blob: 44d30b45f3cc35a44ee692bc6b48706e819b760c [file] [log] [blame]
/* * CAAM control-plane driver backend
* Controller-level driver, kernel property detection, initialization
*
* Copyright 2008-2012 Freescale Semiconductor, Inc.
*/
#include <linux/device.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include "compat.h"
#include "regs.h"
#include "intern.h"
#include "jr.h"
#include "desc_constr.h"
#include "error.h"
/*
* i.MX targets tend to have clock control subsystems that can
* enable/disable clocking to our device.
*/
#ifdef CONFIG_CRYPTO_DEV_FSL_CAAM_IMX
static inline struct clk *caam_drv_identify_clk(struct device *dev,
char *clk_name)
{
return devm_clk_get(dev, clk_name);
}
#else
static inline struct clk *caam_drv_identify_clk(struct device *dev,
char *clk_name)
{
return NULL;
}
#endif
/*
* Descriptor to instantiate RNG State Handle 0 in normal mode and
* load the JDKEK, TDKEK and TDSK registers
*/
static void build_instantiation_desc(u32 *desc, int handle, int do_sk)
{
u32 *jump_cmd, op_flags;
init_job_desc(desc, 0);
op_flags = OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
(handle << OP_ALG_AAI_SHIFT) | OP_ALG_AS_INIT;
/* INIT RNG in non-test mode */
append_operation(desc, op_flags);
if (!handle && do_sk) {
/*
* For SH0, Secure Keys must be generated as well
*/
/* wait for done */
jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1);
set_jump_tgt_here(desc, jump_cmd);
/*
* load 1 to clear written reg:
* resets the done interrrupt and returns the RNG to idle.
*/
append_load_imm_u32(desc, 1, LDST_SRCDST_WORD_CLRW);
/* Initialize State Handle */
append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
OP_ALG_AAI_RNG4_SK);
}
append_jump(desc, JUMP_CLASS_CLASS1 | JUMP_TYPE_HALT);
}
/* Descriptor for deinstantiation of State Handle 0 of the RNG block. */
static void build_deinstantiation_desc(u32 *desc, int handle)
{
init_job_desc(desc, 0);
/* Uninstantiate State Handle 0 */
append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
(handle << OP_ALG_AAI_SHIFT) | OP_ALG_AS_INITFINAL);
append_jump(desc, JUMP_CLASS_CLASS1 | JUMP_TYPE_HALT);
}
/*
* run_descriptor_deco0 - runs a descriptor on DECO0, under direct control of
* the software (no JR/QI used).
* @ctrldev - pointer to device
* @status - descriptor status, after being run
*
* Return: - 0 if no error occurred
* - -ENODEV if the DECO couldn't be acquired
* - -EAGAIN if an error occurred while executing the descriptor
*/
static inline int run_descriptor_deco0(struct device *ctrldev, u32 *desc,
u32 *status)
{
struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctrldev);
struct caam_ctrl __iomem *ctrl = ctrlpriv->ctrl;
struct caam_deco __iomem *deco = ctrlpriv->deco;
unsigned int timeout = 100000;
u32 deco_dbg_reg, flags;
int i;
if (ctrlpriv->virt_en == 1) {
setbits32(&ctrl->deco_rsr, DECORSR_JR0);
while (!(rd_reg32(&ctrl->deco_rsr) & DECORSR_VALID) &&
--timeout)
cpu_relax();
timeout = 100000;
}
setbits32(&ctrl->deco_rq, DECORR_RQD0ENABLE);
while (!(rd_reg32(&ctrl->deco_rq) & DECORR_DEN0) &&
--timeout)
cpu_relax();
if (!timeout) {
dev_err(ctrldev, "failed to acquire DECO 0\n");
clrbits32(&ctrl->deco_rq, DECORR_RQD0ENABLE);
return -ENODEV;
}
for (i = 0; i < desc_len(desc); i++)
wr_reg32(&deco->descbuf[i], *(desc + i));
flags = DECO_JQCR_WHL;
/*
* If the descriptor length is longer than 4 words, then the
* FOUR bit in JRCTRL register must be set.
*/
if (desc_len(desc) >= 4)
flags |= DECO_JQCR_FOUR;
/* Instruct the DECO to execute it */
setbits32(&deco->jr_ctl_hi, flags);
timeout = 10000000;
do {
deco_dbg_reg = rd_reg32(&deco->desc_dbg);
/*
* If an error occured in the descriptor, then
* the DECO status field will be set to 0x0D
*/
if ((deco_dbg_reg & DESC_DBG_DECO_STAT_MASK) ==
DESC_DBG_DECO_STAT_HOST_ERR)
break;
cpu_relax();
} while ((deco_dbg_reg & DESC_DBG_DECO_STAT_VALID) && --timeout);
*status = rd_reg32(&deco->op_status_hi) &
DECO_OP_STATUS_HI_ERR_MASK;
if (ctrlpriv->virt_en == 1)
clrbits32(&ctrl->deco_rsr, DECORSR_JR0);
/* Mark the DECO as free */
clrbits32(&ctrl->deco_rq, DECORR_RQD0ENABLE);
if (!timeout)
return -EAGAIN;
return 0;
}
/*
* instantiate_rng - builds and executes a descriptor on DECO0,
* which initializes the RNG block.
* @ctrldev - pointer to device
* @state_handle_mask - bitmask containing the instantiation status
* for the RNG4 state handles which exist in
* the RNG4 block: 1 if it's been instantiated
* by an external entry, 0 otherwise.
* @gen_sk - generate data to be loaded into the JDKEK, TDKEK and TDSK;
* Caution: this can be done only once; if the keys need to be
* regenerated, a POR is required
*
* Return: - 0 if no error occurred
* - -ENOMEM if there isn't enough memory to allocate the descriptor
* - -ENODEV if DECO0 couldn't be acquired
* - -EAGAIN if an error occurred when executing the descriptor
* f.i. there was a RNG hardware error due to not "good enough"
* entropy being aquired.
*/
static int instantiate_rng(struct device *ctrldev, int state_handle_mask,
int gen_sk)
{
struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctrldev);
struct caam_ctrl __iomem *ctrl;
u32 *desc, status = 0, rdsta_val;
int ret = 0, sh_idx;
ctrl = (struct caam_ctrl __iomem *)ctrlpriv->ctrl;
desc = kmalloc(CAAM_CMD_SZ * 7, GFP_KERNEL);
if (!desc)
return -ENOMEM;
for (sh_idx = 0; sh_idx < RNG4_MAX_HANDLES; sh_idx++) {
/*
* If the corresponding bit is set, this state handle
* was initialized by somebody else, so it's left alone.
*/
if ((1 << sh_idx) & state_handle_mask)
continue;
/* Create the descriptor for instantiating RNG State Handle */
build_instantiation_desc(desc, sh_idx, gen_sk);
/* Try to run it through DECO0 */
ret = run_descriptor_deco0(ctrldev, desc, &status);
/*
* If ret is not 0, or descriptor status is not 0, then
* something went wrong. No need to try the next state
* handle (if available), bail out here.
* Also, if for some reason, the State Handle didn't get
* instantiated although the descriptor has finished
* without any error (HW optimizations for later
* CAAM eras), then try again.
*/
rdsta_val = rd_reg32(&ctrl->r4tst[0].rdsta) & RDSTA_IFMASK;
if ((status && status != JRSTA_SSRC_JUMP_HALT_CC) ||
!(rdsta_val & (1 << sh_idx)))
ret = -EAGAIN;
if (ret)
break;
dev_info(ctrldev, "Instantiated RNG4 SH%d\n", sh_idx);
/* Clear the contents before recreating the descriptor */
memset(desc, 0x00, CAAM_CMD_SZ * 7);
}
kfree(desc);
return ret;
}
/*
* deinstantiate_rng - builds and executes a descriptor on DECO0,
* which deinitializes the RNG block.
* @ctrldev - pointer to device
* @state_handle_mask - bitmask containing the instantiation status
* for the RNG4 state handles which exist in
* the RNG4 block: 1 if it's been instantiated
*
* Return: - 0 if no error occurred
* - -ENOMEM if there isn't enough memory to allocate the descriptor
* - -ENODEV if DECO0 couldn't be acquired
* - -EAGAIN if an error occurred when executing the descriptor
*/
static int deinstantiate_rng(struct device *ctrldev, int state_handle_mask)
{
u32 *desc, status;
int sh_idx, ret = 0;
desc = kmalloc(CAAM_CMD_SZ * 3, GFP_KERNEL);
if (!desc)
return -ENOMEM;
for (sh_idx = 0; sh_idx < RNG4_MAX_HANDLES; sh_idx++) {
/*
* If the corresponding bit is set, then it means the state
* handle was initialized by us, and thus it needs to be
* deintialized as well
*/
if ((1 << sh_idx) & state_handle_mask) {
/*
* Create the descriptor for deinstantating this state
* handle
*/
build_deinstantiation_desc(desc, sh_idx);
/* Try to run it through DECO0 */
ret = run_descriptor_deco0(ctrldev, desc, &status);
if (ret || status) {
dev_err(ctrldev,
"Failed to deinstantiate RNG4 SH%d\n",
sh_idx);
break;
}
dev_info(ctrldev, "Deinstantiated RNG4 SH%d\n", sh_idx);
}
}
kfree(desc);
return ret;
}
static int caam_remove(struct platform_device *pdev)
{
struct device *ctrldev;
struct caam_drv_private *ctrlpriv;
struct caam_ctrl __iomem *ctrl;
int ring;
ctrldev = &pdev->dev;
ctrlpriv = dev_get_drvdata(ctrldev);
ctrl = (struct caam_ctrl __iomem *)ctrlpriv->ctrl;
/* Remove platform devices for JobRs */
for (ring = 0; ring < ctrlpriv->total_jobrs; ring++) {
if (ctrlpriv->jrpdev[ring])
of_device_unregister(ctrlpriv->jrpdev[ring]);
}
/* De-initialize RNG state handles initialized by this driver. */
if (ctrlpriv->rng4_sh_init)
deinstantiate_rng(ctrldev, ctrlpriv->rng4_sh_init);
/* Shut down debug views */
#ifdef CONFIG_DEBUG_FS
debugfs_remove_recursive(ctrlpriv->dfs_root);
#endif
/* Unmap controller region */
iounmap(ctrl);
/* shut clocks off before finalizing shutdown */
clk_disable_unprepare(ctrlpriv->caam_ipg);
clk_disable_unprepare(ctrlpriv->caam_mem);
clk_disable_unprepare(ctrlpriv->caam_aclk);
clk_disable_unprepare(ctrlpriv->caam_emi_slow);
return 0;
}
/*
* kick_trng - sets the various parameters for enabling the initialization
* of the RNG4 block in CAAM
* @pdev - pointer to the platform device
* @ent_delay - Defines the length (in system clocks) of each entropy sample.
*/
static void kick_trng(struct platform_device *pdev, int ent_delay)
{
struct device *ctrldev = &pdev->dev;
struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctrldev);
struct caam_ctrl __iomem *ctrl;
struct rng4tst __iomem *r4tst;
u32 val;
ctrl = (struct caam_ctrl __iomem *)ctrlpriv->ctrl;
r4tst = &ctrl->r4tst[0];
/* put RNG4 into program mode */
setbits32(&r4tst->rtmctl, RTMCTL_PRGM);
/*
* Performance-wise, it does not make sense to
* set the delay to a value that is lower
* than the last one that worked (i.e. the state handles
* were instantiated properly. Thus, instead of wasting
* time trying to set the values controlling the sample
* frequency, the function simply returns.
*/
val = (rd_reg32(&r4tst->rtsdctl) & RTSDCTL_ENT_DLY_MASK)
>> RTSDCTL_ENT_DLY_SHIFT;
if (ent_delay <= val) {
/* put RNG4 into run mode */
clrbits32(&r4tst->rtmctl, RTMCTL_PRGM);
return;
}
val = rd_reg32(&r4tst->rtsdctl);
val = (val & ~RTSDCTL_ENT_DLY_MASK) |
(ent_delay << RTSDCTL_ENT_DLY_SHIFT);
wr_reg32(&r4tst->rtsdctl, val);
/* min. freq. count, equal to 1/4 of the entropy sample length */
wr_reg32(&r4tst->rtfrqmin, ent_delay >> 2);
/* disable maximum frequency count */
wr_reg32(&r4tst->rtfrqmax, RTFRQMAX_DISABLE);
/* read the control register */
val = rd_reg32(&r4tst->rtmctl);
/*
* select raw sampling in both entropy shifter
* and statistical checker
*/
setbits32(&val, RTMCTL_SAMP_MODE_RAW_ES_SC);
/* put RNG4 into run mode */
clrbits32(&val, RTMCTL_PRGM);
/* write back the control register */
wr_reg32(&r4tst->rtmctl, val);
}
/**
* caam_get_era() - Return the ERA of the SEC on SoC, based
* on "sec-era" propery in the DTS. This property is updated by u-boot.
**/
int caam_get_era(void)
{
struct device_node *caam_node;
int ret;
u32 prop;
caam_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
ret = of_property_read_u32(caam_node, "fsl,sec-era", &prop);
of_node_put(caam_node);
return IS_ERR_VALUE(ret) ? -ENOTSUPP : prop;
}
EXPORT_SYMBOL(caam_get_era);
/* Probe routine for CAAM top (controller) level */
static int caam_probe(struct platform_device *pdev)
{
int ret, ring, rspec, gen_sk, ent_delay = RTSDCTL_ENT_DLY_MIN;
u64 caam_id;
struct device *dev;
struct device_node *nprop, *np;
struct caam_ctrl __iomem *ctrl;
struct caam_drv_private *ctrlpriv;
struct clk *clk;
#ifdef CONFIG_DEBUG_FS
struct caam_perfmon *perfmon;
#endif
u32 scfgr, comp_params;
u32 cha_vid_ls;
int pg_size;
int BLOCK_OFFSET = 0;
ctrlpriv = devm_kzalloc(&pdev->dev, sizeof(*ctrlpriv), GFP_KERNEL);
if (!ctrlpriv)
return -ENOMEM;
dev = &pdev->dev;
dev_set_drvdata(dev, ctrlpriv);
ctrlpriv->pdev = pdev;
nprop = pdev->dev.of_node;
/* Enable clocking */
clk = caam_drv_identify_clk(&pdev->dev, "ipg");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(&pdev->dev,
"can't identify CAAM ipg clk: %d\n", ret);
return ret;
}
ctrlpriv->caam_ipg = clk;
clk = caam_drv_identify_clk(&pdev->dev, "mem");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(&pdev->dev,
"can't identify CAAM mem clk: %d\n", ret);
return ret;
}
ctrlpriv->caam_mem = clk;
clk = caam_drv_identify_clk(&pdev->dev, "aclk");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(&pdev->dev,
"can't identify CAAM aclk clk: %d\n", ret);
return ret;
}
ctrlpriv->caam_aclk = clk;
clk = caam_drv_identify_clk(&pdev->dev, "emi_slow");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(&pdev->dev,
"can't identify CAAM emi_slow clk: %d\n", ret);
return ret;
}
ctrlpriv->caam_emi_slow = clk;
ret = clk_prepare_enable(ctrlpriv->caam_ipg);
if (ret < 0) {
dev_err(&pdev->dev, "can't enable CAAM ipg clock: %d\n", ret);
return ret;
}
ret = clk_prepare_enable(ctrlpriv->caam_mem);
if (ret < 0) {
dev_err(&pdev->dev, "can't enable CAAM secure mem clock: %d\n",
ret);
goto disable_caam_ipg;
}
ret = clk_prepare_enable(ctrlpriv->caam_aclk);
if (ret < 0) {
dev_err(&pdev->dev, "can't enable CAAM aclk clock: %d\n", ret);
goto disable_caam_mem;
}
ret = clk_prepare_enable(ctrlpriv->caam_emi_slow);
if (ret < 0) {
dev_err(&pdev->dev, "can't enable CAAM emi slow clock: %d\n",
ret);
goto disable_caam_aclk;
}
/* Get configuration properties from device tree */
/* First, get register page */
ctrl = of_iomap(nprop, 0);
if (ctrl == NULL) {
dev_err(dev, "caam: of_iomap() failed\n");
ret = -ENOMEM;
goto disable_caam_emi_slow;
}
/* Finding the page size for using the CTPR_MS register */
comp_params = rd_reg32(&ctrl->perfmon.comp_parms_ms);
pg_size = (comp_params & CTPR_MS_PG_SZ_MASK) >> CTPR_MS_PG_SZ_SHIFT;
/* Allocating the BLOCK_OFFSET based on the supported page size on
* the platform
*/
if (pg_size == 0)
BLOCK_OFFSET = PG_SIZE_4K;
else
BLOCK_OFFSET = PG_SIZE_64K;
ctrlpriv->ctrl = (struct caam_ctrl __force *)ctrl;
ctrlpriv->assure = (struct caam_assurance __force *)
((uint8_t *)ctrl +
BLOCK_OFFSET * ASSURE_BLOCK_NUMBER
);
ctrlpriv->deco = (struct caam_deco __force *)
((uint8_t *)ctrl +
BLOCK_OFFSET * DECO_BLOCK_NUMBER
);
/* Get the IRQ of the controller (for security violations only) */
ctrlpriv->secvio_irq = irq_of_parse_and_map(nprop, 0);
/*
* Enable DECO watchdogs and, if this is a PHYS_ADDR_T_64BIT kernel,
* long pointers in master configuration register
*/
clrsetbits_32(&ctrl->mcr, MCFGR_AWCACHE_MASK, MCFGR_AWCACHE_CACH |
MCFGR_AWCACHE_BUFF | MCFGR_WDENABLE | MCFGR_LARGE_BURST |
(sizeof(dma_addr_t) == sizeof(u64) ? MCFGR_LONG_PTR : 0));
/*
* Read the Compile Time paramters and SCFGR to determine
* if Virtualization is enabled for this platform
*/
scfgr = rd_reg32(&ctrl->scfgr);
ctrlpriv->virt_en = 0;
if (comp_params & CTPR_MS_VIRT_EN_INCL) {
/* VIRT_EN_INCL = 1 & VIRT_EN_POR = 1 or
* VIRT_EN_INCL = 1 & VIRT_EN_POR = 0 & SCFGR_VIRT_EN = 1
*/
if ((comp_params & CTPR_MS_VIRT_EN_POR) ||
(!(comp_params & CTPR_MS_VIRT_EN_POR) &&
(scfgr & SCFGR_VIRT_EN)))
ctrlpriv->virt_en = 1;
} else {
/* VIRT_EN_INCL = 0 && VIRT_EN_POR_VALUE = 1 */
if (comp_params & CTPR_MS_VIRT_EN_POR)
ctrlpriv->virt_en = 1;
}
if (ctrlpriv->virt_en == 1)
setbits32(&ctrl->jrstart, JRSTART_JR0_START |
JRSTART_JR1_START | JRSTART_JR2_START |
JRSTART_JR3_START);
if (sizeof(dma_addr_t) == sizeof(u64))
if (of_device_is_compatible(nprop, "fsl,sec-v5.0"))
dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
else
dma_set_mask_and_coherent(dev, DMA_BIT_MASK(36));
else
dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
/*
* Detect and enable JobRs
* First, find out how many ring spec'ed, allocate references
* for all, then go probe each one.
*/
rspec = 0;
for_each_available_child_of_node(nprop, np)
if (of_device_is_compatible(np, "fsl,sec-v4.0-job-ring") ||
of_device_is_compatible(np, "fsl,sec4.0-job-ring"))
rspec++;
ctrlpriv->jrpdev = devm_kcalloc(&pdev->dev, rspec,
sizeof(*ctrlpriv->jrpdev), GFP_KERNEL);
if (ctrlpriv->jrpdev == NULL) {
ret = -ENOMEM;
goto iounmap_ctrl;
}
ring = 0;
ctrlpriv->total_jobrs = 0;
for_each_available_child_of_node(nprop, np)
if (of_device_is_compatible(np, "fsl,sec-v4.0-job-ring") ||
of_device_is_compatible(np, "fsl,sec4.0-job-ring")) {
ctrlpriv->jrpdev[ring] =
of_platform_device_create(np, NULL, dev);
if (!ctrlpriv->jrpdev[ring]) {
pr_warn("JR%d Platform device creation error\n",
ring);
continue;
}
ctrlpriv->jr[ring] = (struct caam_job_ring __force *)
((uint8_t *)ctrl +
(ring + JR_BLOCK_NUMBER) *
BLOCK_OFFSET
);
ctrlpriv->total_jobrs++;
ring++;
}
/* Check to see if QI present. If so, enable */
ctrlpriv->qi_present =
!!(rd_reg32(&ctrl->perfmon.comp_parms_ms) &
CTPR_MS_QI_MASK);
if (ctrlpriv->qi_present) {
ctrlpriv->qi = (struct caam_queue_if __force *)
((uint8_t *)ctrl +
BLOCK_OFFSET * QI_BLOCK_NUMBER
);
/* This is all that's required to physically enable QI */
wr_reg32(&ctrlpriv->qi->qi_control_lo, QICTL_DQEN);
}
/* If no QI and no rings specified, quit and go home */
if ((!ctrlpriv->qi_present) && (!ctrlpriv->total_jobrs)) {
dev_err(dev, "no queues configured, terminating\n");
ret = -ENOMEM;
goto caam_remove;
}
cha_vid_ls = rd_reg32(&ctrl->perfmon.cha_id_ls);
/*
* If SEC has RNG version >= 4 and RNG state handle has not been
* already instantiated, do RNG instantiation
*/
if ((cha_vid_ls & CHA_ID_LS_RNG_MASK) >> CHA_ID_LS_RNG_SHIFT >= 4) {
ctrlpriv->rng4_sh_init =
rd_reg32(&ctrl->r4tst[0].rdsta);
/*
* If the secure keys (TDKEK, JDKEK, TDSK), were already
* generated, signal this to the function that is instantiating
* the state handles. An error would occur if RNG4 attempts
* to regenerate these keys before the next POR.
*/
gen_sk = ctrlpriv->rng4_sh_init & RDSTA_SKVN ? 0 : 1;
ctrlpriv->rng4_sh_init &= RDSTA_IFMASK;
do {
int inst_handles =
rd_reg32(&ctrl->r4tst[0].rdsta) &
RDSTA_IFMASK;
/*
* If either SH were instantiated by somebody else
* (e.g. u-boot) then it is assumed that the entropy
* parameters are properly set and thus the function
* setting these (kick_trng(...)) is skipped.
* Also, if a handle was instantiated, do not change
* the TRNG parameters.
*/
if (!(ctrlpriv->rng4_sh_init || inst_handles)) {
dev_info(dev,
"Entropy delay = %u\n",
ent_delay);
kick_trng(pdev, ent_delay);
ent_delay += 400;
}
/*
* if instantiate_rng(...) fails, the loop will rerun
* and the kick_trng(...) function will modfiy the
* upper and lower limits of the entropy sampling
* interval, leading to a sucessful initialization of
* the RNG.
*/
ret = instantiate_rng(dev, inst_handles,
gen_sk);
if (ret == -EAGAIN)
/*
* if here, the loop will rerun,
* so don't hog the CPU
*/
cpu_relax();
} while ((ret == -EAGAIN) && (ent_delay < RTSDCTL_ENT_DLY_MAX));
if (ret) {
dev_err(dev, "failed to instantiate RNG");
goto caam_remove;
}
/*
* Set handles init'ed by this module as the complement of the
* already initialized ones
*/
ctrlpriv->rng4_sh_init = ~ctrlpriv->rng4_sh_init & RDSTA_IFMASK;
/* Enable RDB bit so that RNG works faster */
setbits32(&ctrl->scfgr, SCFGR_RDBENABLE);
}
/* NOTE: RTIC detection ought to go here, around Si time */
caam_id = (u64)rd_reg32(&ctrl->perfmon.caam_id_ms) << 32 |
(u64)rd_reg32(&ctrl->perfmon.caam_id_ls);
/* Report "alive" for developer to see */
dev_info(dev, "device ID = 0x%016llx (Era %d)\n", caam_id,
caam_get_era());
dev_info(dev, "job rings = %d, qi = %d\n",
ctrlpriv->total_jobrs, ctrlpriv->qi_present);
#ifdef CONFIG_DEBUG_FS
/*
* FIXME: needs better naming distinction, as some amalgamation of
* "caam" and nprop->full_name. The OF name isn't distinctive,
* but does separate instances
*/
perfmon = (struct caam_perfmon __force *)&ctrl->perfmon;
ctrlpriv->dfs_root = debugfs_create_dir(dev_name(dev), NULL);
ctrlpriv->ctl = debugfs_create_dir("ctl", ctrlpriv->dfs_root);
/* Controller-level - performance monitor counters */
ctrlpriv->ctl_rq_dequeued =
debugfs_create_u64("rq_dequeued",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->req_dequeued);
ctrlpriv->ctl_ob_enc_req =
debugfs_create_u64("ob_rq_encrypted",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ob_enc_req);
ctrlpriv->ctl_ib_dec_req =
debugfs_create_u64("ib_rq_decrypted",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ib_dec_req);
ctrlpriv->ctl_ob_enc_bytes =
debugfs_create_u64("ob_bytes_encrypted",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ob_enc_bytes);
ctrlpriv->ctl_ob_prot_bytes =
debugfs_create_u64("ob_bytes_protected",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ob_prot_bytes);
ctrlpriv->ctl_ib_dec_bytes =
debugfs_create_u64("ib_bytes_decrypted",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ib_dec_bytes);
ctrlpriv->ctl_ib_valid_bytes =
debugfs_create_u64("ib_bytes_validated",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ib_valid_bytes);
/* Controller level - global status values */
ctrlpriv->ctl_faultaddr =
debugfs_create_u64("fault_addr",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->faultaddr);
ctrlpriv->ctl_faultdetail =
debugfs_create_u32("fault_detail",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->faultdetail);
ctrlpriv->ctl_faultstatus =
debugfs_create_u32("fault_status",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->status);
/* Internal covering keys (useful in non-secure mode only) */
ctrlpriv->ctl_kek_wrap.data = &ctrlpriv->ctrl->kek[0];
ctrlpriv->ctl_kek_wrap.size = KEK_KEY_SIZE * sizeof(u32);
ctrlpriv->ctl_kek = debugfs_create_blob("kek",
S_IRUSR |
S_IRGRP | S_IROTH,
ctrlpriv->ctl,
&ctrlpriv->ctl_kek_wrap);
ctrlpriv->ctl_tkek_wrap.data = &ctrlpriv->ctrl->tkek[0];
ctrlpriv->ctl_tkek_wrap.size = KEK_KEY_SIZE * sizeof(u32);
ctrlpriv->ctl_tkek = debugfs_create_blob("tkek",
S_IRUSR |
S_IRGRP | S_IROTH,
ctrlpriv->ctl,
&ctrlpriv->ctl_tkek_wrap);
ctrlpriv->ctl_tdsk_wrap.data = &ctrlpriv->ctrl->tdsk[0];
ctrlpriv->ctl_tdsk_wrap.size = KEK_KEY_SIZE * sizeof(u32);
ctrlpriv->ctl_tdsk = debugfs_create_blob("tdsk",
S_IRUSR |
S_IRGRP | S_IROTH,
ctrlpriv->ctl,
&ctrlpriv->ctl_tdsk_wrap);
#endif
return 0;
caam_remove:
caam_remove(pdev);
iounmap_ctrl:
iounmap(ctrl);
disable_caam_emi_slow:
clk_disable_unprepare(ctrlpriv->caam_emi_slow);
disable_caam_aclk:
clk_disable_unprepare(ctrlpriv->caam_aclk);
disable_caam_mem:
clk_disable_unprepare(ctrlpriv->caam_mem);
disable_caam_ipg:
clk_disable_unprepare(ctrlpriv->caam_ipg);
return ret;
}
static struct of_device_id caam_match[] = {
{
.compatible = "fsl,sec-v4.0",
},
{
.compatible = "fsl,sec4.0",
},
{},
};
MODULE_DEVICE_TABLE(of, caam_match);
static struct platform_driver caam_driver = {
.driver = {
.name = "caam",
.of_match_table = caam_match,
},
.probe = caam_probe,
.remove = caam_remove,
};
module_platform_driver(caam_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("FSL CAAM request backend");
MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");