| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * This contains functions for filename crypto management |
| * |
| * Copyright (C) 2015, Google, Inc. |
| * Copyright (C) 2015, Motorola Mobility |
| * |
| * Written by Uday Savagaonkar, 2014. |
| * Modified by Jaegeuk Kim, 2015. |
| * |
| * This has not yet undergone a rigorous security audit. |
| */ |
| |
| #include <linux/namei.h> |
| #include <linux/scatterlist.h> |
| #include <crypto/hash.h> |
| #include <crypto/sha.h> |
| #include <crypto/skcipher.h> |
| #include "fscrypt_private.h" |
| |
| /* |
| * struct fscrypt_nokey_name - identifier for directory entry when key is absent |
| * |
| * When userspace lists an encrypted directory without access to the key, the |
| * filesystem must present a unique "no-key name" for each filename that allows |
| * it to find the directory entry again if requested. Naively, that would just |
| * mean using the ciphertext filenames. However, since the ciphertext filenames |
| * can contain illegal characters ('\0' and '/'), they must be encoded in some |
| * way. We use base64. But that can cause names to exceed NAME_MAX (255 |
| * bytes), so we also need to use a strong hash to abbreviate long names. |
| * |
| * The filesystem may also need another kind of hash, the "dirhash", to quickly |
| * find the directory entry. Since filesystems normally compute the dirhash |
| * over the on-disk filename (i.e. the ciphertext), it's not computable from |
| * no-key names that abbreviate the ciphertext using the strong hash to fit in |
| * NAME_MAX. It's also not computable if it's a keyed hash taken over the |
| * plaintext (but it may still be available in the on-disk directory entry); |
| * casefolded directories use this type of dirhash. At least in these cases, |
| * each no-key name must include the name's dirhash too. |
| * |
| * To meet all these requirements, we base64-encode the following |
| * variable-length structure. It contains the dirhash, or 0's if the filesystem |
| * didn't provide one; up to 149 bytes of the ciphertext name; and for |
| * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes. |
| * |
| * This ensures that each no-key name contains everything needed to find the |
| * directory entry again, contains only legal characters, doesn't exceed |
| * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only |
| * take the performance hit of SHA-256 on very long filenames (which are rare). |
| */ |
| struct fscrypt_nokey_name { |
| u32 dirhash[2]; |
| u8 bytes[149]; |
| u8 sha256[SHA256_DIGEST_SIZE]; |
| }; /* 189 bytes => 252 bytes base64-encoded, which is <= NAME_MAX (255) */ |
| |
| /* |
| * Decoded size of max-size nokey name, i.e. a name that was abbreviated using |
| * the strong hash and thus includes the 'sha256' field. This isn't simply |
| * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included. |
| */ |
| #define FSCRYPT_NOKEY_NAME_MAX offsetofend(struct fscrypt_nokey_name, sha256) |
| |
| static inline bool fscrypt_is_dot_dotdot(const struct qstr *str) |
| { |
| if (str->len == 1 && str->name[0] == '.') |
| return true; |
| |
| if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * fscrypt_fname_encrypt() - encrypt a filename |
| * @inode: inode of the parent directory (for regular filenames) |
| * or of the symlink (for symlink targets) |
| * @iname: the filename to encrypt |
| * @out: (output) the encrypted filename |
| * @olen: size of the encrypted filename. It must be at least @iname->len. |
| * Any extra space is filled with NUL padding before encryption. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname, |
| u8 *out, unsigned int olen) |
| { |
| struct skcipher_request *req = NULL; |
| DECLARE_CRYPTO_WAIT(wait); |
| const struct fscrypt_info *ci = inode->i_crypt_info; |
| struct crypto_skcipher *tfm = ci->ci_enc_key.tfm; |
| union fscrypt_iv iv; |
| struct scatterlist sg; |
| int res; |
| |
| /* |
| * Copy the filename to the output buffer for encrypting in-place and |
| * pad it with the needed number of NUL bytes. |
| */ |
| if (WARN_ON(olen < iname->len)) |
| return -ENOBUFS; |
| memcpy(out, iname->name, iname->len); |
| memset(out + iname->len, 0, olen - iname->len); |
| |
| /* Initialize the IV */ |
| fscrypt_generate_iv(&iv, 0, ci); |
| |
| /* Set up the encryption request */ |
| req = skcipher_request_alloc(tfm, GFP_NOFS); |
| if (!req) |
| return -ENOMEM; |
| skcipher_request_set_callback(req, |
| CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| crypto_req_done, &wait); |
| sg_init_one(&sg, out, olen); |
| skcipher_request_set_crypt(req, &sg, &sg, olen, &iv); |
| |
| /* Do the encryption */ |
| res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); |
| skcipher_request_free(req); |
| if (res < 0) { |
| fscrypt_err(inode, "Filename encryption failed: %d", res); |
| return res; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * fname_decrypt() - decrypt a filename |
| * @inode: inode of the parent directory (for regular filenames) |
| * or of the symlink (for symlink targets) |
| * @iname: the encrypted filename to decrypt |
| * @oname: (output) the decrypted filename. The caller must have allocated |
| * enough space for this, e.g. using fscrypt_fname_alloc_buffer(). |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int fname_decrypt(const struct inode *inode, |
| const struct fscrypt_str *iname, |
| struct fscrypt_str *oname) |
| { |
| struct skcipher_request *req = NULL; |
| DECLARE_CRYPTO_WAIT(wait); |
| struct scatterlist src_sg, dst_sg; |
| const struct fscrypt_info *ci = inode->i_crypt_info; |
| struct crypto_skcipher *tfm = ci->ci_enc_key.tfm; |
| union fscrypt_iv iv; |
| int res; |
| |
| /* Allocate request */ |
| req = skcipher_request_alloc(tfm, GFP_NOFS); |
| if (!req) |
| return -ENOMEM; |
| skcipher_request_set_callback(req, |
| CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| crypto_req_done, &wait); |
| |
| /* Initialize IV */ |
| fscrypt_generate_iv(&iv, 0, ci); |
| |
| /* Create decryption request */ |
| sg_init_one(&src_sg, iname->name, iname->len); |
| sg_init_one(&dst_sg, oname->name, oname->len); |
| skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv); |
| res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait); |
| skcipher_request_free(req); |
| if (res < 0) { |
| fscrypt_err(inode, "Filename decryption failed: %d", res); |
| return res; |
| } |
| |
| oname->len = strnlen(oname->name, iname->len); |
| return 0; |
| } |
| |
| static const char lookup_table[65] = |
| "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,"; |
| |
| #define BASE64_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3) |
| |
| /** |
| * base64_encode() - base64-encode some bytes |
| * @src: the bytes to encode |
| * @len: number of bytes to encode |
| * @dst: (output) the base64-encoded string. Not NUL-terminated. |
| * |
| * Encodes the input string using characters from the set [A-Za-z0-9+,]. |
| * The encoded string is roughly 4/3 times the size of the input string. |
| * |
| * Return: length of the encoded string |
| */ |
| static int base64_encode(const u8 *src, int len, char *dst) |
| { |
| int i, bits = 0, ac = 0; |
| char *cp = dst; |
| |
| for (i = 0; i < len; i++) { |
| ac += src[i] << bits; |
| bits += 8; |
| do { |
| *cp++ = lookup_table[ac & 0x3f]; |
| ac >>= 6; |
| bits -= 6; |
| } while (bits >= 6); |
| } |
| if (bits) |
| *cp++ = lookup_table[ac & 0x3f]; |
| return cp - dst; |
| } |
| |
| static int base64_decode(const char *src, int len, u8 *dst) |
| { |
| int i, bits = 0, ac = 0; |
| const char *p; |
| u8 *cp = dst; |
| |
| for (i = 0; i < len; i++) { |
| p = strchr(lookup_table, src[i]); |
| if (p == NULL || src[i] == 0) |
| return -2; |
| ac += (p - lookup_table) << bits; |
| bits += 6; |
| if (bits >= 8) { |
| *cp++ = ac & 0xff; |
| ac >>= 8; |
| bits -= 8; |
| } |
| } |
| if (ac) |
| return -1; |
| return cp - dst; |
| } |
| |
| bool fscrypt_fname_encrypted_size(const union fscrypt_policy *policy, |
| u32 orig_len, u32 max_len, |
| u32 *encrypted_len_ret) |
| { |
| int padding = 4 << (fscrypt_policy_flags(policy) & |
| FSCRYPT_POLICY_FLAGS_PAD_MASK); |
| u32 encrypted_len; |
| |
| if (orig_len > max_len) |
| return false; |
| encrypted_len = max(orig_len, (u32)FS_CRYPTO_BLOCK_SIZE); |
| encrypted_len = round_up(encrypted_len, padding); |
| *encrypted_len_ret = min(encrypted_len, max_len); |
| return true; |
| } |
| |
| /** |
| * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames |
| * @max_encrypted_len: maximum length of encrypted filenames the buffer will be |
| * used to present |
| * @crypto_str: (output) buffer to allocate |
| * |
| * Allocate a buffer that is large enough to hold any decrypted or encoded |
| * filename (null-terminated), for the given maximum encrypted filename length. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, |
| struct fscrypt_str *crypto_str) |
| { |
| const u32 max_encoded_len = BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX); |
| u32 max_presented_len; |
| |
| max_presented_len = max(max_encoded_len, max_encrypted_len); |
| |
| crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS); |
| if (!crypto_str->name) |
| return -ENOMEM; |
| crypto_str->len = max_presented_len; |
| return 0; |
| } |
| EXPORT_SYMBOL(fscrypt_fname_alloc_buffer); |
| |
| /** |
| * fscrypt_fname_free_buffer() - free a buffer for presented filenames |
| * @crypto_str: the buffer to free |
| * |
| * Free a buffer that was allocated by fscrypt_fname_alloc_buffer(). |
| */ |
| void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) |
| { |
| if (!crypto_str) |
| return; |
| kfree(crypto_str->name); |
| crypto_str->name = NULL; |
| } |
| EXPORT_SYMBOL(fscrypt_fname_free_buffer); |
| |
| /** |
| * fscrypt_fname_disk_to_usr() - convert an encrypted filename to |
| * user-presentable form |
| * @inode: inode of the parent directory (for regular filenames) |
| * or of the symlink (for symlink targets) |
| * @hash: first part of the name's dirhash, if applicable. This only needs to |
| * be provided if the filename is located in an indexed directory whose |
| * encryption key may be unavailable. Not needed for symlink targets. |
| * @minor_hash: second part of the name's dirhash, if applicable |
| * @iname: encrypted filename to convert. May also be "." or "..", which |
| * aren't actually encrypted. |
| * @oname: output buffer for the user-presentable filename. The caller must |
| * have allocated enough space for this, e.g. using |
| * fscrypt_fname_alloc_buffer(). |
| * |
| * If the key is available, we'll decrypt the disk name. Otherwise, we'll |
| * encode it for presentation in fscrypt_nokey_name format. |
| * See struct fscrypt_nokey_name for details. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| int fscrypt_fname_disk_to_usr(const struct inode *inode, |
| u32 hash, u32 minor_hash, |
| const struct fscrypt_str *iname, |
| struct fscrypt_str *oname) |
| { |
| const struct qstr qname = FSTR_TO_QSTR(iname); |
| struct fscrypt_nokey_name nokey_name; |
| u32 size; /* size of the unencoded no-key name */ |
| |
| if (fscrypt_is_dot_dotdot(&qname)) { |
| oname->name[0] = '.'; |
| oname->name[iname->len - 1] = '.'; |
| oname->len = iname->len; |
| return 0; |
| } |
| |
| if (iname->len < FS_CRYPTO_BLOCK_SIZE) |
| return -EUCLEAN; |
| |
| if (fscrypt_has_encryption_key(inode)) |
| return fname_decrypt(inode, iname, oname); |
| |
| /* |
| * Sanity check that struct fscrypt_nokey_name doesn't have padding |
| * between fields and that its encoded size never exceeds NAME_MAX. |
| */ |
| BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) != |
| offsetof(struct fscrypt_nokey_name, bytes)); |
| BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) != |
| offsetof(struct fscrypt_nokey_name, sha256)); |
| BUILD_BUG_ON(BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX) > NAME_MAX); |
| |
| nokey_name.dirhash[0] = hash; |
| nokey_name.dirhash[1] = minor_hash; |
| |
| if (iname->len <= sizeof(nokey_name.bytes)) { |
| memcpy(nokey_name.bytes, iname->name, iname->len); |
| size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]); |
| } else { |
| memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes)); |
| /* Compute strong hash of remaining part of name. */ |
| sha256(&iname->name[sizeof(nokey_name.bytes)], |
| iname->len - sizeof(nokey_name.bytes), |
| nokey_name.sha256); |
| size = FSCRYPT_NOKEY_NAME_MAX; |
| } |
| oname->len = base64_encode((const u8 *)&nokey_name, size, oname->name); |
| return 0; |
| } |
| EXPORT_SYMBOL(fscrypt_fname_disk_to_usr); |
| |
| /** |
| * fscrypt_setup_filename() - prepare to search a possibly encrypted directory |
| * @dir: the directory that will be searched |
| * @iname: the user-provided filename being searched for |
| * @lookup: 1 if we're allowed to proceed without the key because it's |
| * ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot |
| * proceed without the key because we're going to create the dir_entry. |
| * @fname: the filename information to be filled in |
| * |
| * Given a user-provided filename @iname, this function sets @fname->disk_name |
| * to the name that would be stored in the on-disk directory entry, if possible. |
| * If the directory is unencrypted this is simply @iname. Else, if we have the |
| * directory's encryption key, then @iname is the plaintext, so we encrypt it to |
| * get the disk_name. |
| * |
| * Else, for keyless @lookup operations, @iname should be a no-key name, so we |
| * decode it to get the struct fscrypt_nokey_name. Non-@lookup operations will |
| * be impossible in this case, so we fail them with ENOKEY. |
| * |
| * If successful, fscrypt_free_filename() must be called later to clean up. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname, |
| int lookup, struct fscrypt_name *fname) |
| { |
| struct fscrypt_nokey_name *nokey_name; |
| int ret; |
| |
| memset(fname, 0, sizeof(struct fscrypt_name)); |
| fname->usr_fname = iname; |
| |
| if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) { |
| fname->disk_name.name = (unsigned char *)iname->name; |
| fname->disk_name.len = iname->len; |
| return 0; |
| } |
| ret = fscrypt_get_encryption_info(dir); |
| if (ret) |
| return ret; |
| |
| if (fscrypt_has_encryption_key(dir)) { |
| if (!fscrypt_fname_encrypted_size(&dir->i_crypt_info->ci_policy, |
| iname->len, |
| dir->i_sb->s_cop->max_namelen, |
| &fname->crypto_buf.len)) |
| return -ENAMETOOLONG; |
| fname->crypto_buf.name = kmalloc(fname->crypto_buf.len, |
| GFP_NOFS); |
| if (!fname->crypto_buf.name) |
| return -ENOMEM; |
| |
| ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name, |
| fname->crypto_buf.len); |
| if (ret) |
| goto errout; |
| fname->disk_name.name = fname->crypto_buf.name; |
| fname->disk_name.len = fname->crypto_buf.len; |
| return 0; |
| } |
| if (!lookup) |
| return -ENOKEY; |
| fname->is_nokey_name = true; |
| |
| /* |
| * We don't have the key and we are doing a lookup; decode the |
| * user-supplied name |
| */ |
| |
| if (iname->len > BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX)) |
| return -ENOENT; |
| |
| fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL); |
| if (fname->crypto_buf.name == NULL) |
| return -ENOMEM; |
| |
| ret = base64_decode(iname->name, iname->len, fname->crypto_buf.name); |
| if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) || |
| (ret > offsetof(struct fscrypt_nokey_name, sha256) && |
| ret != FSCRYPT_NOKEY_NAME_MAX)) { |
| ret = -ENOENT; |
| goto errout; |
| } |
| fname->crypto_buf.len = ret; |
| |
| nokey_name = (void *)fname->crypto_buf.name; |
| fname->hash = nokey_name->dirhash[0]; |
| fname->minor_hash = nokey_name->dirhash[1]; |
| if (ret != FSCRYPT_NOKEY_NAME_MAX) { |
| /* The full ciphertext filename is available. */ |
| fname->disk_name.name = nokey_name->bytes; |
| fname->disk_name.len = |
| ret - offsetof(struct fscrypt_nokey_name, bytes); |
| } |
| return 0; |
| |
| errout: |
| kfree(fname->crypto_buf.name); |
| return ret; |
| } |
| EXPORT_SYMBOL(fscrypt_setup_filename); |
| |
| /** |
| * fscrypt_match_name() - test whether the given name matches a directory entry |
| * @fname: the name being searched for |
| * @de_name: the name from the directory entry |
| * @de_name_len: the length of @de_name in bytes |
| * |
| * Normally @fname->disk_name will be set, and in that case we simply compare |
| * that to the name stored in the directory entry. The only exception is that |
| * if we don't have the key for an encrypted directory and the name we're |
| * looking for is very long, then we won't have the full disk_name and instead |
| * we'll need to match against a fscrypt_nokey_name that includes a strong hash. |
| * |
| * Return: %true if the name matches, otherwise %false. |
| */ |
| bool fscrypt_match_name(const struct fscrypt_name *fname, |
| const u8 *de_name, u32 de_name_len) |
| { |
| const struct fscrypt_nokey_name *nokey_name = |
| (const void *)fname->crypto_buf.name; |
| u8 digest[SHA256_DIGEST_SIZE]; |
| |
| if (likely(fname->disk_name.name)) { |
| if (de_name_len != fname->disk_name.len) |
| return false; |
| return !memcmp(de_name, fname->disk_name.name, de_name_len); |
| } |
| if (de_name_len <= sizeof(nokey_name->bytes)) |
| return false; |
| if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes))) |
| return false; |
| sha256(&de_name[sizeof(nokey_name->bytes)], |
| de_name_len - sizeof(nokey_name->bytes), digest); |
| return !memcmp(digest, nokey_name->sha256, sizeof(digest)); |
| } |
| EXPORT_SYMBOL_GPL(fscrypt_match_name); |
| |
| /** |
| * fscrypt_fname_siphash() - calculate the SipHash of a filename |
| * @dir: the parent directory |
| * @name: the filename to calculate the SipHash of |
| * |
| * Given a plaintext filename @name and a directory @dir which uses SipHash as |
| * its dirhash method and has had its fscrypt key set up, this function |
| * calculates the SipHash of that name using the directory's secret dirhash key. |
| * |
| * Return: the SipHash of @name using the hash key of @dir |
| */ |
| u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name) |
| { |
| const struct fscrypt_info *ci = dir->i_crypt_info; |
| |
| WARN_ON(!ci->ci_dirhash_key_initialized); |
| |
| return siphash(name->name, name->len, &ci->ci_dirhash_key); |
| } |
| EXPORT_SYMBOL_GPL(fscrypt_fname_siphash); |
| |
| /* |
| * Validate dentries in encrypted directories to make sure we aren't potentially |
| * caching stale dentries after a key has been added. |
| */ |
| int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) |
| { |
| struct dentry *dir; |
| int err; |
| int valid; |
| |
| /* |
| * Plaintext names are always valid, since fscrypt doesn't support |
| * reverting to no-key names without evicting the directory's inode |
| * -- which implies eviction of the dentries in the directory. |
| */ |
| if (!(dentry->d_flags & DCACHE_NOKEY_NAME)) |
| return 1; |
| |
| /* |
| * No-key name; valid if the directory's key is still unavailable. |
| * |
| * Although fscrypt forbids rename() on no-key names, we still must use |
| * dget_parent() here rather than use ->d_parent directly. That's |
| * because a corrupted fs image may contain directory hard links, which |
| * the VFS handles by moving the directory's dentry tree in the dcache |
| * each time ->lookup() finds the directory and it already has a dentry |
| * elsewhere. Thus ->d_parent can be changing, and we must safely grab |
| * a reference to some ->d_parent to prevent it from being freed. |
| */ |
| |
| if (flags & LOOKUP_RCU) |
| return -ECHILD; |
| |
| dir = dget_parent(dentry); |
| err = fscrypt_get_encryption_info(d_inode(dir)); |
| valid = !fscrypt_has_encryption_key(d_inode(dir)); |
| dput(dir); |
| |
| if (err < 0) |
| return err; |
| |
| return valid; |
| } |
| EXPORT_SYMBOL_GPL(fscrypt_d_revalidate); |
| |
| const struct dentry_operations fscrypt_d_ops = { |
| .d_revalidate = fscrypt_d_revalidate, |
| }; |