| /* |
| * Support for Intel AES-NI instructions. This file contains glue |
| * code, the real AES implementation is in intel-aes_asm.S. |
| * |
| * Copyright (C) 2008, Intel Corp. |
| * Author: Huang Ying <ying.huang@intel.com> |
| * |
| * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD |
| * interface for 64-bit kernels. |
| * Authors: Adrian Hoban <adrian.hoban@intel.com> |
| * Gabriele Paoloni <gabriele.paoloni@intel.com> |
| * Tadeusz Struk (tadeusz.struk@intel.com) |
| * Aidan O'Mahony (aidan.o.mahony@intel.com) |
| * Copyright (c) 2010, Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| */ |
| |
| #include <linux/hardirq.h> |
| #include <linux/types.h> |
| #include <linux/module.h> |
| #include <linux/err.h> |
| #include <crypto/algapi.h> |
| #include <crypto/aes.h> |
| #include <crypto/cryptd.h> |
| #include <crypto/ctr.h> |
| #include <crypto/b128ops.h> |
| #include <crypto/xts.h> |
| #include <asm/cpu_device_id.h> |
| #include <asm/fpu/api.h> |
| #include <asm/crypto/aes.h> |
| #include <crypto/scatterwalk.h> |
| #include <crypto/internal/aead.h> |
| #include <crypto/internal/simd.h> |
| #include <crypto/internal/skcipher.h> |
| #include <linux/workqueue.h> |
| #include <linux/spinlock.h> |
| #ifdef CONFIG_X86_64 |
| #include <asm/crypto/glue_helper.h> |
| #endif |
| |
| |
| #define AESNI_ALIGN 16 |
| #define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN))) |
| #define AES_BLOCK_MASK (~(AES_BLOCK_SIZE - 1)) |
| #define RFC4106_HASH_SUBKEY_SIZE 16 |
| #define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1)) |
| #define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA) |
| #define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA) |
| |
| /* This data is stored at the end of the crypto_tfm struct. |
| * It's a type of per "session" data storage location. |
| * This needs to be 16 byte aligned. |
| */ |
| struct aesni_rfc4106_gcm_ctx { |
| u8 hash_subkey[16] AESNI_ALIGN_ATTR; |
| struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR; |
| u8 nonce[4]; |
| }; |
| |
| struct aesni_xts_ctx { |
| u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR; |
| u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR; |
| }; |
| |
| asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key, |
| unsigned int key_len); |
| asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in); |
| asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in); |
| asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, unsigned int len); |
| asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, unsigned int len); |
| asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, unsigned int len, u8 *iv); |
| asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, unsigned int len, u8 *iv); |
| |
| int crypto_fpu_init(void); |
| void crypto_fpu_exit(void); |
| |
| #define AVX_GEN2_OPTSIZE 640 |
| #define AVX_GEN4_OPTSIZE 4096 |
| |
| #ifdef CONFIG_X86_64 |
| |
| static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, unsigned int len, u8 *iv); |
| asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, unsigned int len, u8 *iv); |
| |
| asmlinkage void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, bool enc, u8 *iv); |
| |
| /* asmlinkage void aesni_gcm_enc() |
| * void *ctx, AES Key schedule. Starts on a 16 byte boundary. |
| * u8 *out, Ciphertext output. Encrypt in-place is allowed. |
| * const u8 *in, Plaintext input |
| * unsigned long plaintext_len, Length of data in bytes for encryption. |
| * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association) |
| * concatenated with 8 byte Initialisation Vector (from IPSec ESP |
| * Payload) concatenated with 0x00000001. 16-byte aligned pointer. |
| * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary. |
| * const u8 *aad, Additional Authentication Data (AAD) |
| * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this |
| * is going to be 8 or 12 bytes |
| * u8 *auth_tag, Authenticated Tag output. |
| * unsigned long auth_tag_len), Authenticated Tag Length in bytes. |
| * Valid values are 16 (most likely), 12 or 8. |
| */ |
| asmlinkage void aesni_gcm_enc(void *ctx, u8 *out, |
| const u8 *in, unsigned long plaintext_len, u8 *iv, |
| u8 *hash_subkey, const u8 *aad, unsigned long aad_len, |
| u8 *auth_tag, unsigned long auth_tag_len); |
| |
| /* asmlinkage void aesni_gcm_dec() |
| * void *ctx, AES Key schedule. Starts on a 16 byte boundary. |
| * u8 *out, Plaintext output. Decrypt in-place is allowed. |
| * const u8 *in, Ciphertext input |
| * unsigned long ciphertext_len, Length of data in bytes for decryption. |
| * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association) |
| * concatenated with 8 byte Initialisation Vector (from IPSec ESP |
| * Payload) concatenated with 0x00000001. 16-byte aligned pointer. |
| * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary. |
| * const u8 *aad, Additional Authentication Data (AAD) |
| * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going |
| * to be 8 or 12 bytes |
| * u8 *auth_tag, Authenticated Tag output. |
| * unsigned long auth_tag_len) Authenticated Tag Length in bytes. |
| * Valid values are 16 (most likely), 12 or 8. |
| */ |
| asmlinkage void aesni_gcm_dec(void *ctx, u8 *out, |
| const u8 *in, unsigned long ciphertext_len, u8 *iv, |
| u8 *hash_subkey, const u8 *aad, unsigned long aad_len, |
| u8 *auth_tag, unsigned long auth_tag_len); |
| |
| |
| #ifdef CONFIG_AS_AVX |
| asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv, |
| void *keys, u8 *out, unsigned int num_bytes); |
| asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv, |
| void *keys, u8 *out, unsigned int num_bytes); |
| asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv, |
| void *keys, u8 *out, unsigned int num_bytes); |
| /* |
| * asmlinkage void aesni_gcm_precomp_avx_gen2() |
| * gcm_data *my_ctx_data, context data |
| * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary. |
| */ |
| asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey); |
| |
| asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out, |
| const u8 *in, unsigned long plaintext_len, u8 *iv, |
| const u8 *aad, unsigned long aad_len, |
| u8 *auth_tag, unsigned long auth_tag_len); |
| |
| asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out, |
| const u8 *in, unsigned long ciphertext_len, u8 *iv, |
| const u8 *aad, unsigned long aad_len, |
| u8 *auth_tag, unsigned long auth_tag_len); |
| |
| static void aesni_gcm_enc_avx(void *ctx, u8 *out, |
| const u8 *in, unsigned long plaintext_len, u8 *iv, |
| u8 *hash_subkey, const u8 *aad, unsigned long aad_len, |
| u8 *auth_tag, unsigned long auth_tag_len) |
| { |
| struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx; |
| if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)){ |
| aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad, |
| aad_len, auth_tag, auth_tag_len); |
| } else { |
| aesni_gcm_precomp_avx_gen2(ctx, hash_subkey); |
| aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad, |
| aad_len, auth_tag, auth_tag_len); |
| } |
| } |
| |
| static void aesni_gcm_dec_avx(void *ctx, u8 *out, |
| const u8 *in, unsigned long ciphertext_len, u8 *iv, |
| u8 *hash_subkey, const u8 *aad, unsigned long aad_len, |
| u8 *auth_tag, unsigned long auth_tag_len) |
| { |
| struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx; |
| if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) { |
| aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey, aad, |
| aad_len, auth_tag, auth_tag_len); |
| } else { |
| aesni_gcm_precomp_avx_gen2(ctx, hash_subkey); |
| aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad, |
| aad_len, auth_tag, auth_tag_len); |
| } |
| } |
| #endif |
| |
| #ifdef CONFIG_AS_AVX2 |
| /* |
| * asmlinkage void aesni_gcm_precomp_avx_gen4() |
| * gcm_data *my_ctx_data, context data |
| * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary. |
| */ |
| asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey); |
| |
| asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out, |
| const u8 *in, unsigned long plaintext_len, u8 *iv, |
| const u8 *aad, unsigned long aad_len, |
| u8 *auth_tag, unsigned long auth_tag_len); |
| |
| asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out, |
| const u8 *in, unsigned long ciphertext_len, u8 *iv, |
| const u8 *aad, unsigned long aad_len, |
| u8 *auth_tag, unsigned long auth_tag_len); |
| |
| static void aesni_gcm_enc_avx2(void *ctx, u8 *out, |
| const u8 *in, unsigned long plaintext_len, u8 *iv, |
| u8 *hash_subkey, const u8 *aad, unsigned long aad_len, |
| u8 *auth_tag, unsigned long auth_tag_len) |
| { |
| struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx; |
| if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) { |
| aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad, |
| aad_len, auth_tag, auth_tag_len); |
| } else if (plaintext_len < AVX_GEN4_OPTSIZE) { |
| aesni_gcm_precomp_avx_gen2(ctx, hash_subkey); |
| aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad, |
| aad_len, auth_tag, auth_tag_len); |
| } else { |
| aesni_gcm_precomp_avx_gen4(ctx, hash_subkey); |
| aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad, |
| aad_len, auth_tag, auth_tag_len); |
| } |
| } |
| |
| static void aesni_gcm_dec_avx2(void *ctx, u8 *out, |
| const u8 *in, unsigned long ciphertext_len, u8 *iv, |
| u8 *hash_subkey, const u8 *aad, unsigned long aad_len, |
| u8 *auth_tag, unsigned long auth_tag_len) |
| { |
| struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx; |
| if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) { |
| aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey, |
| aad, aad_len, auth_tag, auth_tag_len); |
| } else if (ciphertext_len < AVX_GEN4_OPTSIZE) { |
| aesni_gcm_precomp_avx_gen2(ctx, hash_subkey); |
| aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad, |
| aad_len, auth_tag, auth_tag_len); |
| } else { |
| aesni_gcm_precomp_avx_gen4(ctx, hash_subkey); |
| aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad, |
| aad_len, auth_tag, auth_tag_len); |
| } |
| } |
| #endif |
| |
| static void (*aesni_gcm_enc_tfm)(void *ctx, u8 *out, |
| const u8 *in, unsigned long plaintext_len, u8 *iv, |
| u8 *hash_subkey, const u8 *aad, unsigned long aad_len, |
| u8 *auth_tag, unsigned long auth_tag_len); |
| |
| static void (*aesni_gcm_dec_tfm)(void *ctx, u8 *out, |
| const u8 *in, unsigned long ciphertext_len, u8 *iv, |
| u8 *hash_subkey, const u8 *aad, unsigned long aad_len, |
| u8 *auth_tag, unsigned long auth_tag_len); |
| |
| static inline struct |
| aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm) |
| { |
| unsigned long align = AESNI_ALIGN; |
| |
| if (align <= crypto_tfm_ctx_alignment()) |
| align = 1; |
| return PTR_ALIGN(crypto_aead_ctx(tfm), align); |
| } |
| #endif |
| |
| static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx) |
| { |
| unsigned long addr = (unsigned long)raw_ctx; |
| unsigned long align = AESNI_ALIGN; |
| |
| if (align <= crypto_tfm_ctx_alignment()) |
| align = 1; |
| return (struct crypto_aes_ctx *)ALIGN(addr, align); |
| } |
| |
| static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx, |
| const u8 *in_key, unsigned int key_len) |
| { |
| struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx); |
| u32 *flags = &tfm->crt_flags; |
| int err; |
| |
| if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 && |
| key_len != AES_KEYSIZE_256) { |
| *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; |
| return -EINVAL; |
| } |
| |
| if (!irq_fpu_usable()) |
| err = crypto_aes_expand_key(ctx, in_key, key_len); |
| else { |
| kernel_fpu_begin(); |
| err = aesni_set_key(ctx, in_key, key_len); |
| kernel_fpu_end(); |
| } |
| |
| return err; |
| } |
| |
| static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, |
| unsigned int key_len) |
| { |
| return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len); |
| } |
| |
| static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) |
| { |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm)); |
| |
| if (!irq_fpu_usable()) |
| crypto_aes_encrypt_x86(ctx, dst, src); |
| else { |
| kernel_fpu_begin(); |
| aesni_enc(ctx, dst, src); |
| kernel_fpu_end(); |
| } |
| } |
| |
| static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) |
| { |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm)); |
| |
| if (!irq_fpu_usable()) |
| crypto_aes_decrypt_x86(ctx, dst, src); |
| else { |
| kernel_fpu_begin(); |
| aesni_dec(ctx, dst, src); |
| kernel_fpu_end(); |
| } |
| } |
| |
| static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) |
| { |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm)); |
| |
| aesni_enc(ctx, dst, src); |
| } |
| |
| static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) |
| { |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm)); |
| |
| aesni_dec(ctx, dst, src); |
| } |
| |
| static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int len) |
| { |
| return aes_set_key_common(crypto_skcipher_tfm(tfm), |
| crypto_skcipher_ctx(tfm), key, len); |
| } |
| |
| static int ecb_encrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); |
| struct skcipher_walk walk; |
| unsigned int nbytes; |
| int err; |
| |
| err = skcipher_walk_virt(&walk, req, true); |
| |
| kernel_fpu_begin(); |
| while ((nbytes = walk.nbytes)) { |
| aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr, |
| nbytes & AES_BLOCK_MASK); |
| nbytes &= AES_BLOCK_SIZE - 1; |
| err = skcipher_walk_done(&walk, nbytes); |
| } |
| kernel_fpu_end(); |
| |
| return err; |
| } |
| |
| static int ecb_decrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); |
| struct skcipher_walk walk; |
| unsigned int nbytes; |
| int err; |
| |
| err = skcipher_walk_virt(&walk, req, true); |
| |
| kernel_fpu_begin(); |
| while ((nbytes = walk.nbytes)) { |
| aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr, |
| nbytes & AES_BLOCK_MASK); |
| nbytes &= AES_BLOCK_SIZE - 1; |
| err = skcipher_walk_done(&walk, nbytes); |
| } |
| kernel_fpu_end(); |
| |
| return err; |
| } |
| |
| static int cbc_encrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); |
| struct skcipher_walk walk; |
| unsigned int nbytes; |
| int err; |
| |
| err = skcipher_walk_virt(&walk, req, true); |
| |
| kernel_fpu_begin(); |
| while ((nbytes = walk.nbytes)) { |
| aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr, |
| nbytes & AES_BLOCK_MASK, walk.iv); |
| nbytes &= AES_BLOCK_SIZE - 1; |
| err = skcipher_walk_done(&walk, nbytes); |
| } |
| kernel_fpu_end(); |
| |
| return err; |
| } |
| |
| static int cbc_decrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); |
| struct skcipher_walk walk; |
| unsigned int nbytes; |
| int err; |
| |
| err = skcipher_walk_virt(&walk, req, true); |
| |
| kernel_fpu_begin(); |
| while ((nbytes = walk.nbytes)) { |
| aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr, |
| nbytes & AES_BLOCK_MASK, walk.iv); |
| nbytes &= AES_BLOCK_SIZE - 1; |
| err = skcipher_walk_done(&walk, nbytes); |
| } |
| kernel_fpu_end(); |
| |
| return err; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static void ctr_crypt_final(struct crypto_aes_ctx *ctx, |
| struct skcipher_walk *walk) |
| { |
| u8 *ctrblk = walk->iv; |
| u8 keystream[AES_BLOCK_SIZE]; |
| u8 *src = walk->src.virt.addr; |
| u8 *dst = walk->dst.virt.addr; |
| unsigned int nbytes = walk->nbytes; |
| |
| aesni_enc(ctx, keystream, ctrblk); |
| crypto_xor(keystream, src, nbytes); |
| memcpy(dst, keystream, nbytes); |
| crypto_inc(ctrblk, AES_BLOCK_SIZE); |
| } |
| |
| #ifdef CONFIG_AS_AVX |
| static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out, |
| const u8 *in, unsigned int len, u8 *iv) |
| { |
| /* |
| * based on key length, override with the by8 version |
| * of ctr mode encryption/decryption for improved performance |
| * aes_set_key_common() ensures that key length is one of |
| * {128,192,256} |
| */ |
| if (ctx->key_length == AES_KEYSIZE_128) |
| aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len); |
| else if (ctx->key_length == AES_KEYSIZE_192) |
| aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len); |
| else |
| aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len); |
| } |
| #endif |
| |
| static int ctr_crypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); |
| struct skcipher_walk walk; |
| unsigned int nbytes; |
| int err; |
| |
| err = skcipher_walk_virt(&walk, req, true); |
| |
| kernel_fpu_begin(); |
| while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) { |
| aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr, |
| nbytes & AES_BLOCK_MASK, walk.iv); |
| nbytes &= AES_BLOCK_SIZE - 1; |
| err = skcipher_walk_done(&walk, nbytes); |
| } |
| if (walk.nbytes) { |
| ctr_crypt_final(ctx, &walk); |
| err = skcipher_walk_done(&walk, 0); |
| } |
| kernel_fpu_end(); |
| |
| return err; |
| } |
| |
| static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int err; |
| |
| err = xts_verify_key(tfm, key, keylen); |
| if (err) |
| return err; |
| |
| keylen /= 2; |
| |
| /* first half of xts-key is for crypt */ |
| err = aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_crypt_ctx, |
| key, keylen); |
| if (err) |
| return err; |
| |
| /* second half of xts-key is for tweak */ |
| return aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_tweak_ctx, |
| key + keylen, keylen); |
| } |
| |
| |
| static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in) |
| { |
| aesni_enc(ctx, out, in); |
| } |
| |
| static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv) |
| { |
| glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc)); |
| } |
| |
| static void aesni_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv) |
| { |
| glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_dec)); |
| } |
| |
| static void aesni_xts_enc8(void *ctx, u128 *dst, const u128 *src, le128 *iv) |
| { |
| aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, true, (u8 *)iv); |
| } |
| |
| static void aesni_xts_dec8(void *ctx, u128 *dst, const u128 *src, le128 *iv) |
| { |
| aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, false, (u8 *)iv); |
| } |
| |
| static const struct common_glue_ctx aesni_enc_xts = { |
| .num_funcs = 2, |
| .fpu_blocks_limit = 1, |
| |
| .funcs = { { |
| .num_blocks = 8, |
| .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc8) } |
| }, { |
| .num_blocks = 1, |
| .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc) } |
| } } |
| }; |
| |
| static const struct common_glue_ctx aesni_dec_xts = { |
| .num_funcs = 2, |
| .fpu_blocks_limit = 1, |
| |
| .funcs = { { |
| .num_blocks = 8, |
| .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec8) } |
| }, { |
| .num_blocks = 1, |
| .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec) } |
| } } |
| }; |
| |
| static int xts_encrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| return glue_xts_req_128bit(&aesni_enc_xts, req, |
| XTS_TWEAK_CAST(aesni_xts_tweak), |
| aes_ctx(ctx->raw_tweak_ctx), |
| aes_ctx(ctx->raw_crypt_ctx)); |
| } |
| |
| static int xts_decrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| return glue_xts_req_128bit(&aesni_dec_xts, req, |
| XTS_TWEAK_CAST(aesni_xts_tweak), |
| aes_ctx(ctx->raw_tweak_ctx), |
| aes_ctx(ctx->raw_crypt_ctx)); |
| } |
| |
| static int rfc4106_init(struct crypto_aead *aead) |
| { |
| struct cryptd_aead *cryptd_tfm; |
| struct cryptd_aead **ctx = crypto_aead_ctx(aead); |
| |
| cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni", |
| CRYPTO_ALG_INTERNAL, |
| CRYPTO_ALG_INTERNAL); |
| if (IS_ERR(cryptd_tfm)) |
| return PTR_ERR(cryptd_tfm); |
| |
| *ctx = cryptd_tfm; |
| crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base)); |
| return 0; |
| } |
| |
| static void rfc4106_exit(struct crypto_aead *aead) |
| { |
| struct cryptd_aead **ctx = crypto_aead_ctx(aead); |
| |
| cryptd_free_aead(*ctx); |
| } |
| |
| static int |
| rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len) |
| { |
| struct crypto_cipher *tfm; |
| int ret; |
| |
| tfm = crypto_alloc_cipher("aes", 0, 0); |
| if (IS_ERR(tfm)) |
| return PTR_ERR(tfm); |
| |
| ret = crypto_cipher_setkey(tfm, key, key_len); |
| if (ret) |
| goto out_free_cipher; |
| |
| /* Clear the data in the hash sub key container to zero.*/ |
| /* We want to cipher all zeros to create the hash sub key. */ |
| memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE); |
| |
| crypto_cipher_encrypt_one(tfm, hash_subkey, hash_subkey); |
| |
| out_free_cipher: |
| crypto_free_cipher(tfm); |
| return ret; |
| } |
| |
| static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key, |
| unsigned int key_len) |
| { |
| struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead); |
| |
| if (key_len < 4) { |
| crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| /*Account for 4 byte nonce at the end.*/ |
| key_len -= 4; |
| |
| memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce)); |
| |
| return aes_set_key_common(crypto_aead_tfm(aead), |
| &ctx->aes_key_expanded, key, key_len) ?: |
| rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len); |
| } |
| |
| static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key, |
| unsigned int key_len) |
| { |
| struct cryptd_aead **ctx = crypto_aead_ctx(parent); |
| struct cryptd_aead *cryptd_tfm = *ctx; |
| |
| return crypto_aead_setkey(&cryptd_tfm->base, key, key_len); |
| } |
| |
| static int common_rfc4106_set_authsize(struct crypto_aead *aead, |
| unsigned int authsize) |
| { |
| switch (authsize) { |
| case 8: |
| case 12: |
| case 16: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* This is the Integrity Check Value (aka the authentication tag length and can |
| * be 8, 12 or 16 bytes long. */ |
| static int rfc4106_set_authsize(struct crypto_aead *parent, |
| unsigned int authsize) |
| { |
| struct cryptd_aead **ctx = crypto_aead_ctx(parent); |
| struct cryptd_aead *cryptd_tfm = *ctx; |
| |
| return crypto_aead_setauthsize(&cryptd_tfm->base, authsize); |
| } |
| |
| static int helper_rfc4106_encrypt(struct aead_request *req) |
| { |
| u8 one_entry_in_sg = 0; |
| u8 *src, *dst, *assoc; |
| __be32 counter = cpu_to_be32(1); |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm); |
| void *aes_ctx = &(ctx->aes_key_expanded); |
| unsigned long auth_tag_len = crypto_aead_authsize(tfm); |
| u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN))); |
| struct scatter_walk src_sg_walk; |
| struct scatter_walk dst_sg_walk; |
| unsigned int i; |
| |
| /* Assuming we are supporting rfc4106 64-bit extended */ |
| /* sequence numbers We need to have the AAD length equal */ |
| /* to 16 or 20 bytes */ |
| if (unlikely(req->assoclen != 16 && req->assoclen != 20)) |
| return -EINVAL; |
| |
| /* IV below built */ |
| for (i = 0; i < 4; i++) |
| *(iv+i) = ctx->nonce[i]; |
| for (i = 0; i < 8; i++) |
| *(iv+4+i) = req->iv[i]; |
| *((__be32 *)(iv+12)) = counter; |
| |
| if (sg_is_last(req->src) && |
| req->src->offset + req->src->length <= PAGE_SIZE && |
| sg_is_last(req->dst) && |
| req->dst->offset + req->dst->length <= PAGE_SIZE) { |
| one_entry_in_sg = 1; |
| scatterwalk_start(&src_sg_walk, req->src); |
| assoc = scatterwalk_map(&src_sg_walk); |
| src = assoc + req->assoclen; |
| dst = src; |
| if (unlikely(req->src != req->dst)) { |
| scatterwalk_start(&dst_sg_walk, req->dst); |
| dst = scatterwalk_map(&dst_sg_walk) + req->assoclen; |
| } |
| } else { |
| /* Allocate memory for src, dst, assoc */ |
| assoc = kmalloc(req->cryptlen + auth_tag_len + req->assoclen, |
| GFP_ATOMIC); |
| if (unlikely(!assoc)) |
| return -ENOMEM; |
| scatterwalk_map_and_copy(assoc, req->src, 0, |
| req->assoclen + req->cryptlen, 0); |
| src = assoc + req->assoclen; |
| dst = src; |
| } |
| |
| kernel_fpu_begin(); |
| aesni_gcm_enc_tfm(aes_ctx, dst, src, req->cryptlen, iv, |
| ctx->hash_subkey, assoc, req->assoclen - 8, |
| dst + req->cryptlen, auth_tag_len); |
| kernel_fpu_end(); |
| |
| /* The authTag (aka the Integrity Check Value) needs to be written |
| * back to the packet. */ |
| if (one_entry_in_sg) { |
| if (unlikely(req->src != req->dst)) { |
| scatterwalk_unmap(dst - req->assoclen); |
| scatterwalk_advance(&dst_sg_walk, req->dst->length); |
| scatterwalk_done(&dst_sg_walk, 1, 0); |
| } |
| scatterwalk_unmap(assoc); |
| scatterwalk_advance(&src_sg_walk, req->src->length); |
| scatterwalk_done(&src_sg_walk, req->src == req->dst, 0); |
| } else { |
| scatterwalk_map_and_copy(dst, req->dst, req->assoclen, |
| req->cryptlen + auth_tag_len, 1); |
| kfree(assoc); |
| } |
| return 0; |
| } |
| |
| static int helper_rfc4106_decrypt(struct aead_request *req) |
| { |
| u8 one_entry_in_sg = 0; |
| u8 *src, *dst, *assoc; |
| unsigned long tempCipherLen = 0; |
| __be32 counter = cpu_to_be32(1); |
| int retval = 0; |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm); |
| void *aes_ctx = &(ctx->aes_key_expanded); |
| unsigned long auth_tag_len = crypto_aead_authsize(tfm); |
| u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN))); |
| u8 authTag[16]; |
| struct scatter_walk src_sg_walk; |
| struct scatter_walk dst_sg_walk; |
| unsigned int i; |
| |
| if (unlikely(req->assoclen != 16 && req->assoclen != 20)) |
| return -EINVAL; |
| |
| /* Assuming we are supporting rfc4106 64-bit extended */ |
| /* sequence numbers We need to have the AAD length */ |
| /* equal to 16 or 20 bytes */ |
| |
| tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len); |
| /* IV below built */ |
| for (i = 0; i < 4; i++) |
| *(iv+i) = ctx->nonce[i]; |
| for (i = 0; i < 8; i++) |
| *(iv+4+i) = req->iv[i]; |
| *((__be32 *)(iv+12)) = counter; |
| |
| if (sg_is_last(req->src) && |
| req->src->offset + req->src->length <= PAGE_SIZE && |
| sg_is_last(req->dst) && |
| req->dst->offset + req->dst->length <= PAGE_SIZE) { |
| one_entry_in_sg = 1; |
| scatterwalk_start(&src_sg_walk, req->src); |
| assoc = scatterwalk_map(&src_sg_walk); |
| src = assoc + req->assoclen; |
| dst = src; |
| if (unlikely(req->src != req->dst)) { |
| scatterwalk_start(&dst_sg_walk, req->dst); |
| dst = scatterwalk_map(&dst_sg_walk) + req->assoclen; |
| } |
| |
| } else { |
| /* Allocate memory for src, dst, assoc */ |
| assoc = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC); |
| if (!assoc) |
| return -ENOMEM; |
| scatterwalk_map_and_copy(assoc, req->src, 0, |
| req->assoclen + req->cryptlen, 0); |
| src = assoc + req->assoclen; |
| dst = src; |
| } |
| |
| kernel_fpu_begin(); |
| aesni_gcm_dec_tfm(aes_ctx, dst, src, tempCipherLen, iv, |
| ctx->hash_subkey, assoc, req->assoclen - 8, |
| authTag, auth_tag_len); |
| kernel_fpu_end(); |
| |
| /* Compare generated tag with passed in tag. */ |
| retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ? |
| -EBADMSG : 0; |
| |
| if (one_entry_in_sg) { |
| if (unlikely(req->src != req->dst)) { |
| scatterwalk_unmap(dst - req->assoclen); |
| scatterwalk_advance(&dst_sg_walk, req->dst->length); |
| scatterwalk_done(&dst_sg_walk, 1, 0); |
| } |
| scatterwalk_unmap(assoc); |
| scatterwalk_advance(&src_sg_walk, req->src->length); |
| scatterwalk_done(&src_sg_walk, req->src == req->dst, 0); |
| } else { |
| scatterwalk_map_and_copy(dst, req->dst, req->assoclen, |
| tempCipherLen, 1); |
| kfree(assoc); |
| } |
| return retval; |
| } |
| |
| static int rfc4106_encrypt(struct aead_request *req) |
| { |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| struct cryptd_aead **ctx = crypto_aead_ctx(tfm); |
| struct cryptd_aead *cryptd_tfm = *ctx; |
| |
| tfm = &cryptd_tfm->base; |
| if (irq_fpu_usable() && (!in_atomic() || |
| !cryptd_aead_queued(cryptd_tfm))) |
| tfm = cryptd_aead_child(cryptd_tfm); |
| |
| aead_request_set_tfm(req, tfm); |
| |
| return crypto_aead_encrypt(req); |
| } |
| |
| static int rfc4106_decrypt(struct aead_request *req) |
| { |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| struct cryptd_aead **ctx = crypto_aead_ctx(tfm); |
| struct cryptd_aead *cryptd_tfm = *ctx; |
| |
| tfm = &cryptd_tfm->base; |
| if (irq_fpu_usable() && (!in_atomic() || |
| !cryptd_aead_queued(cryptd_tfm))) |
| tfm = cryptd_aead_child(cryptd_tfm); |
| |
| aead_request_set_tfm(req, tfm); |
| |
| return crypto_aead_decrypt(req); |
| } |
| #endif |
| |
| static struct crypto_alg aesni_algs[] = { { |
| .cra_name = "aes", |
| .cra_driver_name = "aes-aesni", |
| .cra_priority = 300, |
| .cra_flags = CRYPTO_ALG_TYPE_CIPHER, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = CRYPTO_AES_CTX_SIZE, |
| .cra_module = THIS_MODULE, |
| .cra_u = { |
| .cipher = { |
| .cia_min_keysize = AES_MIN_KEY_SIZE, |
| .cia_max_keysize = AES_MAX_KEY_SIZE, |
| .cia_setkey = aes_set_key, |
| .cia_encrypt = aes_encrypt, |
| .cia_decrypt = aes_decrypt |
| } |
| } |
| }, { |
| .cra_name = "__aes", |
| .cra_driver_name = "__aes-aesni", |
| .cra_priority = 300, |
| .cra_flags = CRYPTO_ALG_TYPE_CIPHER | CRYPTO_ALG_INTERNAL, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = CRYPTO_AES_CTX_SIZE, |
| .cra_module = THIS_MODULE, |
| .cra_u = { |
| .cipher = { |
| .cia_min_keysize = AES_MIN_KEY_SIZE, |
| .cia_max_keysize = AES_MAX_KEY_SIZE, |
| .cia_setkey = aes_set_key, |
| .cia_encrypt = __aes_encrypt, |
| .cia_decrypt = __aes_decrypt |
| } |
| } |
| } }; |
| |
| static struct skcipher_alg aesni_skciphers[] = { |
| { |
| .base = { |
| .cra_name = "__ecb(aes)", |
| .cra_driver_name = "__ecb-aes-aesni", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_INTERNAL, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = CRYPTO_AES_CTX_SIZE, |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = aesni_skcipher_setkey, |
| .encrypt = ecb_encrypt, |
| .decrypt = ecb_decrypt, |
| }, { |
| .base = { |
| .cra_name = "__cbc(aes)", |
| .cra_driver_name = "__cbc-aes-aesni", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_INTERNAL, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = CRYPTO_AES_CTX_SIZE, |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .setkey = aesni_skcipher_setkey, |
| .encrypt = cbc_encrypt, |
| .decrypt = cbc_decrypt, |
| #ifdef CONFIG_X86_64 |
| }, { |
| .base = { |
| .cra_name = "__ctr(aes)", |
| .cra_driver_name = "__ctr-aes-aesni", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_INTERNAL, |
| .cra_blocksize = 1, |
| .cra_ctxsize = CRYPTO_AES_CTX_SIZE, |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .chunksize = AES_BLOCK_SIZE, |
| .setkey = aesni_skcipher_setkey, |
| .encrypt = ctr_crypt, |
| .decrypt = ctr_crypt, |
| }, { |
| .base = { |
| .cra_name = "__xts(aes)", |
| .cra_driver_name = "__xts-aes-aesni", |
| .cra_priority = 401, |
| .cra_flags = CRYPTO_ALG_INTERNAL, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = XTS_AES_CTX_SIZE, |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = 2 * AES_MIN_KEY_SIZE, |
| .max_keysize = 2 * AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .setkey = xts_aesni_setkey, |
| .encrypt = xts_encrypt, |
| .decrypt = xts_decrypt, |
| #endif |
| } |
| }; |
| |
| struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)]; |
| |
| struct { |
| const char *algname; |
| const char *drvname; |
| const char *basename; |
| struct simd_skcipher_alg *simd; |
| } aesni_simd_skciphers2[] = { |
| #if IS_ENABLED(CONFIG_CRYPTO_PCBC) |
| { |
| .algname = "pcbc(aes)", |
| .drvname = "pcbc-aes-aesni", |
| .basename = "fpu(pcbc(__aes-aesni))", |
| }, |
| #endif |
| }; |
| |
| #ifdef CONFIG_X86_64 |
| static struct aead_alg aesni_aead_algs[] = { { |
| .setkey = common_rfc4106_set_key, |
| .setauthsize = common_rfc4106_set_authsize, |
| .encrypt = helper_rfc4106_encrypt, |
| .decrypt = helper_rfc4106_decrypt, |
| .ivsize = 8, |
| .maxauthsize = 16, |
| .base = { |
| .cra_name = "__gcm-aes-aesni", |
| .cra_driver_name = "__driver-gcm-aes-aesni", |
| .cra_flags = CRYPTO_ALG_INTERNAL, |
| .cra_blocksize = 1, |
| .cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx), |
| .cra_alignmask = AESNI_ALIGN - 1, |
| .cra_module = THIS_MODULE, |
| }, |
| }, { |
| .init = rfc4106_init, |
| .exit = rfc4106_exit, |
| .setkey = rfc4106_set_key, |
| .setauthsize = rfc4106_set_authsize, |
| .encrypt = rfc4106_encrypt, |
| .decrypt = rfc4106_decrypt, |
| .ivsize = 8, |
| .maxauthsize = 16, |
| .base = { |
| .cra_name = "rfc4106(gcm(aes))", |
| .cra_driver_name = "rfc4106-gcm-aesni", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_blocksize = 1, |
| .cra_ctxsize = sizeof(struct cryptd_aead *), |
| .cra_module = THIS_MODULE, |
| }, |
| } }; |
| #else |
| static struct aead_alg aesni_aead_algs[0]; |
| #endif |
| |
| |
| static const struct x86_cpu_id aesni_cpu_id[] = { |
| X86_FEATURE_MATCH(X86_FEATURE_AES), |
| {} |
| }; |
| MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id); |
| |
| static void aesni_free_simds(void) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(aesni_simd_skciphers) && |
| aesni_simd_skciphers[i]; i++) |
| simd_skcipher_free(aesni_simd_skciphers[i]); |
| |
| for (i = 0; i < ARRAY_SIZE(aesni_simd_skciphers2) && |
| aesni_simd_skciphers2[i].simd; i++) |
| simd_skcipher_free(aesni_simd_skciphers2[i].simd); |
| } |
| |
| static int __init aesni_init(void) |
| { |
| struct simd_skcipher_alg *simd; |
| const char *basename; |
| const char *algname; |
| const char *drvname; |
| int err; |
| int i; |
| |
| if (!x86_match_cpu(aesni_cpu_id)) |
| return -ENODEV; |
| #ifdef CONFIG_X86_64 |
| #ifdef CONFIG_AS_AVX2 |
| if (boot_cpu_has(X86_FEATURE_AVX2)) { |
| pr_info("AVX2 version of gcm_enc/dec engaged.\n"); |
| aesni_gcm_enc_tfm = aesni_gcm_enc_avx2; |
| aesni_gcm_dec_tfm = aesni_gcm_dec_avx2; |
| } else |
| #endif |
| #ifdef CONFIG_AS_AVX |
| if (boot_cpu_has(X86_FEATURE_AVX)) { |
| pr_info("AVX version of gcm_enc/dec engaged.\n"); |
| aesni_gcm_enc_tfm = aesni_gcm_enc_avx; |
| aesni_gcm_dec_tfm = aesni_gcm_dec_avx; |
| } else |
| #endif |
| { |
| pr_info("SSE version of gcm_enc/dec engaged.\n"); |
| aesni_gcm_enc_tfm = aesni_gcm_enc; |
| aesni_gcm_dec_tfm = aesni_gcm_dec; |
| } |
| aesni_ctr_enc_tfm = aesni_ctr_enc; |
| #ifdef CONFIG_AS_AVX |
| if (boot_cpu_has(X86_FEATURE_AVX)) { |
| /* optimize performance of ctr mode encryption transform */ |
| aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm; |
| pr_info("AES CTR mode by8 optimization enabled\n"); |
| } |
| #endif |
| #endif |
| |
| err = crypto_fpu_init(); |
| if (err) |
| return err; |
| |
| err = crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs)); |
| if (err) |
| goto fpu_exit; |
| |
| err = crypto_register_skciphers(aesni_skciphers, |
| ARRAY_SIZE(aesni_skciphers)); |
| if (err) |
| goto unregister_algs; |
| |
| err = crypto_register_aeads(aesni_aead_algs, |
| ARRAY_SIZE(aesni_aead_algs)); |
| if (err) |
| goto unregister_skciphers; |
| |
| for (i = 0; i < ARRAY_SIZE(aesni_skciphers); i++) { |
| algname = aesni_skciphers[i].base.cra_name + 2; |
| drvname = aesni_skciphers[i].base.cra_driver_name + 2; |
| basename = aesni_skciphers[i].base.cra_driver_name; |
| simd = simd_skcipher_create_compat(algname, drvname, basename); |
| err = PTR_ERR(simd); |
| if (IS_ERR(simd)) |
| goto unregister_simds; |
| |
| aesni_simd_skciphers[i] = simd; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(aesni_simd_skciphers2); i++) { |
| algname = aesni_simd_skciphers2[i].algname; |
| drvname = aesni_simd_skciphers2[i].drvname; |
| basename = aesni_simd_skciphers2[i].basename; |
| simd = simd_skcipher_create_compat(algname, drvname, basename); |
| err = PTR_ERR(simd); |
| if (IS_ERR(simd)) |
| goto unregister_simds; |
| |
| aesni_simd_skciphers2[i].simd = simd; |
| } |
| |
| return 0; |
| |
| unregister_simds: |
| aesni_free_simds(); |
| crypto_unregister_aeads(aesni_aead_algs, ARRAY_SIZE(aesni_aead_algs)); |
| unregister_skciphers: |
| crypto_unregister_skciphers(aesni_skciphers, |
| ARRAY_SIZE(aesni_skciphers)); |
| unregister_algs: |
| crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs)); |
| fpu_exit: |
| crypto_fpu_exit(); |
| return err; |
| } |
| |
| static void __exit aesni_exit(void) |
| { |
| aesni_free_simds(); |
| crypto_unregister_aeads(aesni_aead_algs, ARRAY_SIZE(aesni_aead_algs)); |
| crypto_unregister_skciphers(aesni_skciphers, |
| ARRAY_SIZE(aesni_skciphers)); |
| crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs)); |
| |
| crypto_fpu_exit(); |
| } |
| |
| late_initcall(aesni_init); |
| module_exit(aesni_exit); |
| |
| MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS_CRYPTO("aes"); |