| /* asm/bitops.h for Linux/CRIS |
| * |
| * TODO: asm versions if speed is needed |
| * |
| * All bit operations return 0 if the bit was cleared before the |
| * operation and != 0 if it was not. |
| * |
| * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). |
| */ |
| |
| #ifndef _CRIS_BITOPS_H |
| #define _CRIS_BITOPS_H |
| |
| /* Currently this is unsuitable for consumption outside the kernel. */ |
| #ifdef __KERNEL__ |
| |
| #include <asm/arch/bitops.h> |
| #include <asm/system.h> |
| #include <asm/atomic.h> |
| #include <linux/compiler.h> |
| |
| /* |
| * Some hacks to defeat gcc over-optimizations.. |
| */ |
| struct __dummy { unsigned long a[100]; }; |
| #define ADDR (*(struct __dummy *) addr) |
| #define CONST_ADDR (*(const struct __dummy *) addr) |
| |
| /* |
| * set_bit - Atomically set a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * This function is atomic and may not be reordered. See __set_bit() |
| * if you do not require the atomic guarantees. |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| */ |
| |
| #define set_bit(nr, addr) (void)test_and_set_bit(nr, addr) |
| |
| #define __set_bit(nr, addr) (void)__test_and_set_bit(nr, addr) |
| |
| /* |
| * clear_bit - Clears a bit in memory |
| * @nr: Bit to clear |
| * @addr: Address to start counting from |
| * |
| * clear_bit() is atomic and may not be reordered. However, it does |
| * not contain a memory barrier, so if it is used for locking purposes, |
| * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() |
| * in order to ensure changes are visible on other processors. |
| */ |
| |
| #define clear_bit(nr, addr) (void)test_and_clear_bit(nr, addr) |
| |
| #define __clear_bit(nr, addr) (void)__test_and_clear_bit(nr, addr) |
| |
| /* |
| * change_bit - Toggle a bit in memory |
| * @nr: Bit to change |
| * @addr: Address to start counting from |
| * |
| * change_bit() is atomic and may not be reordered. |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| */ |
| |
| #define change_bit(nr, addr) (void)test_and_change_bit(nr, addr) |
| |
| /* |
| * __change_bit - Toggle a bit in memory |
| * @nr: the bit to change |
| * @addr: the address to start counting from |
| * |
| * Unlike change_bit(), this function is non-atomic and may be reordered. |
| * If it's called on the same region of memory simultaneously, the effect |
| * may be that only one operation succeeds. |
| */ |
| |
| #define __change_bit(nr, addr) (void)__test_and_change_bit(nr, addr) |
| |
| /** |
| * test_and_set_bit - Set a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| |
| static inline int test_and_set_bit(int nr, volatile unsigned long *addr) |
| { |
| unsigned int mask, retval; |
| unsigned long flags; |
| unsigned int *adr = (unsigned int *)addr; |
| |
| adr += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| cris_atomic_save(addr, flags); |
| retval = (mask & *adr) != 0; |
| *adr |= mask; |
| cris_atomic_restore(addr, flags); |
| return retval; |
| } |
| |
| static inline int __test_and_set_bit(int nr, volatile unsigned long *addr) |
| { |
| unsigned int mask, retval; |
| unsigned int *adr = (unsigned int *)addr; |
| |
| adr += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| retval = (mask & *adr) != 0; |
| *adr |= mask; |
| return retval; |
| } |
| |
| /* |
| * clear_bit() doesn't provide any barrier for the compiler. |
| */ |
| #define smp_mb__before_clear_bit() barrier() |
| #define smp_mb__after_clear_bit() barrier() |
| |
| /** |
| * test_and_clear_bit - Clear a bit and return its old value |
| * @nr: Bit to clear |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| |
| static inline int test_and_clear_bit(int nr, volatile unsigned long *addr) |
| { |
| unsigned int mask, retval; |
| unsigned long flags; |
| unsigned int *adr = (unsigned int *)addr; |
| |
| adr += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| cris_atomic_save(addr, flags); |
| retval = (mask & *adr) != 0; |
| *adr &= ~mask; |
| cris_atomic_restore(addr, flags); |
| return retval; |
| } |
| |
| /** |
| * __test_and_clear_bit - Clear a bit and return its old value |
| * @nr: Bit to clear |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| * If two examples of this operation race, one can appear to succeed |
| * but actually fail. You must protect multiple accesses with a lock. |
| */ |
| |
| static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr) |
| { |
| unsigned int mask, retval; |
| unsigned int *adr = (unsigned int *)addr; |
| |
| adr += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| retval = (mask & *adr) != 0; |
| *adr &= ~mask; |
| return retval; |
| } |
| /** |
| * test_and_change_bit - Change a bit and return its old value |
| * @nr: Bit to change |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| |
| static inline int test_and_change_bit(int nr, volatile unsigned long *addr) |
| { |
| unsigned int mask, retval; |
| unsigned long flags; |
| unsigned int *adr = (unsigned int *)addr; |
| adr += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| cris_atomic_save(addr, flags); |
| retval = (mask & *adr) != 0; |
| *adr ^= mask; |
| cris_atomic_restore(addr, flags); |
| return retval; |
| } |
| |
| /* WARNING: non atomic and it can be reordered! */ |
| |
| static inline int __test_and_change_bit(int nr, volatile unsigned long *addr) |
| { |
| unsigned int mask, retval; |
| unsigned int *adr = (unsigned int *)addr; |
| |
| adr += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| retval = (mask & *adr) != 0; |
| *adr ^= mask; |
| |
| return retval; |
| } |
| |
| /** |
| * test_bit - Determine whether a bit is set |
| * @nr: bit number to test |
| * @addr: Address to start counting from |
| * |
| * This routine doesn't need to be atomic. |
| */ |
| |
| static inline int test_bit(int nr, const volatile unsigned long *addr) |
| { |
| unsigned int mask; |
| unsigned int *adr = (unsigned int *)addr; |
| |
| adr += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| return ((mask & *adr) != 0); |
| } |
| |
| /* |
| * Find-bit routines.. |
| */ |
| |
| /* |
| * Since we define it "external", it collides with the built-in |
| * definition, which doesn't have the same semantics. We don't want to |
| * use -fno-builtin, so just hide the name ffs. |
| */ |
| #define ffs kernel_ffs |
| |
| /* |
| * fls: find last bit set. |
| */ |
| |
| #define fls(x) generic_fls(x) |
| #define fls64(x) generic_fls64(x) |
| |
| /* |
| * hweightN - returns the hamming weight of a N-bit word |
| * @x: the word to weigh |
| * |
| * The Hamming Weight of a number is the total number of bits set in it. |
| */ |
| |
| #define hweight32(x) generic_hweight32(x) |
| #define hweight16(x) generic_hweight16(x) |
| #define hweight8(x) generic_hweight8(x) |
| |
| /** |
| * find_next_zero_bit - find the first zero bit in a memory region |
| * @addr: The address to base the search on |
| * @offset: The bitnumber to start searching at |
| * @size: The maximum size to search |
| */ |
| static inline int find_next_zero_bit (const unsigned long * addr, int size, int offset) |
| { |
| unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| unsigned long result = offset & ~31UL; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if (offset) { |
| tmp = *(p++); |
| tmp |= ~0UL >> (32-offset); |
| if (size < 32) |
| goto found_first; |
| if (~tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while (size & ~31UL) { |
| if (~(tmp = *(p++))) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp |= ~0UL << size; |
| found_middle: |
| return result + ffz(tmp); |
| } |
| |
| /** |
| * find_next_bit - find the first set bit in a memory region |
| * @addr: The address to base the search on |
| * @offset: The bitnumber to start searching at |
| * @size: The maximum size to search |
| */ |
| static __inline__ int find_next_bit(const unsigned long *addr, int size, int offset) |
| { |
| unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| unsigned long result = offset & ~31UL; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if (offset) { |
| tmp = *(p++); |
| tmp &= (~0UL << offset); |
| if (size < 32) |
| goto found_first; |
| if (tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while (size & ~31UL) { |
| if ((tmp = *(p++))) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp &= (~0UL >> (32 - size)); |
| if (tmp == 0UL) /* Are any bits set? */ |
| return result + size; /* Nope. */ |
| found_middle: |
| return result + __ffs(tmp); |
| } |
| |
| /** |
| * find_first_zero_bit - find the first zero bit in a memory region |
| * @addr: The address to start the search at |
| * @size: The maximum size to search |
| * |
| * Returns the bit-number of the first zero bit, not the number of the byte |
| * containing a bit. |
| */ |
| |
| #define find_first_zero_bit(addr, size) \ |
| find_next_zero_bit((addr), (size), 0) |
| #define find_first_bit(addr, size) \ |
| find_next_bit((addr), (size), 0) |
| |
| #define ext2_set_bit test_and_set_bit |
| #define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a) |
| #define ext2_clear_bit test_and_clear_bit |
| #define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a) |
| #define ext2_test_bit test_bit |
| #define ext2_find_first_zero_bit find_first_zero_bit |
| #define ext2_find_next_zero_bit find_next_zero_bit |
| |
| /* Bitmap functions for the minix filesystem. */ |
| #define minix_set_bit(nr,addr) test_and_set_bit(nr,addr) |
| #define minix_clear_bit(nr,addr) test_and_clear_bit(nr,addr) |
| #define minix_test_bit(nr,addr) test_bit(nr,addr) |
| #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) |
| |
| static inline int sched_find_first_bit(const unsigned long *b) |
| { |
| if (unlikely(b[0])) |
| return __ffs(b[0]); |
| if (unlikely(b[1])) |
| return __ffs(b[1]) + 32; |
| if (unlikely(b[2])) |
| return __ffs(b[2]) + 64; |
| if (unlikely(b[3])) |
| return __ffs(b[3]) + 96; |
| if (b[4]) |
| return __ffs(b[4]) + 128; |
| return __ffs(b[5]) + 32 + 128; |
| } |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* _CRIS_BITOPS_H */ |