; |
| } |
| |
| static int __init early_memblock(char *p) |
| { |
| if (p && strstr(p, "debug")) |
| memblock_debug = 1; |
| return 0; |
| } |
| early_param("memblock", early_memblock); |
| |
| #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) |
| |
| static int memblock_debug_show(struct seq_file *m, void *private) |
| { |
| struct memblock_type *type = m->private; |
| struct memblock_region *reg; |
| int i; |
| |
| for (i = 0; i < type->cnt; i++) { |
| reg = &type->regions[i]; |
| seq_printf(m, "%4d: ", i); |
| if (sizeof(phys_addr_t) == 4) |
| seq_printf(m, "0x%08lx..0x%08lx\n", |
| (unsigned long)reg->base, |
| (unsigned long)(reg->base + reg->size - 1)); |
| else |
| seq_printf(m, "0x%016llx..0x%016llx\n", |
| (unsigned long long)reg->base, |
| (unsigned long long)(reg->base + reg->size - 1)); |
| |
| } |
| return 0; |
| } |
| |
| static int memblock_debug_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, memblock_debug_show, inode->i_private); |
| } |
| |
| static const struct file_operations memblock_debug_fops = { |
| .open = memblock_debug_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int __init memblock_init_debugfs(void) |
| { |
| struct dentry *root = debugfs_create_dir("memblock", NULL); |
| if (!root) |
| return -ENXIO; |
| debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); |
| debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); |
| |
| return 0; |
| } |
| __initcall(memblock_init_debugfs); |
| |
| #endif /* CONFIG_DEBUG_FS */ |