| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Copyright 2016-2019 HabanaLabs, Ltd. |
| * All Rights Reserved. |
| */ |
| |
| #include "habanalabs.h" |
| #include "include/hw_ip/mmu/mmu_general.h" |
| |
| #include <linux/genalloc.h> |
| #include <linux/slab.h> |
| |
| static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr); |
| |
| static struct pgt_info *get_pgt_info(struct hl_ctx *ctx, u64 hop_addr) |
| { |
| struct pgt_info *pgt_info = NULL; |
| |
| hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node, |
| (unsigned long) hop_addr) |
| if (hop_addr == pgt_info->shadow_addr) |
| break; |
| |
| return pgt_info; |
| } |
| |
| static void _free_hop(struct hl_ctx *ctx, struct pgt_info *pgt_info) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| |
| gen_pool_free(hdev->mmu_pgt_pool, pgt_info->phys_addr, |
| hdev->asic_prop.mmu_hop_table_size); |
| hash_del(&pgt_info->node); |
| kfree((u64 *) (uintptr_t) pgt_info->shadow_addr); |
| kfree(pgt_info); |
| } |
| |
| static void free_hop(struct hl_ctx *ctx, u64 hop_addr) |
| { |
| struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr); |
| |
| _free_hop(ctx, pgt_info); |
| } |
| |
| static u64 alloc_hop(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct pgt_info *pgt_info; |
| u64 phys_addr, shadow_addr; |
| |
| pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL); |
| if (!pgt_info) |
| return ULLONG_MAX; |
| |
| phys_addr = (u64) gen_pool_alloc(hdev->mmu_pgt_pool, |
| prop->mmu_hop_table_size); |
| if (!phys_addr) { |
| dev_err(hdev->dev, "failed to allocate page\n"); |
| goto pool_add_err; |
| } |
| |
| shadow_addr = (u64) (uintptr_t) kzalloc(prop->mmu_hop_table_size, |
| GFP_KERNEL); |
| if (!shadow_addr) |
| goto shadow_err; |
| |
| pgt_info->phys_addr = phys_addr; |
| pgt_info->shadow_addr = shadow_addr; |
| pgt_info->ctx = ctx; |
| pgt_info->num_of_ptes = 0; |
| hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr); |
| |
| return shadow_addr; |
| |
| shadow_err: |
| gen_pool_free(hdev->mmu_pgt_pool, phys_addr, prop->mmu_hop_table_size); |
| pool_add_err: |
| kfree(pgt_info); |
| |
| return ULLONG_MAX; |
| } |
| |
| static inline u64 get_phys_hop0_addr(struct hl_ctx *ctx) |
| { |
| return ctx->hdev->asic_prop.mmu_pgt_addr + |
| (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size); |
| } |
| |
| static inline u64 get_hop0_addr(struct hl_ctx *ctx) |
| { |
| return (u64) (uintptr_t) ctx->hdev->mmu_shadow_hop0 + |
| (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size); |
| } |
| |
| static inline void flush(struct hl_ctx *ctx) |
| { |
| /* flush all writes from all cores to reach PCI */ |
| mb(); |
| ctx->hdev->asic_funcs->read_pte(ctx->hdev, get_phys_hop0_addr(ctx)); |
| } |
| |
| /* transform the value to physical address when writing to H/W */ |
| static inline void write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val) |
| { |
| /* |
| * The value to write is actually the address of the next shadow hop + |
| * flags at the 12 LSBs. |
| * Hence in order to get the value to write to the physical PTE, we |
| * clear the 12 LSBs and translate the shadow hop to its associated |
| * physical hop, and add back the original 12 LSBs. |
| */ |
| u64 phys_val = get_phys_addr(ctx, val & HOP_PHYS_ADDR_MASK) | |
| (val & FLAGS_MASK); |
| |
| ctx->hdev->asic_funcs->write_pte(ctx->hdev, |
| get_phys_addr(ctx, shadow_pte_addr), |
| phys_val); |
| |
| *(u64 *) (uintptr_t) shadow_pte_addr = val; |
| } |
| |
| /* do not transform the value to physical address when writing to H/W */ |
| static inline void write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, |
| u64 val) |
| { |
| ctx->hdev->asic_funcs->write_pte(ctx->hdev, |
| get_phys_addr(ctx, shadow_pte_addr), |
| val); |
| *(u64 *) (uintptr_t) shadow_pte_addr = val; |
| } |
| |
| /* clear the last and present bits */ |
| static inline void clear_pte(struct hl_ctx *ctx, u64 pte_addr) |
| { |
| /* no need to transform the value to physical address */ |
| write_final_pte(ctx, pte_addr, 0); |
| } |
| |
| static inline void get_pte(struct hl_ctx *ctx, u64 hop_addr) |
| { |
| get_pgt_info(ctx, hop_addr)->num_of_ptes++; |
| } |
| |
| /* |
| * put_pte - decrement the num of ptes and free the hop if possible |
| * |
| * @ctx: pointer to the context structure |
| * @hop_addr: addr of the hop |
| * |
| * This function returns the number of ptes left on this hop. If the number is |
| * 0, it means the pte was freed. |
| */ |
| static inline int put_pte(struct hl_ctx *ctx, u64 hop_addr) |
| { |
| struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr); |
| int num_of_ptes_left; |
| |
| pgt_info->num_of_ptes--; |
| |
| /* |
| * Need to save the number of ptes left because free_hop might free |
| * the pgt_info |
| */ |
| num_of_ptes_left = pgt_info->num_of_ptes; |
| if (!num_of_ptes_left) |
| _free_hop(ctx, pgt_info); |
| |
| return num_of_ptes_left; |
| } |
| |
| static inline u64 get_hopN_pte_addr(struct hl_ctx *ctx, u64 hop_addr, |
| u64 virt_addr, u64 mask, u64 shift) |
| { |
| return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * |
| ((virt_addr & mask) >> shift); |
| } |
| |
| static inline u64 get_hop0_pte_addr(struct hl_ctx *ctx, |
| struct hl_mmu_properties *mmu_prop, |
| u64 hop_addr, u64 vaddr) |
| { |
| return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop0_mask, |
| mmu_prop->hop0_shift); |
| } |
| |
| static inline u64 get_hop1_pte_addr(struct hl_ctx *ctx, |
| struct hl_mmu_properties *mmu_prop, |
| u64 hop_addr, u64 vaddr) |
| { |
| return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop1_mask, |
| mmu_prop->hop1_shift); |
| } |
| |
| static inline u64 get_hop2_pte_addr(struct hl_ctx *ctx, |
| struct hl_mmu_properties *mmu_prop, |
| u64 hop_addr, u64 vaddr) |
| { |
| return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop2_mask, |
| mmu_prop->hop2_shift); |
| } |
| |
| static inline u64 get_hop3_pte_addr(struct hl_ctx *ctx, |
| struct hl_mmu_properties *mmu_prop, |
| u64 hop_addr, u64 vaddr) |
| { |
| return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop3_mask, |
| mmu_prop->hop3_shift); |
| } |
| |
| static inline u64 get_hop4_pte_addr(struct hl_ctx *ctx, |
| struct hl_mmu_properties *mmu_prop, |
| u64 hop_addr, u64 vaddr) |
| { |
| return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop4_mask, |
| mmu_prop->hop4_shift); |
| } |
| |
| static inline u64 get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte) |
| { |
| if (curr_pte & PAGE_PRESENT_MASK) |
| return curr_pte & HOP_PHYS_ADDR_MASK; |
| else |
| return ULLONG_MAX; |
| } |
| |
| static inline u64 get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, |
| bool *is_new_hop) |
| { |
| u64 hop_addr = get_next_hop_addr(ctx, curr_pte); |
| |
| if (hop_addr == ULLONG_MAX) { |
| hop_addr = alloc_hop(ctx); |
| *is_new_hop = (hop_addr != ULLONG_MAX); |
| } |
| |
| return hop_addr; |
| } |
| |
| /* translates shadow address inside hop to a physical address */ |
| static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr) |
| { |
| u64 page_mask = (ctx->hdev->asic_prop.mmu_hop_table_size - 1); |
| u64 shadow_hop_addr = shadow_addr & ~page_mask; |
| u64 pte_offset = shadow_addr & page_mask; |
| u64 phys_hop_addr; |
| |
| if (shadow_hop_addr != get_hop0_addr(ctx)) |
| phys_hop_addr = get_pgt_info(ctx, shadow_hop_addr)->phys_addr; |
| else |
| phys_hop_addr = get_phys_hop0_addr(ctx); |
| |
| return phys_hop_addr + pte_offset; |
| } |
| |
| static bool is_dram_va(struct hl_device *hdev, u64 virt_addr) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| |
| return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, |
| prop->dmmu.start_addr, |
| prop->dmmu.end_addr); |
| } |
| |
| static int dram_default_mapping_init(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr, |
| hop2_pte_addr, hop3_pte_addr, pte_val; |
| int rc, i, j, hop3_allocated = 0; |
| |
| if ((!hdev->dram_supports_virtual_memory) || |
| (!hdev->dram_default_page_mapping) || |
| (ctx->asid == HL_KERNEL_ASID_ID)) |
| return 0; |
| |
| num_of_hop3 = prop->dram_size_for_default_page_mapping; |
| do_div(num_of_hop3, prop->dram_page_size); |
| do_div(num_of_hop3, PTE_ENTRIES_IN_HOP); |
| |
| /* add hop1 and hop2 */ |
| total_hops = num_of_hop3 + 2; |
| |
| ctx->dram_default_hops = kzalloc(HL_PTE_SIZE * total_hops, GFP_KERNEL); |
| if (!ctx->dram_default_hops) |
| return -ENOMEM; |
| |
| hop0_addr = get_hop0_addr(ctx); |
| |
| hop1_addr = alloc_hop(ctx); |
| if (hop1_addr == ULLONG_MAX) { |
| dev_err(hdev->dev, "failed to alloc hop 1\n"); |
| rc = -ENOMEM; |
| goto hop1_err; |
| } |
| |
| ctx->dram_default_hops[total_hops - 1] = hop1_addr; |
| |
| hop2_addr = alloc_hop(ctx); |
| if (hop2_addr == ULLONG_MAX) { |
| dev_err(hdev->dev, "failed to alloc hop 2\n"); |
| rc = -ENOMEM; |
| goto hop2_err; |
| } |
| |
| ctx->dram_default_hops[total_hops - 2] = hop2_addr; |
| |
| for (i = 0 ; i < num_of_hop3 ; i++) { |
| ctx->dram_default_hops[i] = alloc_hop(ctx); |
| if (ctx->dram_default_hops[i] == ULLONG_MAX) { |
| dev_err(hdev->dev, "failed to alloc hop 3, i: %d\n", i); |
| rc = -ENOMEM; |
| goto hop3_err; |
| } |
| hop3_allocated++; |
| } |
| |
| /* need only pte 0 in hops 0 and 1 */ |
| pte_val = (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; |
| write_pte(ctx, hop0_addr, pte_val); |
| |
| pte_val = (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; |
| write_pte(ctx, hop1_addr, pte_val); |
| get_pte(ctx, hop1_addr); |
| |
| hop2_pte_addr = hop2_addr; |
| for (i = 0 ; i < num_of_hop3 ; i++) { |
| pte_val = (ctx->dram_default_hops[i] & HOP_PHYS_ADDR_MASK) | |
| PAGE_PRESENT_MASK; |
| write_pte(ctx, hop2_pte_addr, pte_val); |
| get_pte(ctx, hop2_addr); |
| hop2_pte_addr += HL_PTE_SIZE; |
| } |
| |
| pte_val = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) | |
| LAST_MASK | PAGE_PRESENT_MASK; |
| |
| for (i = 0 ; i < num_of_hop3 ; i++) { |
| hop3_pte_addr = ctx->dram_default_hops[i]; |
| for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) { |
| write_final_pte(ctx, hop3_pte_addr, pte_val); |
| get_pte(ctx, ctx->dram_default_hops[i]); |
| hop3_pte_addr += HL_PTE_SIZE; |
| } |
| } |
| |
| flush(ctx); |
| |
| return 0; |
| |
| hop3_err: |
| for (i = 0 ; i < hop3_allocated ; i++) |
| free_hop(ctx, ctx->dram_default_hops[i]); |
| |
| free_hop(ctx, hop2_addr); |
| hop2_err: |
| free_hop(ctx, hop1_addr); |
| hop1_err: |
| kfree(ctx->dram_default_hops); |
| |
| return rc; |
| } |
| |
| static void dram_default_mapping_fini(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr, |
| hop2_pte_addr, hop3_pte_addr; |
| int i, j; |
| |
| if ((!hdev->dram_supports_virtual_memory) || |
| (!hdev->dram_default_page_mapping) || |
| (ctx->asid == HL_KERNEL_ASID_ID)) |
| return; |
| |
| num_of_hop3 = prop->dram_size_for_default_page_mapping; |
| do_div(num_of_hop3, prop->dram_page_size); |
| do_div(num_of_hop3, PTE_ENTRIES_IN_HOP); |
| |
| hop0_addr = get_hop0_addr(ctx); |
| /* add hop1 and hop2 */ |
| total_hops = num_of_hop3 + 2; |
| hop1_addr = ctx->dram_default_hops[total_hops - 1]; |
| hop2_addr = ctx->dram_default_hops[total_hops - 2]; |
| |
| for (i = 0 ; i < num_of_hop3 ; i++) { |
| hop3_pte_addr = ctx->dram_default_hops[i]; |
| for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) { |
| clear_pte(ctx, hop3_pte_addr); |
| put_pte(ctx, ctx->dram_default_hops[i]); |
| hop3_pte_addr += HL_PTE_SIZE; |
| } |
| } |
| |
| hop2_pte_addr = hop2_addr; |
| hop2_pte_addr = hop2_addr; |
| for (i = 0 ; i < num_of_hop3 ; i++) { |
| clear_pte(ctx, hop2_pte_addr); |
| put_pte(ctx, hop2_addr); |
| hop2_pte_addr += HL_PTE_SIZE; |
| } |
| |
| clear_pte(ctx, hop1_addr); |
| put_pte(ctx, hop1_addr); |
| clear_pte(ctx, hop0_addr); |
| |
| kfree(ctx->dram_default_hops); |
| |
| flush(ctx); |
| } |
| |
| /** |
| * hl_mmu_init() - initialize the MMU module. |
| * @hdev: habanalabs device structure. |
| * |
| * This function does the following: |
| * - Create a pool of pages for pgt_infos. |
| * - Create a shadow table for pgt |
| * |
| * Return: 0 for success, non-zero for failure. |
| */ |
| int hl_mmu_init(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| int rc; |
| |
| if (!hdev->mmu_enable) |
| return 0; |
| |
| hdev->mmu_pgt_pool = |
| gen_pool_create(__ffs(prop->mmu_hop_table_size), -1); |
| |
| if (!hdev->mmu_pgt_pool) { |
| dev_err(hdev->dev, "Failed to create page gen pool\n"); |
| return -ENOMEM; |
| } |
| |
| rc = gen_pool_add(hdev->mmu_pgt_pool, prop->mmu_pgt_addr + |
| prop->mmu_hop0_tables_total_size, |
| prop->mmu_pgt_size - prop->mmu_hop0_tables_total_size, |
| -1); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to add memory to page gen pool\n"); |
| goto err_pool_add; |
| } |
| |
| hdev->mmu_shadow_hop0 = kvmalloc_array(prop->max_asid, |
| prop->mmu_hop_table_size, |
| GFP_KERNEL | __GFP_ZERO); |
| if (!hdev->mmu_shadow_hop0) { |
| rc = -ENOMEM; |
| goto err_pool_add; |
| } |
| |
| /* MMU H/W init will be done in device hw_init() */ |
| |
| return 0; |
| |
| err_pool_add: |
| gen_pool_destroy(hdev->mmu_pgt_pool); |
| |
| return rc; |
| } |
| |
| /** |
| * hl_mmu_fini() - release the MMU module. |
| * @hdev: habanalabs device structure. |
| * |
| * This function does the following: |
| * - Disable MMU in H/W. |
| * - Free the pgt_infos pool. |
| * |
| * All contexts should be freed before calling this function. |
| */ |
| void hl_mmu_fini(struct hl_device *hdev) |
| { |
| if (!hdev->mmu_enable) |
| return; |
| |
| /* MMU H/W fini was already done in device hw_fini() */ |
| |
| kvfree(hdev->mmu_shadow_hop0); |
| gen_pool_destroy(hdev->mmu_pgt_pool); |
| } |
| |
| /** |
| * hl_mmu_ctx_init() - initialize a context for using the MMU module. |
| * @ctx: pointer to the context structure to initialize. |
| * |
| * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all |
| * page tables hops related to this context. |
| * Return: 0 on success, non-zero otherwise. |
| */ |
| int hl_mmu_ctx_init(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| |
| if (!hdev->mmu_enable) |
| return 0; |
| |
| mutex_init(&ctx->mmu_lock); |
| hash_init(ctx->mmu_phys_hash); |
| hash_init(ctx->mmu_shadow_hash); |
| |
| return dram_default_mapping_init(ctx); |
| } |
| |
| /* |
| * hl_mmu_ctx_fini - disable a ctx from using the mmu module |
| * |
| * @ctx: pointer to the context structure |
| * |
| * This function does the following: |
| * - Free any pgts which were not freed yet |
| * - Free the mutex |
| * - Free DRAM default page mapping hops |
| */ |
| void hl_mmu_ctx_fini(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct pgt_info *pgt_info; |
| struct hlist_node *tmp; |
| int i; |
| |
| if (!hdev->mmu_enable) |
| return; |
| |
| dram_default_mapping_fini(ctx); |
| |
| if (!hash_empty(ctx->mmu_shadow_hash)) |
| dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n", |
| ctx->asid); |
| |
| hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) { |
| dev_err_ratelimited(hdev->dev, |
| "pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n", |
| pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes); |
| _free_hop(ctx, pgt_info); |
| } |
| |
| mutex_destroy(&ctx->mmu_lock); |
| } |
| |
| static int _hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct hl_mmu_properties *mmu_prop; |
| u64 hop0_addr = 0, hop0_pte_addr = 0, |
| hop1_addr = 0, hop1_pte_addr = 0, |
| hop2_addr = 0, hop2_pte_addr = 0, |
| hop3_addr = 0, hop3_pte_addr = 0, |
| hop4_addr = 0, hop4_pte_addr = 0, |
| curr_pte; |
| bool is_huge, clear_hop3 = true; |
| |
| /* shifts and masks are the same in PMMU and HPMMU, use one of them */ |
| mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; |
| |
| hop0_addr = get_hop0_addr(ctx); |
| hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr); |
| |
| curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr; |
| |
| hop1_addr = get_next_hop_addr(ctx, curr_pte); |
| |
| if (hop1_addr == ULLONG_MAX) |
| goto not_mapped; |
| |
| hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr); |
| |
| curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr; |
| |
| hop2_addr = get_next_hop_addr(ctx, curr_pte); |
| |
| if (hop2_addr == ULLONG_MAX) |
| goto not_mapped; |
| |
| hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr); |
| |
| curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr; |
| |
| hop3_addr = get_next_hop_addr(ctx, curr_pte); |
| |
| if (hop3_addr == ULLONG_MAX) |
| goto not_mapped; |
| |
| hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr); |
| |
| curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr; |
| |
| is_huge = curr_pte & LAST_MASK; |
| |
| if (is_dram_addr && !is_huge) { |
| dev_err(hdev->dev, |
| "DRAM unmapping should use huge pages only\n"); |
| return -EFAULT; |
| } |
| |
| if (!is_huge) { |
| hop4_addr = get_next_hop_addr(ctx, curr_pte); |
| |
| if (hop4_addr == ULLONG_MAX) |
| goto not_mapped; |
| |
| hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop4_addr, |
| virt_addr); |
| |
| curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr; |
| |
| clear_hop3 = false; |
| } |
| |
| if (hdev->dram_default_page_mapping && is_dram_addr) { |
| u64 default_pte = (prop->mmu_dram_default_page_addr & |
| HOP_PHYS_ADDR_MASK) | LAST_MASK | |
| PAGE_PRESENT_MASK; |
| if (curr_pte == default_pte) { |
| dev_err(hdev->dev, |
| "DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n", |
| virt_addr); |
| goto not_mapped; |
| } |
| |
| if (!(curr_pte & PAGE_PRESENT_MASK)) { |
| dev_err(hdev->dev, |
| "DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n", |
| virt_addr); |
| goto not_mapped; |
| } |
| |
| write_final_pte(ctx, hop3_pte_addr, default_pte); |
| put_pte(ctx, hop3_addr); |
| } else { |
| if (!(curr_pte & PAGE_PRESENT_MASK)) |
| goto not_mapped; |
| |
| if (hop4_addr) |
| clear_pte(ctx, hop4_pte_addr); |
| else |
| clear_pte(ctx, hop3_pte_addr); |
| |
| if (hop4_addr && !put_pte(ctx, hop4_addr)) |
| clear_hop3 = true; |
| |
| if (!clear_hop3) |
| goto mapped; |
| |
| clear_pte(ctx, hop3_pte_addr); |
| |
| if (put_pte(ctx, hop3_addr)) |
| goto mapped; |
| |
| clear_pte(ctx, hop2_pte_addr); |
| |
| if (put_pte(ctx, hop2_addr)) |
| goto mapped; |
| |
| clear_pte(ctx, hop1_pte_addr); |
| |
| if (put_pte(ctx, hop1_addr)) |
| goto mapped; |
| |
| clear_pte(ctx, hop0_pte_addr); |
| } |
| |
| mapped: |
| return 0; |
| |
| not_mapped: |
| dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", |
| virt_addr); |
| |
| return -EINVAL; |
| } |
| |
| /* |
| * hl_mmu_unmap - unmaps a virtual addr |
| * |
| * @ctx: pointer to the context structure |
| * @virt_addr: virt addr to map from |
| * @page_size: size of the page to unmap |
| * @flush_pte: whether to do a PCI flush |
| * |
| * This function does the following: |
| * - Check that the virt addr is mapped |
| * - Unmap the virt addr and frees pgts if possible |
| * - Returns 0 on success, -EINVAL if the given addr is not mapped |
| * |
| * Because this function changes the page tables in the device and because it |
| * changes the MMU hash, it must be protected by a lock. |
| * However, because it maps only a single page, the lock should be implemented |
| * in a higher level in order to protect the entire mapping of the memory area |
| * |
| * For optimization reasons PCI flush may be requested once after unmapping of |
| * large area. |
| */ |
| int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, |
| bool flush_pte) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct hl_mmu_properties *mmu_prop; |
| u64 real_virt_addr; |
| u32 real_page_size, npages; |
| int i, rc = 0; |
| bool is_dram_addr; |
| |
| if (!hdev->mmu_enable) |
| return 0; |
| |
| is_dram_addr = is_dram_va(hdev, virt_addr); |
| |
| if (is_dram_addr) |
| mmu_prop = &prop->dmmu; |
| else if ((page_size % prop->pmmu_huge.page_size) == 0) |
| mmu_prop = &prop->pmmu_huge; |
| else |
| mmu_prop = &prop->pmmu; |
| |
| /* |
| * The H/W handles mapping of specific page sizes. Hence if the page |
| * size is bigger, we break it to sub-pages and unmap them separately. |
| */ |
| if ((page_size % mmu_prop->page_size) == 0) { |
| real_page_size = mmu_prop->page_size; |
| } else { |
| dev_err(hdev->dev, |
| "page size of %u is not %uKB aligned, can't unmap\n", |
| page_size, mmu_prop->page_size >> 10); |
| |
| return -EFAULT; |
| } |
| |
| npages = page_size / real_page_size; |
| real_virt_addr = virt_addr; |
| |
| for (i = 0 ; i < npages ; i++) { |
| rc = _hl_mmu_unmap(ctx, real_virt_addr, is_dram_addr); |
| if (rc) |
| break; |
| |
| real_virt_addr += real_page_size; |
| } |
| |
| if (flush_pte) |
| flush(ctx); |
| |
| return rc; |
| } |
| |
| static int _hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, |
| u32 page_size, bool is_dram_addr) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct hl_mmu_properties *mmu_prop; |
| u64 hop0_addr = 0, hop0_pte_addr = 0, |
| hop1_addr = 0, hop1_pte_addr = 0, |
| hop2_addr = 0, hop2_pte_addr = 0, |
| hop3_addr = 0, hop3_pte_addr = 0, |
| hop4_addr = 0, hop4_pte_addr = 0, |
| curr_pte = 0; |
| bool hop1_new = false, hop2_new = false, hop3_new = false, |
| hop4_new = false, is_huge; |
| int rc = -ENOMEM; |
| |
| /* |
| * This mapping function can map a page or a huge page. For huge page |
| * there are only 3 hops rather than 4. Currently the DRAM allocation |
| * uses huge pages only but user memory could have been allocated with |
| * one of the two page sizes. Since this is a common code for all the |
| * three cases, we need this hugs page check. |
| */ |
| if (is_dram_addr) { |
| mmu_prop = &prop->dmmu; |
| is_huge = true; |
| } else if (page_size == prop->pmmu_huge.page_size) { |
| mmu_prop = &prop->pmmu_huge; |
| is_huge = true; |
| } else { |
| mmu_prop = &prop->pmmu; |
| is_huge = false; |
| } |
| |
| hop0_addr = get_hop0_addr(ctx); |
| hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr); |
| curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr; |
| |
| hop1_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop1_new); |
| if (hop1_addr == ULLONG_MAX) |
| goto err; |
| |
| hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr); |
| curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr; |
| |
| hop2_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop2_new); |
| if (hop2_addr == ULLONG_MAX) |
| goto err; |
| |
| hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr); |
| curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr; |
| |
| hop3_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop3_new); |
| if (hop3_addr == ULLONG_MAX) |
| goto err; |
| |
| hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr); |
| curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr; |
| |
| if (!is_huge) { |
| hop4_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop4_new); |
| if (hop4_addr == ULLONG_MAX) |
| goto err; |
| |
| hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop4_addr, |
| virt_addr); |
| curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr; |
| } |
| |
| if (hdev->dram_default_page_mapping && is_dram_addr) { |
| u64 default_pte = (prop->mmu_dram_default_page_addr & |
| HOP_PHYS_ADDR_MASK) | LAST_MASK | |
| PAGE_PRESENT_MASK; |
| |
| if (curr_pte != default_pte) { |
| dev_err(hdev->dev, |
| "DRAM: mapping already exists for virt_addr 0x%llx\n", |
| virt_addr); |
| rc = -EINVAL; |
| goto err; |
| } |
| |
| if (hop1_new || hop2_new || hop3_new || hop4_new) { |
| dev_err(hdev->dev, |
| "DRAM mapping should not allocate more hops\n"); |
| rc = -EFAULT; |
| goto err; |
| } |
| } else if (curr_pte & PAGE_PRESENT_MASK) { |
| dev_err(hdev->dev, |
| "mapping already exists for virt_addr 0x%llx\n", |
| virt_addr); |
| |
| dev_dbg(hdev->dev, "hop0 pte: 0x%llx (0x%llx)\n", |
| *(u64 *) (uintptr_t) hop0_pte_addr, hop0_pte_addr); |
| dev_dbg(hdev->dev, "hop1 pte: 0x%llx (0x%llx)\n", |
| *(u64 *) (uintptr_t) hop1_pte_addr, hop1_pte_addr); |
| dev_dbg(hdev->dev, "hop2 pte: 0x%llx (0x%llx)\n", |
| *(u64 *) (uintptr_t) hop2_pte_addr, hop2_pte_addr); |
| dev_dbg(hdev->dev, "hop3 pte: 0x%llx (0x%llx)\n", |
| *(u64 *) (uintptr_t) hop3_pte_addr, hop3_pte_addr); |
| |
| if (!is_huge) |
| dev_dbg(hdev->dev, "hop4 pte: 0x%llx (0x%llx)\n", |
| *(u64 *) (uintptr_t) hop4_pte_addr, |
| hop4_pte_addr); |
| |
| rc = -EINVAL; |
| goto err; |
| } |
| |
| curr_pte = (phys_addr & HOP_PHYS_ADDR_MASK) | LAST_MASK |
| | PAGE_PRESENT_MASK; |
| |
| if (is_huge) |
| write_final_pte(ctx, hop3_pte_addr, curr_pte); |
| else |
| write_final_pte(ctx, hop4_pte_addr, curr_pte); |
| |
| if (hop1_new) { |
| curr_pte = |
| (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; |
| write_pte(ctx, hop0_pte_addr, curr_pte); |
| } |
| if (hop2_new) { |
| curr_pte = |
| (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; |
| write_pte(ctx, hop1_pte_addr, curr_pte); |
| get_pte(ctx, hop1_addr); |
| } |
| if (hop3_new) { |
| curr_pte = |
| (hop3_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; |
| write_pte(ctx, hop2_pte_addr, curr_pte); |
| get_pte(ctx, hop2_addr); |
| } |
| |
| if (!is_huge) { |
| if (hop4_new) { |
| curr_pte = (hop4_addr & HOP_PHYS_ADDR_MASK) | |
| PAGE_PRESENT_MASK; |
| write_pte(ctx, hop3_pte_addr, curr_pte); |
| get_pte(ctx, hop3_addr); |
| } |
| |
| get_pte(ctx, hop4_addr); |
| } else { |
| get_pte(ctx, hop3_addr); |
| } |
| |
| return 0; |
| |
| err: |
| if (hop4_new) |
| free_hop(ctx, hop4_addr); |
| if (hop3_new) |
| free_hop(ctx, hop3_addr); |
| if (hop2_new) |
| free_hop(ctx, hop2_addr); |
| if (hop1_new) |
| free_hop(ctx, hop1_addr); |
| |
| return rc; |
| } |
| |
| /* |
| * hl_mmu_map - maps a virtual addr to physical addr |
| * |
| * @ctx: pointer to the context structure |
| * @virt_addr: virt addr to map from |
| * @phys_addr: phys addr to map to |
| * @page_size: physical page size |
| * @flush_pte: whether to do a PCI flush |
| * |
| * This function does the following: |
| * - Check that the virt addr is not mapped |
| * - Allocate pgts as necessary in order to map the virt addr to the phys |
| * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM. |
| * |
| * Because this function changes the page tables in the device and because it |
| * changes the MMU hash, it must be protected by a lock. |
| * However, because it maps only a single page, the lock should be implemented |
| * in a higher level in order to protect the entire mapping of the memory area |
| * |
| * For optimization reasons PCI flush may be requested once after mapping of |
| * large area. |
| */ |
| int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, |
| bool flush_pte) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct hl_mmu_properties *mmu_prop; |
| u64 real_virt_addr, real_phys_addr; |
| u32 real_page_size, npages; |
| int i, rc, mapped_cnt = 0; |
| bool is_dram_addr; |
| |
| if (!hdev->mmu_enable) |
| return 0; |
| |
| is_dram_addr = is_dram_va(hdev, virt_addr); |
| |
| if (is_dram_addr) |
| mmu_prop = &prop->dmmu; |
| else if ((page_size % prop->pmmu_huge.page_size) == 0) |
| mmu_prop = &prop->pmmu_huge; |
| else |
| mmu_prop = &prop->pmmu; |
| |
| /* |
| * The H/W handles mapping of specific page sizes. Hence if the page |
| * size is bigger, we break it to sub-pages and map them separately. |
| */ |
| if ((page_size % mmu_prop->page_size) == 0) { |
| real_page_size = mmu_prop->page_size; |
| } else { |
| dev_err(hdev->dev, |
| "page size of %u is not %uKB aligned, can't unmap\n", |
| page_size, mmu_prop->page_size >> 10); |
| |
| return -EFAULT; |
| } |
| |
| WARN_ONCE((phys_addr & (real_page_size - 1)), |
| "Mapping 0x%llx with page size of 0x%x is erroneous! Address must be divisible by page size", |
| phys_addr, real_page_size); |
| |
| npages = page_size / real_page_size; |
| real_virt_addr = virt_addr; |
| real_phys_addr = phys_addr; |
| |
| for (i = 0 ; i < npages ; i++) { |
| rc = _hl_mmu_map(ctx, real_virt_addr, real_phys_addr, |
| real_page_size, is_dram_addr); |
| if (rc) |
| goto err; |
| |
| real_virt_addr += real_page_size; |
| real_phys_addr += real_page_size; |
| mapped_cnt++; |
| } |
| |
| if (flush_pte) |
| flush(ctx); |
| |
| return 0; |
| |
| err: |
| real_virt_addr = virt_addr; |
| for (i = 0 ; i < mapped_cnt ; i++) { |
| if (_hl_mmu_unmap(ctx, real_virt_addr, is_dram_addr)) |
| dev_warn_ratelimited(hdev->dev, |
| "failed to unmap va: 0x%llx\n", real_virt_addr); |
| |
| real_virt_addr += real_page_size; |
| } |
| |
| flush(ctx); |
| |
| return rc; |
| } |
| |
| /* |
| * hl_mmu_swap_out - marks all mapping of the given ctx as swapped out |
| * |
| * @ctx: pointer to the context structure |
| * |
| */ |
| void hl_mmu_swap_out(struct hl_ctx *ctx) |
| { |
| |
| } |
| |
| /* |
| * hl_mmu_swap_in - marks all mapping of the given ctx as swapped in |
| * |
| * @ctx: pointer to the context structure |
| * |
| */ |
| void hl_mmu_swap_in(struct hl_ctx *ctx) |
| { |
| |
| } |