| /* |
| * IPMMU VMSA |
| * |
| * Copyright (C) 2014 Renesas Electronics Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/err.h> |
| #include <linux/export.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/iommu.h> |
| #include <linux/module.h> |
| #include <linux/platform_data/ipmmu-vmsa.h> |
| #include <linux/platform_device.h> |
| #include <linux/sizes.h> |
| #include <linux/slab.h> |
| |
| #include <asm/dma-iommu.h> |
| #include <asm/pgalloc.h> |
| |
| struct ipmmu_vmsa_device { |
| struct device *dev; |
| void __iomem *base; |
| struct list_head list; |
| |
| const struct ipmmu_vmsa_platform_data *pdata; |
| unsigned int num_utlbs; |
| |
| struct dma_iommu_mapping *mapping; |
| }; |
| |
| struct ipmmu_vmsa_domain { |
| struct ipmmu_vmsa_device *mmu; |
| struct iommu_domain *io_domain; |
| |
| unsigned int context_id; |
| spinlock_t lock; /* Protects mappings */ |
| pgd_t *pgd; |
| }; |
| |
| struct ipmmu_vmsa_archdata { |
| struct ipmmu_vmsa_device *mmu; |
| unsigned int utlb; |
| }; |
| |
| static DEFINE_SPINLOCK(ipmmu_devices_lock); |
| static LIST_HEAD(ipmmu_devices); |
| |
| #define TLB_LOOP_TIMEOUT 100 /* 100us */ |
| |
| /* ----------------------------------------------------------------------------- |
| * Registers Definition |
| */ |
| |
| #define IM_CTX_SIZE 0x40 |
| |
| #define IMCTR 0x0000 |
| #define IMCTR_TRE (1 << 17) |
| #define IMCTR_AFE (1 << 16) |
| #define IMCTR_RTSEL_MASK (3 << 4) |
| #define IMCTR_RTSEL_SHIFT 4 |
| #define IMCTR_TREN (1 << 3) |
| #define IMCTR_INTEN (1 << 2) |
| #define IMCTR_FLUSH (1 << 1) |
| #define IMCTR_MMUEN (1 << 0) |
| |
| #define IMCAAR 0x0004 |
| |
| #define IMTTBCR 0x0008 |
| #define IMTTBCR_EAE (1 << 31) |
| #define IMTTBCR_PMB (1 << 30) |
| #define IMTTBCR_SH1_NON_SHAREABLE (0 << 28) |
| #define IMTTBCR_SH1_OUTER_SHAREABLE (2 << 28) |
| #define IMTTBCR_SH1_INNER_SHAREABLE (3 << 28) |
| #define IMTTBCR_SH1_MASK (3 << 28) |
| #define IMTTBCR_ORGN1_NC (0 << 26) |
| #define IMTTBCR_ORGN1_WB_WA (1 << 26) |
| #define IMTTBCR_ORGN1_WT (2 << 26) |
| #define IMTTBCR_ORGN1_WB (3 << 26) |
| #define IMTTBCR_ORGN1_MASK (3 << 26) |
| #define IMTTBCR_IRGN1_NC (0 << 24) |
| #define IMTTBCR_IRGN1_WB_WA (1 << 24) |
| #define IMTTBCR_IRGN1_WT (2 << 24) |
| #define IMTTBCR_IRGN1_WB (3 << 24) |
| #define IMTTBCR_IRGN1_MASK (3 << 24) |
| #define IMTTBCR_TSZ1_MASK (7 << 16) |
| #define IMTTBCR_TSZ1_SHIFT 16 |
| #define IMTTBCR_SH0_NON_SHAREABLE (0 << 12) |
| #define IMTTBCR_SH0_OUTER_SHAREABLE (2 << 12) |
| #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12) |
| #define IMTTBCR_SH0_MASK (3 << 12) |
| #define IMTTBCR_ORGN0_NC (0 << 10) |
| #define IMTTBCR_ORGN0_WB_WA (1 << 10) |
| #define IMTTBCR_ORGN0_WT (2 << 10) |
| #define IMTTBCR_ORGN0_WB (3 << 10) |
| #define IMTTBCR_ORGN0_MASK (3 << 10) |
| #define IMTTBCR_IRGN0_NC (0 << 8) |
| #define IMTTBCR_IRGN0_WB_WA (1 << 8) |
| #define IMTTBCR_IRGN0_WT (2 << 8) |
| #define IMTTBCR_IRGN0_WB (3 << 8) |
| #define IMTTBCR_IRGN0_MASK (3 << 8) |
| #define IMTTBCR_SL0_LVL_2 (0 << 4) |
| #define IMTTBCR_SL0_LVL_1 (1 << 4) |
| #define IMTTBCR_TSZ0_MASK (7 << 0) |
| #define IMTTBCR_TSZ0_SHIFT O |
| |
| #define IMBUSCR 0x000c |
| #define IMBUSCR_DVM (1 << 2) |
| #define IMBUSCR_BUSSEL_SYS (0 << 0) |
| #define IMBUSCR_BUSSEL_CCI (1 << 0) |
| #define IMBUSCR_BUSSEL_IMCAAR (2 << 0) |
| #define IMBUSCR_BUSSEL_CCI_IMCAAR (3 << 0) |
| #define IMBUSCR_BUSSEL_MASK (3 << 0) |
| |
| #define IMTTLBR0 0x0010 |
| #define IMTTUBR0 0x0014 |
| #define IMTTLBR1 0x0018 |
| #define IMTTUBR1 0x001c |
| |
| #define IMSTR 0x0020 |
| #define IMSTR_ERRLVL_MASK (3 << 12) |
| #define IMSTR_ERRLVL_SHIFT 12 |
| #define IMSTR_ERRCODE_TLB_FORMAT (1 << 8) |
| #define IMSTR_ERRCODE_ACCESS_PERM (4 << 8) |
| #define IMSTR_ERRCODE_SECURE_ACCESS (5 << 8) |
| #define IMSTR_ERRCODE_MASK (7 << 8) |
| #define IMSTR_MHIT (1 << 4) |
| #define IMSTR_ABORT (1 << 2) |
| #define IMSTR_PF (1 << 1) |
| #define IMSTR_TF (1 << 0) |
| |
| #define IMMAIR0 0x0028 |
| #define IMMAIR1 0x002c |
| #define IMMAIR_ATTR_MASK 0xff |
| #define IMMAIR_ATTR_DEVICE 0x04 |
| #define IMMAIR_ATTR_NC 0x44 |
| #define IMMAIR_ATTR_WBRWA 0xff |
| #define IMMAIR_ATTR_SHIFT(n) ((n) << 3) |
| #define IMMAIR_ATTR_IDX_NC 0 |
| #define IMMAIR_ATTR_IDX_WBRWA 1 |
| #define IMMAIR_ATTR_IDX_DEV 2 |
| |
| #define IMEAR 0x0030 |
| |
| #define IMPCTR 0x0200 |
| #define IMPSTR 0x0208 |
| #define IMPEAR 0x020c |
| #define IMPMBA(n) (0x0280 + ((n) * 4)) |
| #define IMPMBD(n) (0x02c0 + ((n) * 4)) |
| |
| #define IMUCTR(n) (0x0300 + ((n) * 16)) |
| #define IMUCTR_FIXADDEN (1 << 31) |
| #define IMUCTR_FIXADD_MASK (0xff << 16) |
| #define IMUCTR_FIXADD_SHIFT 16 |
| #define IMUCTR_TTSEL_MMU(n) ((n) << 4) |
| #define IMUCTR_TTSEL_PMB (8 << 4) |
| #define IMUCTR_TTSEL_MASK (15 << 4) |
| #define IMUCTR_FLUSH (1 << 1) |
| #define IMUCTR_MMUEN (1 << 0) |
| |
| #define IMUASID(n) (0x0308 + ((n) * 16)) |
| #define IMUASID_ASID8_MASK (0xff << 8) |
| #define IMUASID_ASID8_SHIFT 8 |
| #define IMUASID_ASID0_MASK (0xff << 0) |
| #define IMUASID_ASID0_SHIFT 0 |
| |
| /* ----------------------------------------------------------------------------- |
| * Page Table Bits |
| */ |
| |
| /* |
| * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory access, |
| * Long-descriptor format" that the NStable bit being set in a table descriptor |
| * will result in the NStable and NS bits of all child entries being ignored and |
| * considered as being set. The IPMMU seems not to comply with this, as it |
| * generates a secure access page fault if any of the NStable and NS bits isn't |
| * set when running in non-secure mode. |
| */ |
| #ifndef PMD_NSTABLE |
| #define PMD_NSTABLE (_AT(pmdval_t, 1) << 63) |
| #endif |
| |
| #define ARM_VMSA_PTE_XN (((pteval_t)3) << 53) |
| #define ARM_VMSA_PTE_CONT (((pteval_t)1) << 52) |
| #define ARM_VMSA_PTE_AF (((pteval_t)1) << 10) |
| #define ARM_VMSA_PTE_SH_NS (((pteval_t)0) << 8) |
| #define ARM_VMSA_PTE_SH_OS (((pteval_t)2) << 8) |
| #define ARM_VMSA_PTE_SH_IS (((pteval_t)3) << 8) |
| #define ARM_VMSA_PTE_SH_MASK (((pteval_t)3) << 8) |
| #define ARM_VMSA_PTE_NS (((pteval_t)1) << 5) |
| #define ARM_VMSA_PTE_PAGE (((pteval_t)3) << 0) |
| |
| /* Stage-1 PTE */ |
| #define ARM_VMSA_PTE_nG (((pteval_t)1) << 11) |
| #define ARM_VMSA_PTE_AP_UNPRIV (((pteval_t)1) << 6) |
| #define ARM_VMSA_PTE_AP_RDONLY (((pteval_t)2) << 6) |
| #define ARM_VMSA_PTE_AP_MASK (((pteval_t)3) << 6) |
| #define ARM_VMSA_PTE_ATTRINDX_MASK (((pteval_t)3) << 2) |
| #define ARM_VMSA_PTE_ATTRINDX_SHIFT 2 |
| |
| #define ARM_VMSA_PTE_ATTRS_MASK \ |
| (ARM_VMSA_PTE_XN | ARM_VMSA_PTE_CONT | ARM_VMSA_PTE_nG | \ |
| ARM_VMSA_PTE_AF | ARM_VMSA_PTE_SH_MASK | ARM_VMSA_PTE_AP_MASK | \ |
| ARM_VMSA_PTE_NS | ARM_VMSA_PTE_ATTRINDX_MASK) |
| |
| #define ARM_VMSA_PTE_CONT_ENTRIES 16 |
| #define ARM_VMSA_PTE_CONT_SIZE (PAGE_SIZE * ARM_VMSA_PTE_CONT_ENTRIES) |
| |
| #define IPMMU_PTRS_PER_PTE 512 |
| #define IPMMU_PTRS_PER_PMD 512 |
| #define IPMMU_PTRS_PER_PGD 4 |
| |
| /* ----------------------------------------------------------------------------- |
| * Read/Write Access |
| */ |
| |
| static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset) |
| { |
| return ioread32(mmu->base + offset); |
| } |
| |
| static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset, |
| u32 data) |
| { |
| iowrite32(data, mmu->base + offset); |
| } |
| |
| static u32 ipmmu_ctx_read(struct ipmmu_vmsa_domain *domain, unsigned int reg) |
| { |
| return ipmmu_read(domain->mmu, domain->context_id * IM_CTX_SIZE + reg); |
| } |
| |
| static void ipmmu_ctx_write(struct ipmmu_vmsa_domain *domain, unsigned int reg, |
| u32 data) |
| { |
| ipmmu_write(domain->mmu, domain->context_id * IM_CTX_SIZE + reg, data); |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * TLB and microTLB Management |
| */ |
| |
| /* Wait for any pending TLB invalidations to complete */ |
| static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain) |
| { |
| unsigned int count = 0; |
| |
| while (ipmmu_ctx_read(domain, IMCTR) & IMCTR_FLUSH) { |
| cpu_relax(); |
| if (++count == TLB_LOOP_TIMEOUT) { |
| dev_err_ratelimited(domain->mmu->dev, |
| "TLB sync timed out -- MMU may be deadlocked\n"); |
| return; |
| } |
| udelay(1); |
| } |
| } |
| |
| static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain) |
| { |
| u32 reg; |
| |
| reg = ipmmu_ctx_read(domain, IMCTR); |
| reg |= IMCTR_FLUSH; |
| ipmmu_ctx_write(domain, IMCTR, reg); |
| |
| ipmmu_tlb_sync(domain); |
| } |
| |
| /* |
| * Enable MMU translation for the microTLB. |
| */ |
| static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain, |
| unsigned int utlb) |
| { |
| struct ipmmu_vmsa_device *mmu = domain->mmu; |
| |
| /* |
| * TODO: Reference-count the microTLB as several bus masters can be |
| * connected to the same microTLB. |
| */ |
| |
| /* TODO: What should we set the ASID to ? */ |
| ipmmu_write(mmu, IMUASID(utlb), 0); |
| /* TODO: Do we need to flush the microTLB ? */ |
| ipmmu_write(mmu, IMUCTR(utlb), |
| IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH | |
| IMUCTR_MMUEN); |
| } |
| |
| /* |
| * Disable MMU translation for the microTLB. |
| */ |
| static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain, |
| unsigned int utlb) |
| { |
| struct ipmmu_vmsa_device *mmu = domain->mmu; |
| |
| ipmmu_write(mmu, IMUCTR(utlb), 0); |
| } |
| |
| static void ipmmu_flush_pgtable(struct ipmmu_vmsa_device *mmu, void *addr, |
| size_t size) |
| { |
| unsigned long offset = (unsigned long)addr & ~PAGE_MASK; |
| |
| /* |
| * TODO: Add support for coherent walk through CCI with DVM and remove |
| * cache handling. |
| */ |
| dma_map_page(mmu->dev, virt_to_page(addr), offset, size, DMA_TO_DEVICE); |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Domain/Context Management |
| */ |
| |
| static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain) |
| { |
| phys_addr_t ttbr; |
| u32 reg; |
| |
| /* |
| * TODO: When adding support for multiple contexts, find an unused |
| * context. |
| */ |
| domain->context_id = 0; |
| |
| /* TTBR0 */ |
| ipmmu_flush_pgtable(domain->mmu, domain->pgd, |
| IPMMU_PTRS_PER_PGD * sizeof(*domain->pgd)); |
| ttbr = __pa(domain->pgd); |
| ipmmu_ctx_write(domain, IMTTLBR0, ttbr); |
| ipmmu_ctx_write(domain, IMTTUBR0, ttbr >> 32); |
| |
| /* |
| * TTBCR |
| * We use long descriptors with inner-shareable WBWA tables and allocate |
| * the whole 32-bit VA space to TTBR0. |
| */ |
| ipmmu_ctx_write(domain, IMTTBCR, IMTTBCR_EAE | |
| IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA | |
| IMTTBCR_IRGN0_WB_WA | IMTTBCR_SL0_LVL_1); |
| |
| /* |
| * MAIR0 |
| * We need three attributes only, non-cacheable, write-back read/write |
| * allocate and device memory. |
| */ |
| reg = (IMMAIR_ATTR_NC << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_NC)) |
| | (IMMAIR_ATTR_WBRWA << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_WBRWA)) |
| | (IMMAIR_ATTR_DEVICE << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_DEV)); |
| ipmmu_ctx_write(domain, IMMAIR0, reg); |
| |
| /* IMBUSCR */ |
| ipmmu_ctx_write(domain, IMBUSCR, |
| ipmmu_ctx_read(domain, IMBUSCR) & |
| ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK)); |
| |
| /* |
| * IMSTR |
| * Clear all interrupt flags. |
| */ |
| ipmmu_ctx_write(domain, IMSTR, ipmmu_ctx_read(domain, IMSTR)); |
| |
| /* |
| * IMCTR |
| * Enable the MMU and interrupt generation. The long-descriptor |
| * translation table format doesn't use TEX remapping. Don't enable AF |
| * software management as we have no use for it. Flush the TLB as |
| * required when modifying the context registers. |
| */ |
| ipmmu_ctx_write(domain, IMCTR, IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN); |
| |
| return 0; |
| } |
| |
| static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain) |
| { |
| /* |
| * Disable the context. Flush the TLB as required when modifying the |
| * context registers. |
| * |
| * TODO: Is TLB flush really needed ? |
| */ |
| ipmmu_ctx_write(domain, IMCTR, IMCTR_FLUSH); |
| ipmmu_tlb_sync(domain); |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Fault Handling |
| */ |
| |
| static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain) |
| { |
| const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF; |
| struct ipmmu_vmsa_device *mmu = domain->mmu; |
| u32 status; |
| u32 iova; |
| |
| status = ipmmu_ctx_read(domain, IMSTR); |
| if (!(status & err_mask)) |
| return IRQ_NONE; |
| |
| iova = ipmmu_ctx_read(domain, IMEAR); |
| |
| /* |
| * Clear the error status flags. Unlike traditional interrupt flag |
| * registers that must be cleared by writing 1, this status register |
| * seems to require 0. The error address register must be read before, |
| * otherwise its value will be 0. |
| */ |
| ipmmu_ctx_write(domain, IMSTR, 0); |
| |
| /* Log fatal errors. */ |
| if (status & IMSTR_MHIT) |
| dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n", |
| iova); |
| if (status & IMSTR_ABORT) |
| dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n", |
| iova); |
| |
| if (!(status & (IMSTR_PF | IMSTR_TF))) |
| return IRQ_NONE; |
| |
| /* |
| * Try to handle page faults and translation faults. |
| * |
| * TODO: We need to look up the faulty device based on the I/O VA. Use |
| * the IOMMU device for now. |
| */ |
| if (!report_iommu_fault(domain->io_domain, mmu->dev, iova, 0)) |
| return IRQ_HANDLED; |
| |
| dev_err_ratelimited(mmu->dev, |
| "Unhandled fault: status 0x%08x iova 0x%08x\n", |
| status, iova); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t ipmmu_irq(int irq, void *dev) |
| { |
| struct ipmmu_vmsa_device *mmu = dev; |
| struct iommu_domain *io_domain; |
| struct ipmmu_vmsa_domain *domain; |
| |
| if (!mmu->mapping) |
| return IRQ_NONE; |
| |
| io_domain = mmu->mapping->domain; |
| domain = io_domain->priv; |
| |
| return ipmmu_domain_irq(domain); |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Page Table Management |
| */ |
| |
| #define pud_pgtable(pud) pfn_to_page(__phys_to_pfn(pud_val(pud) & PHYS_MASK)) |
| |
| static void ipmmu_free_ptes(pmd_t *pmd) |
| { |
| pgtable_t table = pmd_pgtable(*pmd); |
| __free_page(table); |
| } |
| |
| static void ipmmu_free_pmds(pud_t *pud) |
| { |
| pmd_t *pmd = pmd_offset(pud, 0); |
| pgtable_t table; |
| unsigned int i; |
| |
| for (i = 0; i < IPMMU_PTRS_PER_PMD; ++i) { |
| if (!pmd_table(*pmd)) |
| continue; |
| |
| ipmmu_free_ptes(pmd); |
| pmd++; |
| } |
| |
| table = pud_pgtable(*pud); |
| __free_page(table); |
| } |
| |
| static void ipmmu_free_pgtables(struct ipmmu_vmsa_domain *domain) |
| { |
| pgd_t *pgd, *pgd_base = domain->pgd; |
| unsigned int i; |
| |
| /* |
| * Recursively free the page tables for this domain. We don't care about |
| * speculative TLB filling, because the TLB will be nuked next time this |
| * context bank is re-allocated and no devices currently map to these |
| * tables. |
| */ |
| pgd = pgd_base; |
| for (i = 0; i < IPMMU_PTRS_PER_PGD; ++i) { |
| if (pgd_none(*pgd)) |
| continue; |
| ipmmu_free_pmds((pud_t *)pgd); |
| pgd++; |
| } |
| |
| kfree(pgd_base); |
| } |
| |
| /* |
| * We can't use the (pgd|pud|pmd|pte)_populate or the set_(pgd|pud|pmd|pte) |
| * functions as they would flush the CPU TLB. |
| */ |
| |
| static pte_t *ipmmu_alloc_pte(struct ipmmu_vmsa_device *mmu, pmd_t *pmd, |
| unsigned long iova) |
| { |
| pte_t *pte; |
| |
| if (!pmd_none(*pmd)) |
| return pte_offset_kernel(pmd, iova); |
| |
| pte = (pte_t *)get_zeroed_page(GFP_ATOMIC); |
| if (!pte) |
| return NULL; |
| |
| ipmmu_flush_pgtable(mmu, pte, PAGE_SIZE); |
| *pmd = __pmd(__pa(pte) | PMD_NSTABLE | PMD_TYPE_TABLE); |
| ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd)); |
| |
| return pte + pte_index(iova); |
| } |
| |
| static pmd_t *ipmmu_alloc_pmd(struct ipmmu_vmsa_device *mmu, pgd_t *pgd, |
| unsigned long iova) |
| { |
| pud_t *pud = (pud_t *)pgd; |
| pmd_t *pmd; |
| |
| if (!pud_none(*pud)) |
| return pmd_offset(pud, iova); |
| |
| pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC); |
| if (!pmd) |
| return NULL; |
| |
| ipmmu_flush_pgtable(mmu, pmd, PAGE_SIZE); |
| *pud = __pud(__pa(pmd) | PMD_NSTABLE | PMD_TYPE_TABLE); |
| ipmmu_flush_pgtable(mmu, pud, sizeof(*pud)); |
| |
| return pmd + pmd_index(iova); |
| } |
| |
| static u64 ipmmu_page_prot(unsigned int prot, u64 type) |
| { |
| u64 pgprot = ARM_VMSA_PTE_XN | ARM_VMSA_PTE_nG | ARM_VMSA_PTE_AF |
| | ARM_VMSA_PTE_SH_IS | ARM_VMSA_PTE_AP_UNPRIV |
| | ARM_VMSA_PTE_NS | type; |
| |
| if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ)) |
| pgprot |= ARM_VMSA_PTE_AP_RDONLY; |
| |
| if (prot & IOMMU_CACHE) |
| pgprot |= IMMAIR_ATTR_IDX_WBRWA << ARM_VMSA_PTE_ATTRINDX_SHIFT; |
| |
| if (prot & IOMMU_EXEC) |
| pgprot &= ~ARM_VMSA_PTE_XN; |
| else if (!(prot & (IOMMU_READ | IOMMU_WRITE))) |
| /* If no access create a faulting entry to avoid TLB fills. */ |
| pgprot &= ~ARM_VMSA_PTE_PAGE; |
| |
| return pgprot; |
| } |
| |
| static int ipmmu_alloc_init_pte(struct ipmmu_vmsa_device *mmu, pmd_t *pmd, |
| unsigned long iova, unsigned long pfn, |
| size_t size, int prot) |
| { |
| pteval_t pteval = ipmmu_page_prot(prot, ARM_VMSA_PTE_PAGE); |
| unsigned int num_ptes = 1; |
| pte_t *pte, *start; |
| unsigned int i; |
| |
| pte = ipmmu_alloc_pte(mmu, pmd, iova); |
| if (!pte) |
| return -ENOMEM; |
| |
| start = pte; |
| |
| /* |
| * Install the page table entries. We can be called both for a single |
| * page or for a block of 16 physically contiguous pages. In the latter |
| * case set the PTE contiguous hint. |
| */ |
| if (size == SZ_64K) { |
| pteval |= ARM_VMSA_PTE_CONT; |
| num_ptes = ARM_VMSA_PTE_CONT_ENTRIES; |
| } |
| |
| for (i = num_ptes; i; --i) |
| *pte++ = pfn_pte(pfn++, __pgprot(pteval)); |
| |
| ipmmu_flush_pgtable(mmu, start, sizeof(*pte) * num_ptes); |
| |
| return 0; |
| } |
| |
| static int ipmmu_alloc_init_pmd(struct ipmmu_vmsa_device *mmu, pmd_t *pmd, |
| unsigned long iova, unsigned long pfn, |
| int prot) |
| { |
| pmdval_t pmdval = ipmmu_page_prot(prot, PMD_TYPE_SECT); |
| |
| *pmd = pfn_pmd(pfn, __pgprot(pmdval)); |
| ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd)); |
| |
| return 0; |
| } |
| |
| static int ipmmu_create_mapping(struct ipmmu_vmsa_domain *domain, |
| unsigned long iova, phys_addr_t paddr, |
| size_t size, int prot) |
| { |
| struct ipmmu_vmsa_device *mmu = domain->mmu; |
| pgd_t *pgd = domain->pgd; |
| unsigned long flags; |
| unsigned long pfn; |
| pmd_t *pmd; |
| int ret; |
| |
| if (!pgd) |
| return -EINVAL; |
| |
| if (size & ~PAGE_MASK) |
| return -EINVAL; |
| |
| if (paddr & ~((1ULL << 40) - 1)) |
| return -ERANGE; |
| |
| pfn = __phys_to_pfn(paddr); |
| pgd += pgd_index(iova); |
| |
| /* Update the page tables. */ |
| spin_lock_irqsave(&domain->lock, flags); |
| |
| pmd = ipmmu_alloc_pmd(mmu, pgd, iova); |
| if (!pmd) { |
| ret = -ENOMEM; |
| goto done; |
| } |
| |
| switch (size) { |
| case SZ_2M: |
| ret = ipmmu_alloc_init_pmd(mmu, pmd, iova, pfn, prot); |
| break; |
| case SZ_64K: |
| case SZ_4K: |
| ret = ipmmu_alloc_init_pte(mmu, pmd, iova, pfn, size, prot); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| done: |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| if (!ret) |
| ipmmu_tlb_invalidate(domain); |
| |
| return ret; |
| } |
| |
| static void ipmmu_clear_pud(struct ipmmu_vmsa_device *mmu, pud_t *pud) |
| { |
| /* Free the page table. */ |
| pgtable_t table = pud_pgtable(*pud); |
| __free_page(table); |
| |
| /* Clear the PUD. */ |
| *pud = __pud(0); |
| ipmmu_flush_pgtable(mmu, pud, sizeof(*pud)); |
| } |
| |
| static void ipmmu_clear_pmd(struct ipmmu_vmsa_device *mmu, pud_t *pud, |
| pmd_t *pmd) |
| { |
| unsigned int i; |
| |
| /* Free the page table. */ |
| if (pmd_table(*pmd)) { |
| pgtable_t table = pmd_pgtable(*pmd); |
| __free_page(table); |
| } |
| |
| /* Clear the PMD. */ |
| *pmd = __pmd(0); |
| ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd)); |
| |
| /* Check whether the PUD is still needed. */ |
| pmd = pmd_offset(pud, 0); |
| for (i = 0; i < IPMMU_PTRS_PER_PMD; ++i) { |
| if (!pmd_none(pmd[i])) |
| return; |
| } |
| |
| /* Clear the parent PUD. */ |
| ipmmu_clear_pud(mmu, pud); |
| } |
| |
| static void ipmmu_clear_pte(struct ipmmu_vmsa_device *mmu, pud_t *pud, |
| pmd_t *pmd, pte_t *pte, unsigned int num_ptes) |
| { |
| unsigned int i; |
| |
| /* Clear the PTE. */ |
| for (i = num_ptes; i; --i) |
| pte[i-1] = __pte(0); |
| |
| ipmmu_flush_pgtable(mmu, pte, sizeof(*pte) * num_ptes); |
| |
| /* Check whether the PMD is still needed. */ |
| pte = pte_offset_kernel(pmd, 0); |
| for (i = 0; i < IPMMU_PTRS_PER_PTE; ++i) { |
| if (!pte_none(pte[i])) |
| return; |
| } |
| |
| /* Clear the parent PMD. */ |
| ipmmu_clear_pmd(mmu, pud, pmd); |
| } |
| |
| static int ipmmu_split_pmd(struct ipmmu_vmsa_device *mmu, pmd_t *pmd) |
| { |
| pte_t *pte, *start; |
| pteval_t pteval; |
| unsigned long pfn; |
| unsigned int i; |
| |
| pte = (pte_t *)get_zeroed_page(GFP_ATOMIC); |
| if (!pte) |
| return -ENOMEM; |
| |
| /* Copy the PMD attributes. */ |
| pteval = (pmd_val(*pmd) & ARM_VMSA_PTE_ATTRS_MASK) |
| | ARM_VMSA_PTE_CONT | ARM_VMSA_PTE_PAGE; |
| |
| pfn = pmd_pfn(*pmd); |
| start = pte; |
| |
| for (i = IPMMU_PTRS_PER_PTE; i; --i) |
| *pte++ = pfn_pte(pfn++, __pgprot(pteval)); |
| |
| ipmmu_flush_pgtable(mmu, start, PAGE_SIZE); |
| *pmd = __pmd(__pa(start) | PMD_NSTABLE | PMD_TYPE_TABLE); |
| ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd)); |
| |
| return 0; |
| } |
| |
| static void ipmmu_split_pte(struct ipmmu_vmsa_device *mmu, pte_t *pte) |
| { |
| unsigned int i; |
| |
| for (i = ARM_VMSA_PTE_CONT_ENTRIES; i; --i) |
| pte[i-1] = __pte(pte_val(*pte) & ~ARM_VMSA_PTE_CONT); |
| |
| ipmmu_flush_pgtable(mmu, pte, sizeof(*pte) * ARM_VMSA_PTE_CONT_ENTRIES); |
| } |
| |
| static int ipmmu_clear_mapping(struct ipmmu_vmsa_domain *domain, |
| unsigned long iova, size_t size) |
| { |
| struct ipmmu_vmsa_device *mmu = domain->mmu; |
| unsigned long flags; |
| pgd_t *pgd = domain->pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| int ret = 0; |
| |
| if (!pgd) |
| return -EINVAL; |
| |
| if (size & ~PAGE_MASK) |
| return -EINVAL; |
| |
| pgd += pgd_index(iova); |
| pud = (pud_t *)pgd; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| |
| /* If there's no PUD or PMD we're done. */ |
| if (pud_none(*pud)) |
| goto done; |
| |
| pmd = pmd_offset(pud, iova); |
| if (pmd_none(*pmd)) |
| goto done; |
| |
| /* |
| * When freeing a 2MB block just clear the PMD. In the unlikely case the |
| * block is mapped as individual pages this will free the corresponding |
| * PTE page table. |
| */ |
| if (size == SZ_2M) { |
| ipmmu_clear_pmd(mmu, pud, pmd); |
| goto done; |
| } |
| |
| /* |
| * If the PMD has been mapped as a section remap it as pages to allow |
| * freeing individual pages. |
| */ |
| if (pmd_sect(*pmd)) |
| ipmmu_split_pmd(mmu, pmd); |
| |
| pte = pte_offset_kernel(pmd, iova); |
| |
| /* |
| * When freeing a 64kB block just clear the PTE entries. We don't have |
| * to care about the contiguous hint of the surrounding entries. |
| */ |
| if (size == SZ_64K) { |
| ipmmu_clear_pte(mmu, pud, pmd, pte, ARM_VMSA_PTE_CONT_ENTRIES); |
| goto done; |
| } |
| |
| /* |
| * If the PTE has been mapped with the contiguous hint set remap it and |
| * its surrounding PTEs to allow unmapping a single page. |
| */ |
| if (pte_val(*pte) & ARM_VMSA_PTE_CONT) |
| ipmmu_split_pte(mmu, pte); |
| |
| /* Clear the PTE. */ |
| ipmmu_clear_pte(mmu, pud, pmd, pte, 1); |
| |
| done: |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| if (ret) |
| ipmmu_tlb_invalidate(domain); |
| |
| return 0; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * IOMMU Operations |
| */ |
| |
| static int ipmmu_domain_init(struct iommu_domain *io_domain) |
| { |
| struct ipmmu_vmsa_domain *domain; |
| |
| domain = kzalloc(sizeof(*domain), GFP_KERNEL); |
| if (!domain) |
| return -ENOMEM; |
| |
| spin_lock_init(&domain->lock); |
| |
| domain->pgd = kzalloc(IPMMU_PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL); |
| if (!domain->pgd) { |
| kfree(domain); |
| return -ENOMEM; |
| } |
| |
| io_domain->priv = domain; |
| domain->io_domain = io_domain; |
| |
| return 0; |
| } |
| |
| static void ipmmu_domain_destroy(struct iommu_domain *io_domain) |
| { |
| struct ipmmu_vmsa_domain *domain = io_domain->priv; |
| |
| /* |
| * Free the domain resources. We assume that all devices have already |
| * been detached. |
| */ |
| ipmmu_domain_destroy_context(domain); |
| ipmmu_free_pgtables(domain); |
| kfree(domain); |
| } |
| |
| static int ipmmu_attach_device(struct iommu_domain *io_domain, |
| struct device *dev) |
| { |
| struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu; |
| struct ipmmu_vmsa_device *mmu = archdata->mmu; |
| struct ipmmu_vmsa_domain *domain = io_domain->priv; |
| unsigned long flags; |
| int ret = 0; |
| |
| if (!mmu) { |
| dev_err(dev, "Cannot attach to IPMMU\n"); |
| return -ENXIO; |
| } |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| |
| if (!domain->mmu) { |
| /* The domain hasn't been used yet, initialize it. */ |
| domain->mmu = mmu; |
| ret = ipmmu_domain_init_context(domain); |
| } else if (domain->mmu != mmu) { |
| /* |
| * Something is wrong, we can't attach two devices using |
| * different IOMMUs to the same domain. |
| */ |
| dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n", |
| dev_name(mmu->dev), dev_name(domain->mmu->dev)); |
| ret = -EINVAL; |
| } |
| |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| if (ret < 0) |
| return ret; |
| |
| ipmmu_utlb_enable(domain, archdata->utlb); |
| |
| return 0; |
| } |
| |
| static void ipmmu_detach_device(struct iommu_domain *io_domain, |
| struct device *dev) |
| { |
| struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu; |
| struct ipmmu_vmsa_domain *domain = io_domain->priv; |
| |
| ipmmu_utlb_disable(domain, archdata->utlb); |
| |
| /* |
| * TODO: Optimize by disabling the context when no device is attached. |
| */ |
| } |
| |
| static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova, |
| phys_addr_t paddr, size_t size, int prot) |
| { |
| struct ipmmu_vmsa_domain *domain = io_domain->priv; |
| |
| if (!domain) |
| return -ENODEV; |
| |
| return ipmmu_create_mapping(domain, iova, paddr, size, prot); |
| } |
| |
| static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova, |
| size_t size) |
| { |
| struct ipmmu_vmsa_domain *domain = io_domain->priv; |
| int ret; |
| |
| ret = ipmmu_clear_mapping(domain, iova, size); |
| return ret ? 0 : size; |
| } |
| |
| static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain, |
| dma_addr_t iova) |
| { |
| struct ipmmu_vmsa_domain *domain = io_domain->priv; |
| pgd_t pgd; |
| pud_t pud; |
| pmd_t pmd; |
| pte_t pte; |
| |
| /* TODO: Is locking needed ? */ |
| |
| if (!domain->pgd) |
| return 0; |
| |
| pgd = *(domain->pgd + pgd_index(iova)); |
| if (pgd_none(pgd)) |
| return 0; |
| |
| pud = *pud_offset(&pgd, iova); |
| if (pud_none(pud)) |
| return 0; |
| |
| pmd = *pmd_offset(&pud, iova); |
| if (pmd_none(pmd)) |
| return 0; |
| |
| if (pmd_sect(pmd)) |
| return __pfn_to_phys(pmd_pfn(pmd)) | (iova & ~PMD_MASK); |
| |
| pte = *(pmd_page_vaddr(pmd) + pte_index(iova)); |
| if (pte_none(pte)) |
| return 0; |
| |
| return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK); |
| } |
| |
| static int ipmmu_find_utlb(struct ipmmu_vmsa_device *mmu, struct device *dev) |
| { |
| const struct ipmmu_vmsa_master *master = mmu->pdata->masters; |
| const char *devname = dev_name(dev); |
| unsigned int i; |
| |
| for (i = 0; i < mmu->pdata->num_masters; ++i, ++master) { |
| if (strcmp(master->name, devname) == 0) |
| return master->utlb; |
| } |
| |
| return -1; |
| } |
| |
| static int ipmmu_add_device(struct device *dev) |
| { |
| struct ipmmu_vmsa_archdata *archdata; |
| struct ipmmu_vmsa_device *mmu; |
| struct iommu_group *group; |
| int utlb = -1; |
| int ret; |
| |
| if (dev->archdata.iommu) { |
| dev_warn(dev, "IOMMU driver already assigned to device %s\n", |
| dev_name(dev)); |
| return -EINVAL; |
| } |
| |
| /* Find the master corresponding to the device. */ |
| spin_lock(&ipmmu_devices_lock); |
| |
| list_for_each_entry(mmu, &ipmmu_devices, list) { |
| utlb = ipmmu_find_utlb(mmu, dev); |
| if (utlb >= 0) { |
| /* |
| * TODO Take a reference to the MMU to protect |
| * against device removal. |
| */ |
| break; |
| } |
| } |
| |
| spin_unlock(&ipmmu_devices_lock); |
| |
| if (utlb < 0) |
| return -ENODEV; |
| |
| if (utlb >= mmu->num_utlbs) |
| return -EINVAL; |
| |
| /* Create a device group and add the device to it. */ |
| group = iommu_group_alloc(); |
| if (IS_ERR(group)) { |
| dev_err(dev, "Failed to allocate IOMMU group\n"); |
| return PTR_ERR(group); |
| } |
| |
| ret = iommu_group_add_device(group, dev); |
| iommu_group_put(group); |
| |
| if (ret < 0) { |
| dev_err(dev, "Failed to add device to IPMMU group\n"); |
| return ret; |
| } |
| |
| archdata = kzalloc(sizeof(*archdata), GFP_KERNEL); |
| if (!archdata) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| archdata->mmu = mmu; |
| archdata->utlb = utlb; |
| dev->archdata.iommu = archdata; |
| |
| /* |
| * Create the ARM mapping, used by the ARM DMA mapping core to allocate |
| * VAs. This will allocate a corresponding IOMMU domain. |
| * |
| * TODO: |
| * - Create one mapping per context (TLB). |
| * - Make the mapping size configurable ? We currently use a 2GB mapping |
| * at a 1GB offset to ensure that NULL VAs will fault. |
| */ |
| if (!mmu->mapping) { |
| struct dma_iommu_mapping *mapping; |
| |
| mapping = arm_iommu_create_mapping(&platform_bus_type, |
| SZ_1G, SZ_2G); |
| if (IS_ERR(mapping)) { |
| dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n"); |
| return PTR_ERR(mapping); |
| } |
| |
| mmu->mapping = mapping; |
| } |
| |
| /* Attach the ARM VA mapping to the device. */ |
| ret = arm_iommu_attach_device(dev, mmu->mapping); |
| if (ret < 0) { |
| dev_err(dev, "Failed to attach device to VA mapping\n"); |
| goto error; |
| } |
| |
| return 0; |
| |
| error: |
| kfree(dev->archdata.iommu); |
| dev->archdata.iommu = NULL; |
| iommu_group_remove_device(dev); |
| return ret; |
| } |
| |
| static void ipmmu_remove_device(struct device *dev) |
| { |
| arm_iommu_detach_device(dev); |
| iommu_group_remove_device(dev); |
| kfree(dev->archdata.iommu); |
| dev->archdata.iommu = NULL; |
| } |
| |
| static const struct iommu_ops ipmmu_ops = { |
| .domain_init = ipmmu_domain_init, |
| .domain_destroy = ipmmu_domain_destroy, |
| .attach_dev = ipmmu_attach_device, |
| .detach_dev = ipmmu_detach_device, |
| .map = ipmmu_map, |
| .unmap = ipmmu_unmap, |
| .map_sg = default_iommu_map_sg, |
| .iova_to_phys = ipmmu_iova_to_phys, |
| .add_device = ipmmu_add_device, |
| .remove_device = ipmmu_remove_device, |
| .pgsize_bitmap = SZ_2M | SZ_64K | SZ_4K, |
| }; |
| |
| /* ----------------------------------------------------------------------------- |
| * Probe/remove and init |
| */ |
| |
| static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu) |
| { |
| unsigned int i; |
| |
| /* Disable all contexts. */ |
| for (i = 0; i < 4; ++i) |
| ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0); |
| } |
| |
| static int ipmmu_probe(struct platform_device *pdev) |
| { |
| struct ipmmu_vmsa_device *mmu; |
| struct resource *res; |
| int irq; |
| int ret; |
| |
| if (!pdev->dev.platform_data) { |
| dev_err(&pdev->dev, "missing platform data\n"); |
| return -EINVAL; |
| } |
| |
| mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL); |
| if (!mmu) { |
| dev_err(&pdev->dev, "cannot allocate device data\n"); |
| return -ENOMEM; |
| } |
| |
| mmu->dev = &pdev->dev; |
| mmu->pdata = pdev->dev.platform_data; |
| mmu->num_utlbs = 32; |
| |
| /* Map I/O memory and request IRQ. */ |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| mmu->base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(mmu->base)) |
| return PTR_ERR(mmu->base); |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) { |
| dev_err(&pdev->dev, "no IRQ found\n"); |
| return irq; |
| } |
| |
| ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0, |
| dev_name(&pdev->dev), mmu); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "failed to request IRQ %d\n", irq); |
| return ret; |
| } |
| |
| ipmmu_device_reset(mmu); |
| |
| /* |
| * We can't create the ARM mapping here as it requires the bus to have |
| * an IOMMU, which only happens when bus_set_iommu() is called in |
| * ipmmu_init() after the probe function returns. |
| */ |
| |
| spin_lock(&ipmmu_devices_lock); |
| list_add(&mmu->list, &ipmmu_devices); |
| spin_unlock(&ipmmu_devices_lock); |
| |
| platform_set_drvdata(pdev, mmu); |
| |
| return 0; |
| } |
| |
| static int ipmmu_remove(struct platform_device *pdev) |
| { |
| struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev); |
| |
| spin_lock(&ipmmu_devices_lock); |
| list_del(&mmu->list); |
| spin_unlock(&ipmmu_devices_lock); |
| |
| arm_iommu_release_mapping(mmu->mapping); |
| |
| ipmmu_device_reset(mmu); |
| |
| return 0; |
| } |
| |
| static struct platform_driver ipmmu_driver = { |
| .driver = { |
| .owner = THIS_MODULE, |
| .name = "ipmmu-vmsa", |
| }, |
| .probe = ipmmu_probe, |
| .remove = ipmmu_remove, |
| }; |
| |
| static int __init ipmmu_init(void) |
| { |
| int ret; |
| |
| ret = platform_driver_register(&ipmmu_driver); |
| if (ret < 0) |
| return ret; |
| |
| if (!iommu_present(&platform_bus_type)) |
| bus_set_iommu(&platform_bus_type, &ipmmu_ops); |
| |
| return 0; |
| } |
| |
| static void __exit ipmmu_exit(void) |
| { |
| return platform_driver_unregister(&ipmmu_driver); |
| } |
| |
| subsys_initcall(ipmmu_init); |
| module_exit(ipmmu_exit); |
| |
| MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU"); |
| MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>"); |
| MODULE_LICENSE("GPL v2"); |