| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> |
| * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
| * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner |
| * |
| * High-resolution kernel timers |
| * |
| * In contrast to the low-resolution timeout API, aka timer wheel, |
| * hrtimers provide finer resolution and accuracy depending on system |
| * configuration and capabilities. |
| * |
| * Started by: Thomas Gleixner and Ingo Molnar |
| * |
| * Credits: |
| * Based on the original timer wheel code |
| * |
| * Help, testing, suggestions, bugfixes, improvements were |
| * provided by: |
| * |
| * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel |
| * et. al. |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/export.h> |
| #include <linux/percpu.h> |
| #include <linux/hrtimer.h> |
| #include <linux/notifier.h> |
| #include <linux/syscalls.h> |
| #include <linux/interrupt.h> |
| #include <linux/tick.h> |
| #include <linux/err.h> |
| #include <linux/debugobjects.h> |
| #include <linux/sched/signal.h> |
| #include <linux/sched/sysctl.h> |
| #include <linux/sched/rt.h> |
| #include <linux/sched/deadline.h> |
| #include <linux/sched/nohz.h> |
| #include <linux/sched/debug.h> |
| #include <linux/timer.h> |
| #include <linux/freezer.h> |
| #include <linux/compat.h> |
| |
| #include <linux/uaccess.h> |
| |
| #include <trace/events/timer.h> |
| |
| #include "tick-internal.h" |
| |
| /* |
| * Masks for selecting the soft and hard context timers from |
| * cpu_base->active |
| */ |
| #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) |
| #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) |
| #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) |
| #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) |
| |
| /* |
| * The timer bases: |
| * |
| * There are more clockids than hrtimer bases. Thus, we index |
| * into the timer bases by the hrtimer_base_type enum. When trying |
| * to reach a base using a clockid, hrtimer_clockid_to_base() |
| * is used to convert from clockid to the proper hrtimer_base_type. |
| */ |
| DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = |
| { |
| .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), |
| .clock_base = |
| { |
| { |
| .index = HRTIMER_BASE_MONOTONIC, |
| .clockid = CLOCK_MONOTONIC, |
| .get_time = &ktime_get, |
| }, |
| { |
| .index = HRTIMER_BASE_REALTIME, |
| .clockid = CLOCK_REALTIME, |
| .get_time = &ktime_get_real, |
| }, |
| { |
| .index = HRTIMER_BASE_BOOTTIME, |
| .clockid = CLOCK_BOOTTIME, |
| .get_time = &ktime_get_boottime, |
| }, |
| { |
| .index = HRTIMER_BASE_TAI, |
| .clockid = CLOCK_TAI, |
| .get_time = &ktime_get_clocktai, |
| }, |
| { |
| .index = HRTIMER_BASE_MONOTONIC_SOFT, |
| .clockid = CLOCK_MONOTONIC, |
| .get_time = &ktime_get, |
| }, |
| { |
| .index = HRTIMER_BASE_REALTIME_SOFT, |
| .clockid = CLOCK_REALTIME, |
| .get_time = &ktime_get_real, |
| }, |
| { |
| .index = HRTIMER_BASE_BOOTTIME_SOFT, |
| .clockid = CLOCK_BOOTTIME, |
| .get_time = &ktime_get_boottime, |
| }, |
| { |
| .index = HRTIMER_BASE_TAI_SOFT, |
| .clockid = CLOCK_TAI, |
| .get_time = &ktime_get_clocktai, |
| }, |
| } |
| }; |
| |
| static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { |
| /* Make sure we catch unsupported clockids */ |
| [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, |
| |
| [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, |
| [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, |
| [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, |
| [CLOCK_TAI] = HRTIMER_BASE_TAI, |
| }; |
| |
| /* |
| * Functions and macros which are different for UP/SMP systems are kept in a |
| * single place |
| */ |
| #ifdef CONFIG_SMP |
| |
| /* |
| * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() |
| * such that hrtimer_callback_running() can unconditionally dereference |
| * timer->base->cpu_base |
| */ |
| static struct hrtimer_cpu_base migration_cpu_base = { |
| .clock_base = { { |
| .cpu_base = &migration_cpu_base, |
| .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, |
| &migration_cpu_base.lock), |
| }, }, |
| }; |
| |
| #define migration_base migration_cpu_base.clock_base[0] |
| |
| static inline bool is_migration_base(struct hrtimer_clock_base *base) |
| { |
| return base == &migration_base; |
| } |
| |
| /* |
| * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock |
| * means that all timers which are tied to this base via timer->base are |
| * locked, and the base itself is locked too. |
| * |
| * So __run_timers/migrate_timers can safely modify all timers which could |
| * be found on the lists/queues. |
| * |
| * When the timer's base is locked, and the timer removed from list, it is |
| * possible to set timer->base = &migration_base and drop the lock: the timer |
| * remains locked. |
| */ |
| static |
| struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, |
| unsigned long *flags) |
| { |
| struct hrtimer_clock_base *base; |
| |
| for (;;) { |
| base = READ_ONCE(timer->base); |
| if (likely(base != &migration_base)) { |
| raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
| if (likely(base == timer->base)) |
| return base; |
| /* The timer has migrated to another CPU: */ |
| raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); |
| } |
| cpu_relax(); |
| } |
| } |
| |
| /* |
| * We do not migrate the timer when it is expiring before the next |
| * event on the target cpu. When high resolution is enabled, we cannot |
| * reprogram the target cpu hardware and we would cause it to fire |
| * late. To keep it simple, we handle the high resolution enabled and |
| * disabled case similar. |
| * |
| * Called with cpu_base->lock of target cpu held. |
| */ |
| static int |
| hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) |
| { |
| ktime_t expires; |
| |
| expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); |
| return expires < new_base->cpu_base->expires_next; |
| } |
| |
| static inline |
| struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, |
| int pinned) |
| { |
| #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) |
| if (static_branch_likely(&timers_migration_enabled) && !pinned) |
| return &per_cpu(hrtimer_bases, get_nohz_timer_target()); |
| #endif |
| return base; |
| } |
| |
| /* |
| * We switch the timer base to a power-optimized selected CPU target, |
| * if: |
| * - NO_HZ_COMMON is enabled |
| * - timer migration is enabled |
| * - the timer callback is not running |
| * - the timer is not the first expiring timer on the new target |
| * |
| * If one of the above requirements is not fulfilled we move the timer |
| * to the current CPU or leave it on the previously assigned CPU if |
| * the timer callback is currently running. |
| */ |
| static inline struct hrtimer_clock_base * |
| switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, |
| int pinned) |
| { |
| struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; |
| struct hrtimer_clock_base *new_base; |
| int basenum = base->index; |
| |
| this_cpu_base = this_cpu_ptr(&hrtimer_bases); |
| new_cpu_base = get_target_base(this_cpu_base, pinned); |
| again: |
| new_base = &new_cpu_base->clock_base[basenum]; |
| |
| if (base != new_base) { |
| /* |
| * We are trying to move timer to new_base. |
| * However we can't change timer's base while it is running, |
| * so we keep it on the same CPU. No hassle vs. reprogramming |
| * the event source in the high resolution case. The softirq |
| * code will take care of this when the timer function has |
| * completed. There is no conflict as we hold the lock until |
| * the timer is enqueued. |
| */ |
| if (unlikely(hrtimer_callback_running(timer))) |
| return base; |
| |
| /* See the comment in lock_hrtimer_base() */ |
| WRITE_ONCE(timer->base, &migration_base); |
| raw_spin_unlock(&base->cpu_base->lock); |
| raw_spin_lock(&new_base->cpu_base->lock); |
| |
| if (new_cpu_base != this_cpu_base && |
| hrtimer_check_target(timer, new_base)) { |
| raw_spin_unlock(&new_base->cpu_base->lock); |
| raw_spin_lock(&base->cpu_base->lock); |
| new_cpu_base = this_cpu_base; |
| WRITE_ONCE(timer->base, base); |
| goto again; |
| } |
| WRITE_ONCE(timer->base, new_base); |
| } else { |
| if (new_cpu_base != this_cpu_base && |
| hrtimer_check_target(timer, new_base)) { |
| new_cpu_base = this_cpu_base; |
| goto again; |
| } |
| } |
| return new_base; |
| } |
| |
| #else /* CONFIG_SMP */ |
| |
| static inline bool is_migration_base(struct hrtimer_clock_base *base) |
| { |
| return false; |
| } |
| |
| static inline struct hrtimer_clock_base * |
| lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
| { |
| struct hrtimer_clock_base *base = timer->base; |
| |
| raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
| |
| return base; |
| } |
| |
| # define switch_hrtimer_base(t, b, p) (b) |
| |
| #endif /* !CONFIG_SMP */ |
| |
| /* |
| * Functions for the union type storage format of ktime_t which are |
| * too large for inlining: |
| */ |
| #if BITS_PER_LONG < 64 |
| /* |
| * Divide a ktime value by a nanosecond value |
| */ |
| s64 __ktime_divns(const ktime_t kt, s64 div) |
| { |
| int sft = 0; |
| s64 dclc; |
| u64 tmp; |
| |
| dclc = ktime_to_ns(kt); |
| tmp = dclc < 0 ? -dclc : dclc; |
| |
| /* Make sure the divisor is less than 2^32: */ |
| while (div >> 32) { |
| sft++; |
| div >>= 1; |
| } |
| tmp >>= sft; |
| do_div(tmp, (u32) div); |
| return dclc < 0 ? -tmp : tmp; |
| } |
| EXPORT_SYMBOL_GPL(__ktime_divns); |
| #endif /* BITS_PER_LONG >= 64 */ |
| |
| /* |
| * Add two ktime values and do a safety check for overflow: |
| */ |
| ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) |
| { |
| ktime_t res = ktime_add_unsafe(lhs, rhs); |
| |
| /* |
| * We use KTIME_SEC_MAX here, the maximum timeout which we can |
| * return to user space in a timespec: |
| */ |
| if (res < 0 || res < lhs || res < rhs) |
| res = ktime_set(KTIME_SEC_MAX, 0); |
| |
| return res; |
| } |
| |
| EXPORT_SYMBOL_GPL(ktime_add_safe); |
| |
| #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
| |
| static struct debug_obj_descr hrtimer_debug_descr; |
| |
| static void *hrtimer_debug_hint(void *addr) |
| { |
| return ((struct hrtimer *) addr)->function; |
| } |
| |
| /* |
| * fixup_init is called when: |
| * - an active object is initialized |
| */ |
| static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) |
| { |
| struct hrtimer *timer = addr; |
| |
| switch (state) { |
| case ODEBUG_STATE_ACTIVE: |
| hrtimer_cancel(timer); |
| debug_object_init(timer, &hrtimer_debug_descr); |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /* |
| * fixup_activate is called when: |
| * - an active object is activated |
| * - an unknown non-static object is activated |
| */ |
| static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) |
| { |
| switch (state) { |
| case ODEBUG_STATE_ACTIVE: |
| WARN_ON(1); |
| fallthrough; |
| default: |
| return false; |
| } |
| } |
| |
| /* |
| * fixup_free is called when: |
| * - an active object is freed |
| */ |
| static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) |
| { |
| struct hrtimer *timer = addr; |
| |
| switch (state) { |
| case ODEBUG_STATE_ACTIVE: |
| hrtimer_cancel(timer); |
| debug_object_free(timer, &hrtimer_debug_descr); |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static struct debug_obj_descr hrtimer_debug_descr = { |
| .name = "hrtimer", |
| .debug_hint = hrtimer_debug_hint, |
| .fixup_init = hrtimer_fixup_init, |
| .fixup_activate = hrtimer_fixup_activate, |
| .fixup_free = hrtimer_fixup_free, |
| }; |
| |
| static inline void debug_hrtimer_init(struct hrtimer *timer) |
| { |
| debug_object_init(timer, &hrtimer_debug_descr); |
| } |
| |
| static inline void debug_hrtimer_activate(struct hrtimer *timer, |
| enum hrtimer_mode mode) |
| { |
| debug_object_activate(timer, &hrtimer_debug_descr); |
| } |
| |
| static inline void debug_hrtimer_deactivate(struct hrtimer *timer) |
| { |
| debug_object_deactivate(timer, &hrtimer_debug_descr); |
| } |
| |
| static inline void debug_hrtimer_free(struct hrtimer *timer) |
| { |
| debug_object_free(timer, &hrtimer_debug_descr); |
| } |
| |
| static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
| enum hrtimer_mode mode); |
| |
| void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, |
| enum hrtimer_mode mode) |
| { |
| debug_object_init_on_stack(timer, &hrtimer_debug_descr); |
| __hrtimer_init(timer, clock_id, mode); |
| } |
| EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); |
| |
| static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, |
| clockid_t clock_id, enum hrtimer_mode mode); |
| |
| void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, |
| clockid_t clock_id, enum hrtimer_mode mode) |
| { |
| debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr); |
| __hrtimer_init_sleeper(sl, clock_id, mode); |
| } |
| EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack); |
| |
| void destroy_hrtimer_on_stack(struct hrtimer *timer) |
| { |
| debug_object_free(timer, &hrtimer_debug_descr); |
| } |
| EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); |
| |
| #else |
| |
| static inline void debug_hrtimer_init(struct hrtimer *timer) { } |
| static inline void debug_hrtimer_activate(struct hrtimer *timer, |
| enum hrtimer_mode mode) { } |
| static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } |
| #endif |
| |
| static inline void |
| debug_init(struct hrtimer *timer, clockid_t clockid, |
| enum hrtimer_mode mode) |
| { |
| debug_hrtimer_init(timer); |
| trace_hrtimer_init(timer, clockid, mode); |
| } |
| |
| static inline void debug_activate(struct hrtimer *timer, |
| enum hrtimer_mode mode) |
| { |
| debug_hrtimer_activate(timer, mode); |
| trace_hrtimer_start(timer, mode); |
| } |
| |
| static inline void debug_deactivate(struct hrtimer *timer) |
| { |
| debug_hrtimer_deactivate(timer); |
| trace_hrtimer_cancel(timer); |
| } |
| |
| static struct hrtimer_clock_base * |
| __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) |
| { |
| unsigned int idx; |
| |
| if (!*active) |
| return NULL; |
| |
| idx = __ffs(*active); |
| *active &= ~(1U << idx); |
| |
| return &cpu_base->clock_base[idx]; |
| } |
| |
| #define for_each_active_base(base, cpu_base, active) \ |
| while ((base = __next_base((cpu_base), &(active)))) |
| |
| static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, |
| const struct hrtimer *exclude, |
| unsigned int active, |
| ktime_t expires_next) |
| { |
| struct hrtimer_clock_base *base; |
| ktime_t expires; |
| |
| for_each_active_base(base, cpu_base, active) { |
| struct timerqueue_node *next; |
| struct hrtimer *timer; |
| |
| next = timerqueue_getnext(&base->active); |
| timer = container_of(next, struct hrtimer, node); |
| if (timer == exclude) { |
| /* Get to the next timer in the queue. */ |
| next = timerqueue_iterate_next(next); |
| if (!next) |
| continue; |
| |
| timer = container_of(next, struct hrtimer, node); |
| } |
| expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
| if (expires < expires_next) { |
| expires_next = expires; |
| |
| /* Skip cpu_base update if a timer is being excluded. */ |
| if (exclude) |
| continue; |
| |
| if (timer->is_soft) |
| cpu_base->softirq_next_timer = timer; |
| else |
| cpu_base->next_timer = timer; |
| } |
| } |
| /* |
| * clock_was_set() might have changed base->offset of any of |
| * the clock bases so the result might be negative. Fix it up |
| * to prevent a false positive in clockevents_program_event(). |
| */ |
| if (expires_next < 0) |
| expires_next = 0; |
| return expires_next; |
| } |
| |
| /* |
| * Recomputes cpu_base::*next_timer and returns the earliest expires_next but |
| * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram. |
| * |
| * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, |
| * those timers will get run whenever the softirq gets handled, at the end of |
| * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. |
| * |
| * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. |
| * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual |
| * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. |
| * |
| * @active_mask must be one of: |
| * - HRTIMER_ACTIVE_ALL, |
| * - HRTIMER_ACTIVE_SOFT, or |
| * - HRTIMER_ACTIVE_HARD. |
| */ |
| static ktime_t |
| __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) |
| { |
| unsigned int active; |
| struct hrtimer *next_timer = NULL; |
| ktime_t expires_next = KTIME_MAX; |
| |
| if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { |
| active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; |
| cpu_base->softirq_next_timer = NULL; |
| expires_next = __hrtimer_next_event_base(cpu_base, NULL, |
| active, KTIME_MAX); |
| |
| next_timer = cpu_base->softirq_next_timer; |
| } |
| |
| if (active_mask & HRTIMER_ACTIVE_HARD) { |
| active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; |
| cpu_base->next_timer = next_timer; |
| expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, |
| expires_next); |
| } |
| |
| return expires_next; |
| } |
| |
| static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) |
| { |
| ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; |
| ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; |
| ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; |
| |
| ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, |
| offs_real, offs_boot, offs_tai); |
| |
| base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; |
| base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; |
| base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; |
| |
| return now; |
| } |
| |
| /* |
| * Is the high resolution mode active ? |
| */ |
| static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) |
| { |
| return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? |
| cpu_base->hres_active : 0; |
| } |
| |
| static inline int hrtimer_hres_active(void) |
| { |
| return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); |
| } |
| |
| /* |
| * Reprogram the event source with checking both queues for the |
| * next event |
| * Called with interrupts disabled and base->lock held |
| */ |
| static void |
| hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) |
| { |
| ktime_t expires_next; |
| |
| /* |
| * Find the current next expiration time. |
| */ |
| expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); |
| |
| if (cpu_base->next_timer && cpu_base->next_timer->is_soft) { |
| /* |
| * When the softirq is activated, hrtimer has to be |
| * programmed with the first hard hrtimer because soft |
| * timer interrupt could occur too late. |
| */ |
| if (cpu_base->softirq_activated) |
| expires_next = __hrtimer_get_next_event(cpu_base, |
| HRTIMER_ACTIVE_HARD); |
| else |
| cpu_base->softirq_expires_next = expires_next; |
| } |
| |
| if (skip_equal && expires_next == cpu_base->expires_next) |
| return; |
| |
| cpu_base->expires_next = expires_next; |
| |
| /* |
| * If hres is not active, hardware does not have to be |
| * reprogrammed yet. |
| * |
| * If a hang was detected in the last timer interrupt then we |
| * leave the hang delay active in the hardware. We want the |
| * system to make progress. That also prevents the following |
| * scenario: |
| * T1 expires 50ms from now |
| * T2 expires 5s from now |
| * |
| * T1 is removed, so this code is called and would reprogram |
| * the hardware to 5s from now. Any hrtimer_start after that |
| * will not reprogram the hardware due to hang_detected being |
| * set. So we'd effectivly block all timers until the T2 event |
| * fires. |
| */ |
| if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) |
| return; |
| |
| tick_program_event(cpu_base->expires_next, 1); |
| } |
| |
| /* High resolution timer related functions */ |
| #ifdef CONFIG_HIGH_RES_TIMERS |
| |
| /* |
| * High resolution timer enabled ? |
| */ |
| static bool hrtimer_hres_enabled __read_mostly = true; |
| unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; |
| EXPORT_SYMBOL_GPL(hrtimer_resolution); |
| |
| /* |
| * Enable / Disable high resolution mode |
| */ |
| static int __init setup_hrtimer_hres(char *str) |
| { |
| return (kstrtobool(str, &hrtimer_hres_enabled) == 0); |
| } |
| |
| __setup("highres=", setup_hrtimer_hres); |
| |
| /* |
| * hrtimer_high_res_enabled - query, if the highres mode is enabled |
| */ |
| static inline int hrtimer_is_hres_enabled(void) |
| { |
| return hrtimer_hres_enabled; |
| } |
| |
| /* |
| * Retrigger next event is called after clock was set |
| * |
| * Called with interrupts disabled via on_each_cpu() |
| */ |
| static void retrigger_next_event(void *arg) |
| { |
| struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); |
| |
| if (!__hrtimer_hres_active(base)) |
| return; |
| |
| raw_spin_lock(&base->lock); |
| hrtimer_update_base(base); |
| hrtimer_force_reprogram(base, 0); |
| raw_spin_unlock(&base->lock); |
| } |
| |
| /* |
| * Switch to high resolution mode |
| */ |
| static void hrtimer_switch_to_hres(void) |
| { |
| struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); |
| |
| if (tick_init_highres()) { |
| pr_warn("Could not switch to high resolution mode on CPU %u\n", |
| base->cpu); |
| return; |
| } |
| base->hres_active = 1; |
| hrtimer_resolution = HIGH_RES_NSEC; |
| |
| tick_setup_sched_timer(); |
| /* "Retrigger" the interrupt to get things going */ |
| retrigger_next_event(NULL); |
| } |
| |
| static void clock_was_set_work(struct work_struct *work) |
| { |
| clock_was_set(); |
| } |
| |
| static DECLARE_WORK(hrtimer_work, clock_was_set_work); |
| |
| /* |
| * Called from timekeeping and resume code to reprogram the hrtimer |
| * interrupt device on all cpus. |
| */ |
| void clock_was_set_delayed(void) |
| { |
| schedule_work(&hrtimer_work); |
| } |
| |
| #else |
| |
| static inline int hrtimer_is_hres_enabled(void) { return 0; } |
| static inline void hrtimer_switch_to_hres(void) { } |
| static inline void retrigger_next_event(void *arg) { } |
| |
| #endif /* CONFIG_HIGH_RES_TIMERS */ |
| |
| /* |
| * When a timer is enqueued and expires earlier than the already enqueued |
| * timers, we have to check, whether it expires earlier than the timer for |
| * which the clock event device was armed. |
| * |
| * Called with interrupts disabled and base->cpu_base.lock held |
| */ |
| static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) |
| { |
| struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
| struct hrtimer_clock_base *base = timer->base; |
| ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
| |
| WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); |
| |
| /* |
| * CLOCK_REALTIME timer might be requested with an absolute |
| * expiry time which is less than base->offset. Set it to 0. |
| */ |
| if (expires < 0) |
| expires = 0; |
| |
| if (timer->is_soft) { |
| /* |
| * soft hrtimer could be started on a remote CPU. In this |
| * case softirq_expires_next needs to be updated on the |
| * remote CPU. The soft hrtimer will not expire before the |
| * first hard hrtimer on the remote CPU - |
| * hrtimer_check_target() prevents this case. |
| */ |
| struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; |
| |
| if (timer_cpu_base->softirq_activated) |
| return; |
| |
| if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) |
| return; |
| |
| timer_cpu_base->softirq_next_timer = timer; |
| timer_cpu_base->softirq_expires_next = expires; |
| |
| if (!ktime_before(expires, timer_cpu_base->expires_next) || |
| !reprogram) |
| return; |
| } |
| |
| /* |
| * If the timer is not on the current cpu, we cannot reprogram |
| * the other cpus clock event device. |
| */ |
| if (base->cpu_base != cpu_base) |
| return; |
| |
| /* |
| * If the hrtimer interrupt is running, then it will |
| * reevaluate the clock bases and reprogram the clock event |
| * device. The callbacks are always executed in hard interrupt |
| * context so we don't need an extra check for a running |
| * callback. |
| */ |
| if (cpu_base->in_hrtirq) |
| return; |
| |
| if (expires >= cpu_base->expires_next) |
| return; |
| |
| /* Update the pointer to the next expiring timer */ |
| cpu_base->next_timer = timer; |
| cpu_base->expires_next = expires; |
| |
| /* |
| * If hres is not active, hardware does not have to be |
| * programmed yet. |
| * |
| * If a hang was detected in the last timer interrupt then we |
| * do not schedule a timer which is earlier than the expiry |
| * which we enforced in the hang detection. We want the system |
| * to make progress. |
| */ |
| if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) |
| return; |
| |
| /* |
| * Program the timer hardware. We enforce the expiry for |
| * events which are already in the past. |
| */ |
| tick_program_event(expires, 1); |
| } |
| |
| /* |
| * Clock realtime was set |
| * |
| * Change the offset of the realtime clock vs. the monotonic |
| * clock. |
| * |
| * We might have to reprogram the high resolution timer interrupt. On |
| * SMP we call the architecture specific code to retrigger _all_ high |
| * resolution timer interrupts. On UP we just disable interrupts and |
| * call the high resolution interrupt code. |
| */ |
| void clock_was_set(void) |
| { |
| #ifdef CONFIG_HIGH_RES_TIMERS |
| /* Retrigger the CPU local events everywhere */ |
| on_each_cpu(retrigger_next_event, NULL, 1); |
| #endif |
| timerfd_clock_was_set(); |
| } |
| |
| /* |
| * During resume we might have to reprogram the high resolution timer |
| * interrupt on all online CPUs. However, all other CPUs will be |
| * stopped with IRQs interrupts disabled so the clock_was_set() call |
| * must be deferred. |
| */ |
| void hrtimers_resume(void) |
| { |
| lockdep_assert_irqs_disabled(); |
| /* Retrigger on the local CPU */ |
| retrigger_next_event(NULL); |
| /* And schedule a retrigger for all others */ |
| clock_was_set_delayed(); |
| } |
| |
| /* |
| * Counterpart to lock_hrtimer_base above: |
| */ |
| static inline |
| void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
| { |
| raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); |
| } |
| |
| /** |
| * hrtimer_forward - forward the timer expiry |
| * @timer: hrtimer to forward |
| * @now: forward past this time |
| * @interval: the interval to forward |
| * |
| * Forward the timer expiry so it will expire in the future. |
| * Returns the number of overruns. |
| * |
| * Can be safely called from the callback function of @timer. If |
| * called from other contexts @timer must neither be enqueued nor |
| * running the callback and the caller needs to take care of |
| * serialization. |
| * |
| * Note: This only updates the timer expiry value and does not requeue |
| * the timer. |
| */ |
| u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) |
| { |
| u64 orun = 1; |
| ktime_t delta; |
| |
| delta = ktime_sub(now, hrtimer_get_expires(timer)); |
| |
| if (delta < 0) |
| return 0; |
| |
| if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) |
| return 0; |
| |
| if (interval < hrtimer_resolution) |
| interval = hrtimer_resolution; |
| |
| if (unlikely(delta >= interval)) { |
| s64 incr = ktime_to_ns(interval); |
| |
| orun = ktime_divns(delta, incr); |
| hrtimer_add_expires_ns(timer, incr * orun); |
| if (hrtimer_get_expires_tv64(timer) > now) |
| return orun; |
| /* |
| * This (and the ktime_add() below) is the |
| * correction for exact: |
| */ |
| orun++; |
| } |
| hrtimer_add_expires(timer, interval); |
| |
| return orun; |
| } |
| EXPORT_SYMBOL_GPL(hrtimer_forward); |
| |
| /* |
| * enqueue_hrtimer - internal function to (re)start a timer |
| * |
| * The timer is inserted in expiry order. Insertion into the |
| * red black tree is O(log(n)). Must hold the base lock. |
| * |
| * Returns 1 when the new timer is the leftmost timer in the tree. |
| */ |
| static int enqueue_hrtimer(struct hrtimer *timer, |
| struct hrtimer_clock_base *base, |
| enum hrtimer_mode mode) |
| { |
| debug_activate(timer, mode); |
| |
| base->cpu_base->active_bases |= 1 << base->index; |
| |
| /* Pairs with the lockless read in hrtimer_is_queued() */ |
| WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); |
| |
| return timerqueue_add(&base->active, &timer->node); |
| } |
| |
| /* |
| * __remove_hrtimer - internal function to remove a timer |
| * |
| * Caller must hold the base lock. |
| * |
| * High resolution timer mode reprograms the clock event device when the |
| * timer is the one which expires next. The caller can disable this by setting |
| * reprogram to zero. This is useful, when the context does a reprogramming |
| * anyway (e.g. timer interrupt) |
| */ |
| static void __remove_hrtimer(struct hrtimer *timer, |
| struct hrtimer_clock_base *base, |
| u8 newstate, int reprogram) |
| { |
| struct hrtimer_cpu_base *cpu_base = base->cpu_base; |
| u8 state = timer->state; |
| |
| /* Pairs with the lockless read in hrtimer_is_queued() */ |
| WRITE_ONCE(timer->state, newstate); |
| if (!(state & HRTIMER_STATE_ENQUEUED)) |
| return; |
| |
| if (!timerqueue_del(&base->active, &timer->node)) |
| cpu_base->active_bases &= ~(1 << base->index); |
| |
| /* |
| * Note: If reprogram is false we do not update |
| * cpu_base->next_timer. This happens when we remove the first |
| * timer on a remote cpu. No harm as we never dereference |
| * cpu_base->next_timer. So the worst thing what can happen is |
| * an superflous call to hrtimer_force_reprogram() on the |
| * remote cpu later on if the same timer gets enqueued again. |
| */ |
| if (reprogram && timer == cpu_base->next_timer) |
| hrtimer_force_reprogram(cpu_base, 1); |
| } |
| |
| /* |
| * remove hrtimer, called with base lock held |
| */ |
| static inline int |
| remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) |
| { |
| u8 state = timer->state; |
| |
| if (state & HRTIMER_STATE_ENQUEUED) { |
| int reprogram; |
| |
| /* |
| * Remove the timer and force reprogramming when high |
| * resolution mode is active and the timer is on the current |
| * CPU. If we remove a timer on another CPU, reprogramming is |
| * skipped. The interrupt event on this CPU is fired and |
| * reprogramming happens in the interrupt handler. This is a |
| * rare case and less expensive than a smp call. |
| */ |
| debug_deactivate(timer); |
| reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); |
| |
| if (!restart) |
| state = HRTIMER_STATE_INACTIVE; |
| |
| __remove_hrtimer(timer, base, state, reprogram); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, |
| const enum hrtimer_mode mode) |
| { |
| #ifdef CONFIG_TIME_LOW_RES |
| /* |
| * CONFIG_TIME_LOW_RES indicates that the system has no way to return |
| * granular time values. For relative timers we add hrtimer_resolution |
| * (i.e. one jiffie) to prevent short timeouts. |
| */ |
| timer->is_rel = mode & HRTIMER_MODE_REL; |
| if (timer->is_rel) |
| tim = ktime_add_safe(tim, hrtimer_resolution); |
| #endif |
| return tim; |
| } |
| |
| static void |
| hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) |
| { |
| ktime_t expires; |
| |
| /* |
| * Find the next SOFT expiration. |
| */ |
| expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); |
| |
| /* |
| * reprogramming needs to be triggered, even if the next soft |
| * hrtimer expires at the same time than the next hard |
| * hrtimer. cpu_base->softirq_expires_next needs to be updated! |
| */ |
| if (expires == KTIME_MAX) |
| return; |
| |
| /* |
| * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() |
| * cpu_base->*expires_next is only set by hrtimer_reprogram() |
| */ |
| hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); |
| } |
| |
| static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, |
| u64 delta_ns, const enum hrtimer_mode mode, |
| struct hrtimer_clock_base *base) |
| { |
| struct hrtimer_clock_base *new_base; |
| |
| /* Remove an active timer from the queue: */ |
| remove_hrtimer(timer, base, true); |
| |
| if (mode & HRTIMER_MODE_REL) |
| tim = ktime_add_safe(tim, base->get_time()); |
| |
| tim = hrtimer_update_lowres(timer, tim, mode); |
| |
| hrtimer_set_expires_range_ns(timer, tim, delta_ns); |
| |
| /* Switch the timer base, if necessary: */ |
| new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); |
| |
| return enqueue_hrtimer(timer, new_base, mode); |
| } |
| |
| /** |
| * hrtimer_start_range_ns - (re)start an hrtimer |
| * @timer: the timer to be added |
| * @tim: expiry time |
| * @delta_ns: "slack" range for the timer |
| * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or |
| * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); |
| * softirq based mode is considered for debug purpose only! |
| */ |
| void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, |
| u64 delta_ns, const enum hrtimer_mode mode) |
| { |
| struct hrtimer_clock_base *base; |
| unsigned long flags; |
| |
| /* |
| * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft |
| * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard |
| * expiry mode because unmarked timers are moved to softirq expiry. |
| */ |
| if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
| WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); |
| else |
| WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); |
| |
| base = lock_hrtimer_base(timer, &flags); |
| |
| if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) |
| hrtimer_reprogram(timer, true); |
| |
| unlock_hrtimer_base(timer, &flags); |
| } |
| EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); |
| |
| /** |
| * hrtimer_try_to_cancel - try to deactivate a timer |
| * @timer: hrtimer to stop |
| * |
| * Returns: |
| * |
| * * 0 when the timer was not active |
| * * 1 when the timer was active |
| * * -1 when the timer is currently executing the callback function and |
| * cannot be stopped |
| */ |
| int hrtimer_try_to_cancel(struct hrtimer *timer) |
| { |
| struct hrtimer_clock_base *base; |
| unsigned long flags; |
| int ret = -1; |
| |
| /* |
| * Check lockless first. If the timer is not active (neither |
| * enqueued nor running the callback, nothing to do here. The |
| * base lock does not serialize against a concurrent enqueue, |
| * so we can avoid taking it. |
| */ |
| if (!hrtimer_active(timer)) |
| return 0; |
| |
| base = lock_hrtimer_base(timer, &flags); |
| |
| if (!hrtimer_callback_running(timer)) |
| ret = remove_hrtimer(timer, base, false); |
| |
| unlock_hrtimer_base(timer, &flags); |
| |
| return ret; |
| |
| } |
| EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); |
| |
| #ifdef CONFIG_PREEMPT_RT |
| static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) |
| { |
| spin_lock_init(&base->softirq_expiry_lock); |
| } |
| |
| static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) |
| { |
| spin_lock(&base->softirq_expiry_lock); |
| } |
| |
| static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) |
| { |
| spin_unlock(&base->softirq_expiry_lock); |
| } |
| |
| /* |
| * The counterpart to hrtimer_cancel_wait_running(). |
| * |
| * If there is a waiter for cpu_base->expiry_lock, then it was waiting for |
| * the timer callback to finish. Drop expiry_lock and reaquire it. That |
| * allows the waiter to acquire the lock and make progress. |
| */ |
| static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, |
| unsigned long flags) |
| { |
| if (atomic_read(&cpu_base->timer_waiters)) { |
| raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
| spin_unlock(&cpu_base->softirq_expiry_lock); |
| spin_lock(&cpu_base->softirq_expiry_lock); |
| raw_spin_lock_irq(&cpu_base->lock); |
| } |
| } |
| |
| /* |
| * This function is called on PREEMPT_RT kernels when the fast path |
| * deletion of a timer failed because the timer callback function was |
| * running. |
| * |
| * This prevents priority inversion: if the soft irq thread is preempted |
| * in the middle of a timer callback, then calling del_timer_sync() can |
| * lead to two issues: |
| * |
| * - If the caller is on a remote CPU then it has to spin wait for the timer |
| * handler to complete. This can result in unbound priority inversion. |
| * |
| * - If the caller originates from the task which preempted the timer |
| * handler on the same CPU, then spin waiting for the timer handler to |
| * complete is never going to end. |
| */ |
| void hrtimer_cancel_wait_running(const struct hrtimer *timer) |
| { |
| /* Lockless read. Prevent the compiler from reloading it below */ |
| struct hrtimer_clock_base *base = READ_ONCE(timer->base); |
| |
| /* |
| * Just relax if the timer expires in hard interrupt context or if |
| * it is currently on the migration base. |
| */ |
| if (!timer->is_soft || is_migration_base(base)) { |
| cpu_relax(); |
| return; |
| } |
| |
| /* |
| * Mark the base as contended and grab the expiry lock, which is |
| * held by the softirq across the timer callback. Drop the lock |
| * immediately so the softirq can expire the next timer. In theory |
| * the timer could already be running again, but that's more than |
| * unlikely and just causes another wait loop. |
| */ |
| atomic_inc(&base->cpu_base->timer_waiters); |
| spin_lock_bh(&base->cpu_base->softirq_expiry_lock); |
| atomic_dec(&base->cpu_base->timer_waiters); |
| spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); |
| } |
| #else |
| static inline void |
| hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } |
| static inline void |
| hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } |
| static inline void |
| hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } |
| static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, |
| unsigned long flags) { } |
| #endif |
| |
| /** |
| * hrtimer_cancel - cancel a timer and wait for the handler to finish. |
| * @timer: the timer to be cancelled |
| * |
| * Returns: |
| * 0 when the timer was not active |
| * 1 when the timer was active |
| */ |
| int hrtimer_cancel(struct hrtimer *timer) |
| { |
| int ret; |
| |
| do { |
| ret = hrtimer_try_to_cancel(timer); |
| |
| if (ret < 0) |
| hrtimer_cancel_wait_running(timer); |
| } while (ret < 0); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(hrtimer_cancel); |
| |
| /** |
| * hrtimer_get_remaining - get remaining time for the timer |
| * @timer: the timer to read |
| * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y |
| */ |
| ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) |
| { |
| unsigned long flags; |
| ktime_t rem; |
| |
| lock_hrtimer_base(timer, &flags); |
| if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) |
| rem = hrtimer_expires_remaining_adjusted(timer); |
| else |
| rem = hrtimer_expires_remaining(timer); |
| unlock_hrtimer_base(timer, &flags); |
| |
| return rem; |
| } |
| EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); |
| |
| #ifdef CONFIG_NO_HZ_COMMON |
| /** |
| * hrtimer_get_next_event - get the time until next expiry event |
| * |
| * Returns the next expiry time or KTIME_MAX if no timer is pending. |
| */ |
| u64 hrtimer_get_next_event(void) |
| { |
| struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
| u64 expires = KTIME_MAX; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&cpu_base->lock, flags); |
| |
| if (!__hrtimer_hres_active(cpu_base)) |
| expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); |
| |
| raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
| |
| return expires; |
| } |
| |
| /** |
| * hrtimer_next_event_without - time until next expiry event w/o one timer |
| * @exclude: timer to exclude |
| * |
| * Returns the next expiry time over all timers except for the @exclude one or |
| * KTIME_MAX if none of them is pending. |
| */ |
| u64 hrtimer_next_event_without(const struct hrtimer *exclude) |
| { |
| struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
| u64 expires = KTIME_MAX; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&cpu_base->lock, flags); |
| |
| if (__hrtimer_hres_active(cpu_base)) { |
| unsigned int active; |
| |
| if (!cpu_base->softirq_activated) { |
| active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; |
| expires = __hrtimer_next_event_base(cpu_base, exclude, |
| active, KTIME_MAX); |
| } |
| active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; |
| expires = __hrtimer_next_event_base(cpu_base, exclude, active, |
| expires); |
| } |
| |
| raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
| |
| return expires; |
| } |
| #endif |
| |
| static inline int hrtimer_clockid_to_base(clockid_t clock_id) |
| { |
| if (likely(clock_id < MAX_CLOCKS)) { |
| int base = hrtimer_clock_to_base_table[clock_id]; |
| |
| if (likely(base != HRTIMER_MAX_CLOCK_BASES)) |
| return base; |
| } |
| WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); |
| return HRTIMER_BASE_MONOTONIC; |
| } |
| |
| static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
| enum hrtimer_mode mode) |
| { |
| bool softtimer = !!(mode & HRTIMER_MODE_SOFT); |
| struct hrtimer_cpu_base *cpu_base; |
| int base; |
| |
| /* |
| * On PREEMPT_RT enabled kernels hrtimers which are not explicitely |
| * marked for hard interrupt expiry mode are moved into soft |
| * interrupt context for latency reasons and because the callbacks |
| * can invoke functions which might sleep on RT, e.g. spin_lock(). |
| */ |
| if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) |
| softtimer = true; |
| |
| memset(timer, 0, sizeof(struct hrtimer)); |
| |
| cpu_base = raw_cpu_ptr(&hrtimer_bases); |
| |
| /* |
| * POSIX magic: Relative CLOCK_REALTIME timers are not affected by |
| * clock modifications, so they needs to become CLOCK_MONOTONIC to |
| * ensure POSIX compliance. |
| */ |
| if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) |
| clock_id = CLOCK_MONOTONIC; |
| |
| base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; |
| base += hrtimer_clockid_to_base(clock_id); |
| timer->is_soft = softtimer; |
| timer->is_hard = !!(mode & HRTIMER_MODE_HARD); |
| timer->base = &cpu_base->clock_base[base]; |
| timerqueue_init(&timer->node); |
| } |
| |
| /** |
| * hrtimer_init - initialize a timer to the given clock |
| * @timer: the timer to be initialized |
| * @clock_id: the clock to be used |
| * @mode: The modes which are relevant for intitialization: |
| * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, |
| * HRTIMER_MODE_REL_SOFT |
| * |
| * The PINNED variants of the above can be handed in, |
| * but the PINNED bit is ignored as pinning happens |
| * when the hrtimer is started |
| */ |
| void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
| enum hrtimer_mode mode) |
| { |
| debug_init(timer, clock_id, mode); |
| __hrtimer_init(timer, clock_id, mode); |
| } |
| EXPORT_SYMBOL_GPL(hrtimer_init); |
| |
| /* |
| * A timer is active, when it is enqueued into the rbtree or the |
| * callback function is running or it's in the state of being migrated |
| * to another cpu. |
| * |
| * It is important for this function to not return a false negative. |
| */ |
| bool hrtimer_active(const struct hrtimer *timer) |
| { |
| struct hrtimer_clock_base *base; |
| unsigned int seq; |
| |
| do { |
| base = READ_ONCE(timer->base); |
| seq = raw_read_seqcount_begin(&base->seq); |
| |
| if (timer->state != HRTIMER_STATE_INACTIVE || |
| base->running == timer) |
| return true; |
| |
| } while (read_seqcount_retry(&base->seq, seq) || |
| base != READ_ONCE(timer->base)); |
| |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(hrtimer_active); |
| |
| /* |
| * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 |
| * distinct sections: |
| * |
| * - queued: the timer is queued |
| * - callback: the timer is being ran |
| * - post: the timer is inactive or (re)queued |
| * |
| * On the read side we ensure we observe timer->state and cpu_base->running |
| * from the same section, if anything changed while we looked at it, we retry. |
| * This includes timer->base changing because sequence numbers alone are |
| * insufficient for that. |
| * |
| * The sequence numbers are required because otherwise we could still observe |
| * a false negative if the read side got smeared over multiple consequtive |
| * __run_hrtimer() invocations. |
| */ |
| |
| static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, |
| struct hrtimer_clock_base *base, |
| struct hrtimer *timer, ktime_t *now, |
| unsigned long flags) __must_hold(&cpu_base->lock) |
| { |
| enum hrtimer_restart (*fn)(struct hrtimer *); |
| bool expires_in_hardirq; |
| int restart; |
| |
| lockdep_assert_held(&cpu_base->lock); |
| |
| debug_deactivate(timer); |
| base->running = timer; |
| |
| /* |
| * Separate the ->running assignment from the ->state assignment. |
| * |
| * As with a regular write barrier, this ensures the read side in |
| * hrtimer_active() cannot observe base->running == NULL && |
| * timer->state == INACTIVE. |
| */ |
| raw_write_seqcount_barrier(&base->seq); |
| |
| __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); |
| fn = timer->function; |
| |
| /* |
| * Clear the 'is relative' flag for the TIME_LOW_RES case. If the |
| * timer is restarted with a period then it becomes an absolute |
| * timer. If its not restarted it does not matter. |
| */ |
| if (IS_ENABLED(CONFIG_TIME_LOW_RES)) |
| timer->is_rel = false; |
| |
| /* |
| * The timer is marked as running in the CPU base, so it is |
| * protected against migration to a different CPU even if the lock |
| * is dropped. |
| */ |
| raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
| trace_hrtimer_expire_entry(timer, now); |
| expires_in_hardirq = lockdep_hrtimer_enter(timer); |
| |
| restart = fn(timer); |
| |
| lockdep_hrtimer_exit(expires_in_hardirq); |
| trace_hrtimer_expire_exit(timer); |
| raw_spin_lock_irq(&cpu_base->lock); |
| |
| /* |
| * Note: We clear the running state after enqueue_hrtimer and |
| * we do not reprogram the event hardware. Happens either in |
| * hrtimer_start_range_ns() or in hrtimer_interrupt() |
| * |
| * Note: Because we dropped the cpu_base->lock above, |
| * hrtimer_start_range_ns() can have popped in and enqueued the timer |
| * for us already. |
| */ |
| if (restart != HRTIMER_NORESTART && |
| !(timer->state & HRTIMER_STATE_ENQUEUED)) |
| enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); |
| |
| /* |
| * Separate the ->running assignment from the ->state assignment. |
| * |
| * As with a regular write barrier, this ensures the read side in |
| * hrtimer_active() cannot observe base->running.timer == NULL && |
| * timer->state == INACTIVE. |
| */ |
| raw_write_seqcount_barrier(&base->seq); |
| |
| WARN_ON_ONCE(base->running != timer); |
| base->running = NULL; |
| } |
| |
| static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, |
| unsigned long flags, unsigned int active_mask) |
| { |
| struct hrtimer_clock_base *base; |
| unsigned int active = cpu_base->active_bases & active_mask; |
| |
| for_each_active_base(base, cpu_base, active) { |
| struct timerqueue_node *node; |
| ktime_t basenow; |
| |
| basenow = ktime_add(now, base->offset); |
| |
| while ((node = timerqueue_getnext(&base->active))) { |
| struct hrtimer *timer; |
| |
| timer = container_of(node, struct hrtimer, node); |
| |
| /* |
| * The immediate goal for using the softexpires is |
| * minimizing wakeups, not running timers at the |
| * earliest interrupt after their soft expiration. |
| * This allows us to avoid using a Priority Search |
| * Tree, which can answer a stabbing querry for |
| * overlapping intervals and instead use the simple |
| * BST we already have. |
| * We don't add extra wakeups by delaying timers that |
| * are right-of a not yet expired timer, because that |
| * timer will have to trigger a wakeup anyway. |
| */ |
| if (basenow < hrtimer_get_softexpires_tv64(timer)) |
| break; |
| |
| __run_hrtimer(cpu_base, base, timer, &basenow, flags); |
| if (active_mask == HRTIMER_ACTIVE_SOFT) |
| hrtimer_sync_wait_running(cpu_base, flags); |
| } |
| } |
| } |
| |
| static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) |
| { |
| struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
| unsigned long flags; |
| ktime_t now; |
| |
| hrtimer_cpu_base_lock_expiry(cpu_base); |
| raw_spin_lock_irqsave(&cpu_base->lock, flags); |
| |
| now = hrtimer_update_base(cpu_base); |
| __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); |
| |
| cpu_base->softirq_activated = 0; |
| hrtimer_update_softirq_timer(cpu_base, true); |
| |
| raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
| hrtimer_cpu_base_unlock_expiry(cpu_base); |
| } |
| |
| #ifdef CONFIG_HIGH_RES_TIMERS |
| |
| /* |
| * High resolution timer interrupt |
| * Called with interrupts disabled |
| */ |
| void hrtimer_interrupt(struct clock_event_device *dev) |
| { |
| struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
| ktime_t expires_next, now, entry_time, delta; |
| unsigned long flags; |
| int retries = 0; |
| |
| BUG_ON(!cpu_base->hres_active); |
| cpu_base->nr_events++; |
| dev->next_event = KTIME_MAX; |
| |
| raw_spin_lock_irqsave(&cpu_base->lock, flags); |
| entry_time = now = hrtimer_update_base(cpu_base); |
| retry: |
| cpu_base->in_hrtirq = 1; |
| /* |
| * We set expires_next to KTIME_MAX here with cpu_base->lock |
| * held to prevent that a timer is enqueued in our queue via |
| * the migration code. This does not affect enqueueing of |
| * timers which run their callback and need to be requeued on |
| * this CPU. |
| */ |
| cpu_base->expires_next = KTIME_MAX; |
| |
| if (!ktime_before(now, cpu_base->softirq_expires_next)) { |
| cpu_base->softirq_expires_next = KTIME_MAX; |
| cpu_base->softirq_activated = 1; |
| raise_softirq_irqoff(HRTIMER_SOFTIRQ); |
| } |
| |
| __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); |
| |
| /* Reevaluate the clock bases for the next expiry */ |
| expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); |
| /* |
| * Store the new expiry value so the migration code can verify |
| * against it. |
| */ |
| cpu_base->expires_next = expires_next; |
| cpu_base->in_hrtirq = 0; |
| raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
| |
| /* Reprogramming necessary ? */ |
| if (!tick_program_event(expires_next, 0)) { |
| cpu_base->hang_detected = 0; |
| return; |
| } |
| |
| /* |
| * The next timer was already expired due to: |
| * - tracing |
| * - long lasting callbacks |
| * - being scheduled away when running in a VM |
| * |
| * We need to prevent that we loop forever in the hrtimer |
| * interrupt routine. We give it 3 attempts to avoid |
| * overreacting on some spurious event. |
| * |
| * Acquire base lock for updating the offsets and retrieving |
| * the current time. |
| */ |
| raw_spin_lock_irqsave(&cpu_base->lock, flags); |
| now = hrtimer_update_base(cpu_base); |
| cpu_base->nr_retries++; |
| if (++retries < 3) |
| goto retry; |
| /* |
| * Give the system a chance to do something else than looping |
| * here. We stored the entry time, so we know exactly how long |
| * we spent here. We schedule the next event this amount of |
| * time away. |
| */ |
| cpu_base->nr_hangs++; |
| cpu_base->hang_detected = 1; |
| raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
| |
| delta = ktime_sub(now, entry_time); |
| if ((unsigned int)delta > cpu_base->max_hang_time) |
| cpu_base->max_hang_time = (unsigned int) delta; |
| /* |
| * Limit it to a sensible value as we enforce a longer |
| * delay. Give the CPU at least 100ms to catch up. |
| */ |
| if (delta > 100 * NSEC_PER_MSEC) |
| expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); |
| else |
| expires_next = ktime_add(now, delta); |
| tick_program_event(expires_next, 1); |
| pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); |
| } |
| |
| /* called with interrupts disabled */ |
| static inline void __hrtimer_peek_ahead_timers(void) |
| { |
| struct tick_device *td; |
| |
| if (!hrtimer_hres_active()) |
| return; |
| |
| td = this_cpu_ptr(&tick_cpu_device); |
| if (td && td->evtdev) |
| hrtimer_interrupt(td->evtdev); |
| } |
| |
| #else /* CONFIG_HIGH_RES_TIMERS */ |
| |
| static inline void __hrtimer_peek_ahead_timers(void) { } |
| |
| #endif /* !CONFIG_HIGH_RES_TIMERS */ |
| |
| /* |
| * Called from run_local_timers in hardirq context every jiffy |
| */ |
| void hrtimer_run_queues(void) |
| { |
| struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
| unsigned long flags; |
| ktime_t now; |
| |
| if (__hrtimer_hres_active(cpu_base)) |
| return; |
| |
| /* |
| * This _is_ ugly: We have to check periodically, whether we |
| * can switch to highres and / or nohz mode. The clocksource |
| * switch happens with xtime_lock held. Notification from |
| * there only sets the check bit in the tick_oneshot code, |
| * otherwise we might deadlock vs. xtime_lock. |
| */ |
| if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { |
| hrtimer_switch_to_hres(); |
| return; |
| } |
| |
| raw_spin_lock_irqsave(&cpu_base->lock, flags); |
| now = hrtimer_update_base(cpu_base); |
| |
| if (!ktime_before(now, cpu_base->softirq_expires_next)) { |
| cpu_base->softirq_expires_next = KTIME_MAX; |
| cpu_base->softirq_activated = 1; |
| raise_softirq_irqoff(HRTIMER_SOFTIRQ); |
| } |
| |
| __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); |
| raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
| } |
| |
| /* |
| * Sleep related functions: |
| */ |
| static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) |
| { |
| struct hrtimer_sleeper *t = |
| container_of(timer, struct hrtimer_sleeper, timer); |
| struct task_struct *task = t->task; |
| |
| t->task = NULL; |
| if (task) |
| wake_up_process(task); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| /** |
| * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer |
| * @sl: sleeper to be started |
| * @mode: timer mode abs/rel |
| * |
| * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers |
| * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) |
| */ |
| void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, |
| enum hrtimer_mode mode) |
| { |
| /* |
| * Make the enqueue delivery mode check work on RT. If the sleeper |
| * was initialized for hard interrupt delivery, force the mode bit. |
| * This is a special case for hrtimer_sleepers because |
| * hrtimer_init_sleeper() determines the delivery mode on RT so the |
| * fiddling with this decision is avoided at the call sites. |
| */ |
| if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) |
| mode |= HRTIMER_MODE_HARD; |
| |
| hrtimer_start_expires(&sl->timer, mode); |
| } |
| EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); |
| |
| static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, |
| clockid_t clock_id, enum hrtimer_mode mode) |
| { |
| /* |
| * On PREEMPT_RT enabled kernels hrtimers which are not explicitely |
| * marked for hard interrupt expiry mode are moved into soft |
| * interrupt context either for latency reasons or because the |
| * hrtimer callback takes regular spinlocks or invokes other |
| * functions which are not suitable for hard interrupt context on |
| * PREEMPT_RT. |
| * |
| * The hrtimer_sleeper callback is RT compatible in hard interrupt |
| * context, but there is a latency concern: Untrusted userspace can |
| * spawn many threads which arm timers for the same expiry time on |
| * the same CPU. That causes a latency spike due to the wakeup of |
| * a gazillion threads. |
| * |
| * OTOH, priviledged real-time user space applications rely on the |
| * low latency of hard interrupt wakeups. If the current task is in |
| * a real-time scheduling class, mark the mode for hard interrupt |
| * expiry. |
| */ |
| if (IS_ENABLED(CONFIG_PREEMPT_RT)) { |
| if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT)) |
| mode |= HRTIMER_MODE_HARD; |
| } |
| |
| __hrtimer_init(&sl->timer, clock_id, mode); |
| sl->timer.function = hrtimer_wakeup; |
| sl->task = current; |
| } |
| |
| /** |
| * hrtimer_init_sleeper - initialize sleeper to the given clock |
| * @sl: sleeper to be initialized |
| * @clock_id: the clock to be used |
| * @mode: timer mode abs/rel |
| */ |
| void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, |
| enum hrtimer_mode mode) |
| { |
| debug_init(&sl->timer, clock_id, mode); |
| __hrtimer_init_sleeper(sl, clock_id, mode); |
| |
| } |
| EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); |
| |
| int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) |
| { |
| switch(restart->nanosleep.type) { |
| #ifdef CONFIG_COMPAT_32BIT_TIME |
| case TT_COMPAT: |
| if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) |
| return -EFAULT; |
| break; |
| #endif |
| case TT_NATIVE: |
| if (put_timespec64(ts, restart->nanosleep.rmtp)) |
| return -EFAULT; |
| break; |
| default: |
| BUG(); |
| } |
| return -ERESTART_RESTARTBLOCK; |
| } |
| |
| static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
| { |
| struct restart_block *restart; |
| |
| do { |
| set_current_state(TASK_INTERRUPTIBLE); |
| hrtimer_sleeper_start_expires(t, mode); |
| |
| if (likely(t->task)) |
| freezable_schedule(); |
| |
| hrtimer_cancel(&t->timer); |
| mode = HRTIMER_MODE_ABS; |
| |
| } while (t->task && !signal_pending(current)); |
| |
| __set_current_state(TASK_RUNNING); |
| |
| if (!t->task) |
| return 0; |
| |
| restart = ¤t->restart_block; |
| if (restart->nanosleep.type != TT_NONE) { |
| ktime_t rem = hrtimer_expires_remaining(&t->timer); |
| struct timespec64 rmt; |
| |
| if (rem <= 0) |
| return 0; |
| rmt = ktime_to_timespec64(rem); |
| |
| return nanosleep_copyout(restart, &rmt); |
| } |
| return -ERESTART_RESTARTBLOCK; |
| } |
| |
| static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) |
| { |
| struct hrtimer_sleeper t; |
| int ret; |
| |
| hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid, |
| HRTIMER_MODE_ABS); |
| hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); |
| ret = do_nanosleep(&t, HRTIMER_MODE_ABS); |
| destroy_hrtimer_on_stack(&t.timer); |
| return ret; |
| } |
| |
| long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, |
| const clockid_t clockid) |
| { |
| struct restart_block *restart; |
| struct hrtimer_sleeper t; |
| int ret = 0; |
| u64 slack; |
| |
| slack = current->timer_slack_ns; |
| if (dl_task(current) || rt_task(current)) |
| slack = 0; |
| |
| hrtimer_init_sleeper_on_stack(&t, clockid, mode); |
| hrtimer_set_expires_range_ns(&t.timer, rqtp, slack); |
| ret = do_nanosleep(&t, mode); |
| if (ret != -ERESTART_RESTARTBLOCK) |
| goto out; |
| |
| /* Absolute timers do not update the rmtp value and restart: */ |
| if (mode == HRTIMER_MODE_ABS) { |
| ret = -ERESTARTNOHAND; |
| goto out; |
| } |
| |
| restart = ¤t->restart_block; |
| restart->fn = hrtimer_nanosleep_restart; |
| restart->nanosleep.clockid = t.timer.base->clockid; |
| restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); |
| out: |
| destroy_hrtimer_on_stack(&t.timer); |
| return ret; |
| } |
| |
| #ifdef CONFIG_64BIT |
| |
| SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, |
| struct __kernel_timespec __user *, rmtp) |
| { |
| struct timespec64 tu; |
| |
| if (get_timespec64(&tu, rqtp)) |
| return -EFAULT; |
| |
| if (!timespec64_valid(&tu)) |
| return -EINVAL; |
| |
| current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; |
| current->restart_block.nanosleep.rmtp = rmtp; |
| return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, |
| CLOCK_MONOTONIC); |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_COMPAT_32BIT_TIME |
| |
| SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, |
| struct old_timespec32 __user *, rmtp) |
| { |
| struct timespec64 tu; |
| |
| if (get_old_timespec32(&tu, rqtp)) |
| return -EFAULT; |
| |
| if (!timespec64_valid(&tu)) |
| return -EINVAL; |
| |
| current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; |
| current->restart_block.nanosleep.compat_rmtp = rmtp; |
| return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, |
| CLOCK_MONOTONIC); |
| } |
| #endif |
| |
| /* |
| * Functions related to boot-time initialization: |
| */ |
| int hrtimers_prepare_cpu(unsigned int cpu) |
| { |
| struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); |
| int i; |
| |
| for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
| struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; |
| |
| clock_b->cpu_base = cpu_base; |
| seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); |
| timerqueue_init_head(&clock_b->active); |
| } |
| |
| cpu_base->cpu = cpu; |
| cpu_base->active_bases = 0; |
| cpu_base->hres_active = 0; |
| cpu_base->hang_detected = 0; |
| cpu_base->next_timer = NULL; |
| cpu_base->softirq_next_timer = NULL; |
| cpu_base->expires_next = KTIME_MAX; |
| cpu_base->softirq_expires_next = KTIME_MAX; |
| hrtimer_cpu_base_init_expiry_lock(cpu_base); |
| return 0; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, |
| struct hrtimer_clock_base *new_base) |
| { |
| struct hrtimer *timer; |
| struct timerqueue_node *node; |
| |
| while ((node = timerqueue_getnext(&old_base->active))) { |
| timer = container_of(node, struct hrtimer, node); |
| BUG_ON(hrtimer_callback_running(timer)); |
| debug_deactivate(timer); |
| |
| /* |
| * Mark it as ENQUEUED not INACTIVE otherwise the |
| * timer could be seen as !active and just vanish away |
| * under us on another CPU |
| */ |
| __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); |
| timer->base = new_base; |
| /* |
| * Enqueue the timers on the new cpu. This does not |
| * reprogram the event device in case the timer |
| * expires before the earliest on this CPU, but we run |
| * hrtimer_interrupt after we migrated everything to |
| * sort out already expired timers and reprogram the |
| * event device. |
| */ |
| enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); |
| } |
| } |
| |
| int hrtimers_dead_cpu(unsigned int scpu) |
| { |
| struct hrtimer_cpu_base *old_base, *new_base; |
| int i; |
| |
| BUG_ON(cpu_online(scpu)); |
| tick_cancel_sched_timer(scpu); |
| |
| /* |
| * this BH disable ensures that raise_softirq_irqoff() does |
| * not wakeup ksoftirqd (and acquire the pi-lock) while |
| * holding the cpu_base lock |
| */ |
| local_bh_disable(); |
| local_irq_disable(); |
| old_base = &per_cpu(hrtimer_bases, scpu); |
| new_base = this_cpu_ptr(&hrtimer_bases); |
| /* |
| * The caller is globally serialized and nobody else |
| * takes two locks at once, deadlock is not possible. |
| */ |
| raw_spin_lock(&new_base->lock); |
| raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); |
| |
| for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
| migrate_hrtimer_list(&old_base->clock_base[i], |
| &new_base->clock_base[i]); |
| } |
| |
| /* |
| * The migration might have changed the first expiring softirq |
| * timer on this CPU. Update it. |
| */ |
| hrtimer_update_softirq_timer(new_base, false); |
| |
| raw_spin_unlock(&old_base->lock); |
| raw_spin_unlock(&new_base->lock); |
| |
| /* Check, if we got expired work to do */ |
| __hrtimer_peek_ahead_timers(); |
| local_irq_enable(); |
| local_bh_enable(); |
| return 0; |
| } |
| |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| void __init hrtimers_init(void) |
| { |
| hrtimers_prepare_cpu(smp_processor_id()); |
| open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); |
| } |
| |
| /** |
| * schedule_hrtimeout_range_clock - sleep until timeout |
| * @expires: timeout value (ktime_t) |
| * @delta: slack in expires timeout (ktime_t) |
| * @mode: timer mode |
| * @clock_id: timer clock to be used |
| */ |
| int __sched |
| schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, |
| const enum hrtimer_mode mode, clockid_t clock_id) |
| { |
| struct hrtimer_sleeper t; |
| |
| /* |
| * Optimize when a zero timeout value is given. It does not |
| * matter whether this is an absolute or a relative time. |
| */ |
| if (expires && *expires == 0) { |
| __set_current_state(TASK_RUNNING); |
| return 0; |
| } |
| |
| /* |
| * A NULL parameter means "infinite" |
| */ |
| if (!expires) { |
| schedule(); |
| return -EINTR; |
| } |
| |
| hrtimer_init_sleeper_on_stack(&t, clock_id, mode); |
| hrtimer_set_expires_range_ns(&t.timer, *expires, delta); |
| hrtimer_sleeper_start_expires(&t, mode); |
| |
| if (likely(t.task)) |
| schedule(); |
| |
| hrtimer_cancel(&t.timer); |
| destroy_hrtimer_on_stack(&t.timer); |
| |
| __set_current_state(TASK_RUNNING); |
| |
| return !t.task ? 0 : -EINTR; |
| } |
| |
| /** |
| * schedule_hrtimeout_range - sleep until timeout |
| * @expires: timeout value (ktime_t) |
| * @delta: slack in expires timeout (ktime_t) |
| * @mode: timer mode |
| * |
| * Make the current task sleep until the given expiry time has |
| * elapsed. The routine will return immediately unless |
| * the current task state has been set (see set_current_state()). |
| * |
| * The @delta argument gives the kernel the freedom to schedule the |
| * actual wakeup to a time that is both power and performance friendly. |
| * The kernel give the normal best effort behavior for "@expires+@delta", |
| * but may decide to fire the timer earlier, but no earlier than @expires. |
| * |
| * You can set the task state as follows - |
| * |
| * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to |
| * pass before the routine returns unless the current task is explicitly |
| * woken up, (e.g. by wake_up_process()). |
| * |
| * %TASK_INTERRUPTIBLE - the routine may return early if a signal is |
| * delivered to the current task or the current task is explicitly woken |
| * up. |
| * |
| * The current task state is guaranteed to be TASK_RUNNING when this |
| * routine returns. |
| * |
| * Returns 0 when the timer has expired. If the task was woken before the |
| * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or |
| * by an explicit wakeup, it returns -EINTR. |
| */ |
| int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, |
| const enum hrtimer_mode mode) |
| { |
| return schedule_hrtimeout_range_clock(expires, delta, mode, |
| CLOCK_MONOTONIC); |
| } |
| EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); |
| |
| /** |
| * schedule_hrtimeout - sleep until timeout |
| * @expires: timeout value (ktime_t) |
| * @mode: timer mode |
| * |
| * Make the current task sleep until the given expiry time has |
| * elapsed. The routine will return immediately unless |
| * the current task state has been set (see set_current_state()). |
| * |
| * You can set the task state as follows - |
| * |
| * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to |
| * pass before the routine returns unless the current task is explicitly |
| * woken up, (e.g. by wake_up_process()). |
| * |
| * %TASK_INTERRUPTIBLE - the routine may return early if a signal is |
| * delivered to the current task or the current task is explicitly woken |
| * up. |
| * |
| * The current task state is guaranteed to be TASK_RUNNING when this |
| * routine returns. |
| * |
| * Returns 0 when the timer has expired. If the task was woken before the |
| * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or |
| * by an explicit wakeup, it returns -EINTR. |
| */ |
| int __sched schedule_hrtimeout(ktime_t *expires, |
| const enum hrtimer_mode mode) |
| { |
| return schedule_hrtimeout_range(expires, 0, mode); |
| } |
| EXPORT_SYMBOL_GPL(schedule_hrtimeout); |