blob: d33af95321fbd88384421a8570f9b59c6f4b2696 [file] [log] [blame]
/*
* fs/kernfs/dir.c - kernfs directory implementation
*
* Copyright (c) 2001-3 Patrick Mochel
* Copyright (c) 2007 SUSE Linux Products GmbH
* Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
*
* This file is released under the GPLv2.
*/
#include <linux/fs.h>
#include <linux/namei.h>
#include <linux/idr.h>
#include <linux/slab.h>
#include <linux/security.h>
#include <linux/hash.h>
#include "kernfs-internal.h"
DEFINE_MUTEX(kernfs_mutex);
#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
/**
* kernfs_name_hash
* @name: Null terminated string to hash
* @ns: Namespace tag to hash
*
* Returns 31 bit hash of ns + name (so it fits in an off_t )
*/
static unsigned int kernfs_name_hash(const char *name, const void *ns)
{
unsigned long hash = init_name_hash();
unsigned int len = strlen(name);
while (len--)
hash = partial_name_hash(*name++, hash);
hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
hash &= 0x7fffffffU;
/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
if (hash < 1)
hash += 2;
if (hash >= INT_MAX)
hash = INT_MAX - 1;
return hash;
}
static int kernfs_name_compare(unsigned int hash, const char *name,
const void *ns, const struct kernfs_node *kn)
{
if (hash != kn->hash)
return hash - kn->hash;
if (ns != kn->ns)
return ns - kn->ns;
return strcmp(name, kn->name);
}
static int kernfs_sd_compare(const struct kernfs_node *left,
const struct kernfs_node *right)
{
return kernfs_name_compare(left->hash, left->name, left->ns, right);
}
/**
* kernfs_link_sibling - link kernfs_node into sibling rbtree
* @kn: kernfs_node of interest
*
* Link @kn into its sibling rbtree which starts from
* @kn->parent->dir.children.
*
* Locking:
* mutex_lock(kernfs_mutex)
*
* RETURNS:
* 0 on susccess -EEXIST on failure.
*/
static int kernfs_link_sibling(struct kernfs_node *kn)
{
struct rb_node **node = &kn->parent->dir.children.rb_node;
struct rb_node *parent = NULL;
if (kernfs_type(kn) == KERNFS_DIR)
kn->parent->dir.subdirs++;
while (*node) {
struct kernfs_node *pos;
int result;
pos = rb_to_kn(*node);
parent = *node;
result = kernfs_sd_compare(kn, pos);
if (result < 0)
node = &pos->rb.rb_left;
else if (result > 0)
node = &pos->rb.rb_right;
else
return -EEXIST;
}
/* add new node and rebalance the tree */
rb_link_node(&kn->rb, parent, node);
rb_insert_color(&kn->rb, &kn->parent->dir.children);
return 0;
}
/**
* kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
* @kn: kernfs_node of interest
*
* Unlink @kn from its sibling rbtree which starts from
* kn->parent->dir.children.
*
* Locking:
* mutex_lock(kernfs_mutex)
*/
static void kernfs_unlink_sibling(struct kernfs_node *kn)
{
if (kernfs_type(kn) == KERNFS_DIR)
kn->parent->dir.subdirs--;
rb_erase(&kn->rb, &kn->parent->dir.children);
}
/**
* kernfs_get_active - get an active reference to kernfs_node
* @kn: kernfs_node to get an active reference to
*
* Get an active reference of @kn. This function is noop if @kn
* is NULL.
*
* RETURNS:
* Pointer to @kn on success, NULL on failure.
*/
struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
{
if (unlikely(!kn))
return NULL;
if (!atomic_inc_unless_negative(&kn->active))
return NULL;
if (kn->flags & KERNFS_LOCKDEP)
rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
return kn;
}
/**
* kernfs_put_active - put an active reference to kernfs_node
* @kn: kernfs_node to put an active reference to
*
* Put an active reference to @kn. This function is noop if @kn
* is NULL.
*/
void kernfs_put_active(struct kernfs_node *kn)
{
int v;
if (unlikely(!kn))
return;
if (kn->flags & KERNFS_LOCKDEP)
rwsem_release(&kn->dep_map, 1, _RET_IP_);
v = atomic_dec_return(&kn->active);
if (likely(v != KN_DEACTIVATED_BIAS))
return;
/*
* atomic_dec_return() is a mb(), we'll always see the updated
* kn->u.completion.
*/
complete(kn->u.completion);
}
/**
* kernfs_deactivate - deactivate kernfs_node
* @kn: kernfs_node to deactivate
*
* Deny new active references and drain existing ones.
*/
static void kernfs_deactivate(struct kernfs_node *kn)
{
DECLARE_COMPLETION_ONSTACK(wait);
int v;
BUG_ON(!(kn->flags & KERNFS_REMOVED));
if (!(kernfs_type(kn) & KERNFS_ACTIVE_REF))
return;
kn->u.completion = (void *)&wait;
rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
/* atomic_add_return() is a mb(), put_active() will always see
* the updated kn->u.completion.
*/
v = atomic_add_return(KN_DEACTIVATED_BIAS, &kn->active);
if (v != KN_DEACTIVATED_BIAS) {
lock_contended(&kn->dep_map, _RET_IP_);
wait_for_completion(&wait);
}
lock_acquired(&kn->dep_map, _RET_IP_);
rwsem_release(&kn->dep_map, 1, _RET_IP_);
}
/**
* kernfs_get - get a reference count on a kernfs_node
* @kn: the target kernfs_node
*/
void kernfs_get(struct kernfs_node *kn)
{
if (kn) {
WARN_ON(!atomic_read(&kn->count));
atomic_inc(&kn->count);
}
}
EXPORT_SYMBOL_GPL(kernfs_get);
/**
* kernfs_put - put a reference count on a kernfs_node
* @kn: the target kernfs_node
*
* Put a reference count of @kn and destroy it if it reached zero.
*/
void kernfs_put(struct kernfs_node *kn)
{
struct kernfs_node *parent;
struct kernfs_root *root;
if (!kn || !atomic_dec_and_test(&kn->count))
return;
root = kernfs_root(kn);
repeat:
/* Moving/renaming is always done while holding reference.
* kn->parent won't change beneath us.
*/
parent = kn->parent;
WARN(!(kn->flags & KERNFS_REMOVED), "kernfs: free using entry: %s/%s\n",
parent ? parent->name : "", kn->name);
if (kernfs_type(kn) == KERNFS_LINK)
kernfs_put(kn->symlink.target_kn);
if (!(kn->flags & KERNFS_STATIC_NAME))
kfree(kn->name);
if (kn->iattr) {
if (kn->iattr->ia_secdata)
security_release_secctx(kn->iattr->ia_secdata,
kn->iattr->ia_secdata_len);
simple_xattrs_free(&kn->iattr->xattrs);
}
kfree(kn->iattr);
ida_simple_remove(&root->ino_ida, kn->ino);
kmem_cache_free(kernfs_node_cache, kn);
kn = parent;
if (kn) {
if (atomic_dec_and_test(&kn->count))
goto repeat;
} else {
/* just released the root kn, free @root too */
ida_destroy(&root->ino_ida);
kfree(root);
}
}
EXPORT_SYMBOL_GPL(kernfs_put);
static int kernfs_dop_delete(const struct dentry *dentry)
{
struct kernfs_node *kn = dentry->d_fsdata;
return !(kn && !(kn->flags & KERNFS_REMOVED));
}
static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
{
struct kernfs_node *kn;
if (flags & LOOKUP_RCU)
return -ECHILD;
kn = dentry->d_fsdata;
mutex_lock(&kernfs_mutex);
/* The kernfs node has been deleted */
if (kn->flags & KERNFS_REMOVED)
goto out_bad;
/* The kernfs node has been moved? */
if (dentry->d_parent->d_fsdata != kn->parent)
goto out_bad;
/* The kernfs node has been renamed */
if (strcmp(dentry->d_name.name, kn->name) != 0)
goto out_bad;
/* The kernfs node has been moved to a different namespace */
if (kn->parent && kernfs_ns_enabled(kn->parent) &&
kernfs_info(dentry->d_sb)->ns != kn->ns)
goto out_bad;
mutex_unlock(&kernfs_mutex);
out_valid:
return 1;
out_bad:
/*
* Remove the dentry from the dcache hashes.
* If this is a deleted dentry we use d_drop instead of d_delete
* so kernfs doesn't need to cope with negative dentries.
*
* If this is a dentry that has simply been renamed we
* use d_drop to remove it from the dcache lookup on its
* old parent. If this dentry persists later when a lookup
* is performed at its new name the dentry will be readded
* to the dcache hashes.
*/
mutex_unlock(&kernfs_mutex);
/* If we have submounts we must allow the vfs caches
* to lie about the state of the filesystem to prevent
* leaks and other nasty things.
*/
if (check_submounts_and_drop(dentry) != 0)
goto out_valid;
return 0;
}
static void kernfs_dop_release(struct dentry *dentry)
{
kernfs_put(dentry->d_fsdata);
}
const struct dentry_operations kernfs_dops = {
.d_revalidate = kernfs_dop_revalidate,
.d_delete = kernfs_dop_delete,
.d_release = kernfs_dop_release,
};
struct kernfs_node *kernfs_new_node(struct kernfs_root *root, const char *name,
umode_t mode, unsigned flags)
{
char *dup_name = NULL;
struct kernfs_node *kn;
int ret;
if (!(flags & KERNFS_STATIC_NAME)) {
name = dup_name = kstrdup(name, GFP_KERNEL);
if (!name)
return NULL;
}
kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
if (!kn)
goto err_out1;
ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
if (ret < 0)
goto err_out2;
kn->ino = ret;
atomic_set(&kn->count, 1);
atomic_set(&kn->active, 0);
kn->name = name;
kn->mode = mode;
kn->flags = flags | KERNFS_REMOVED;
return kn;
err_out2:
kmem_cache_free(kernfs_node_cache, kn);
err_out1:
kfree(dup_name);
return NULL;
}
/**
* kernfs_addrm_start - prepare for kernfs_node add/remove
* @acxt: pointer to kernfs_addrm_cxt to be used
*
* This function is called when the caller is about to add or remove
* kernfs_node. This function acquires kernfs_mutex. @acxt is used
* to keep and pass context to other addrm functions.
*
* LOCKING:
* Kernel thread context (may sleep). kernfs_mutex is locked on
* return.
*/
void kernfs_addrm_start(struct kernfs_addrm_cxt *acxt)
__acquires(kernfs_mutex)
{
memset(acxt, 0, sizeof(*acxt));
mutex_lock(&kernfs_mutex);
}
/**
* kernfs_add_one - add kernfs_node to parent without warning
* @acxt: addrm context to use
* @kn: kernfs_node to be added
* @parent: the parent kernfs_node to add @kn to
*
* Get @parent and set @kn->parent to it and increment nlink of the
* parent inode if @kn is a directory and link into the children list
* of the parent.
*
* This function should be called between calls to
* kernfs_addrm_start() and kernfs_addrm_finish() and should be passed
* the same @acxt as passed to kernfs_addrm_start().
*
* LOCKING:
* Determined by kernfs_addrm_start().
*
* RETURNS:
* 0 on success, -EEXIST if entry with the given name already
* exists.
*/
int kernfs_add_one(struct kernfs_addrm_cxt *acxt, struct kernfs_node *kn,
struct kernfs_node *parent)
{
bool has_ns = kernfs_ns_enabled(parent);
struct kernfs_iattrs *ps_iattr;
int ret;
if (has_ns != (bool)kn->ns) {
WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
has_ns ? "required" : "invalid", parent->name, kn->name);
return -EINVAL;
}
if (kernfs_type(parent) != KERNFS_DIR)
return -EINVAL;
if (parent->flags & KERNFS_REMOVED)
return -ENOENT;
kn->hash = kernfs_name_hash(kn->name, kn->ns);
kn->parent = parent;
kernfs_get(parent);
ret = kernfs_link_sibling(kn);
if (ret)
return ret;
/* Update timestamps on the parent */
ps_iattr = parent->iattr;
if (ps_iattr) {
struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
}
/* Mark the entry added into directory tree */
kn->flags &= ~KERNFS_REMOVED;
return 0;
}
/**
* kernfs_remove_one - remove kernfs_node from parent
* @acxt: addrm context to use
* @kn: kernfs_node to be removed
*
* Mark @kn removed and drop nlink of parent inode if @kn is a
* directory. @kn is unlinked from the children list.
*
* This function should be called between calls to
* kernfs_addrm_start() and kernfs_addrm_finish() and should be
* passed the same @acxt as passed to kernfs_addrm_start().
*
* LOCKING:
* Determined by kernfs_addrm_start().
*/
static void kernfs_remove_one(struct kernfs_addrm_cxt *acxt,
struct kernfs_node *kn)
{
struct kernfs_iattrs *ps_iattr;
/*
* Removal can be called multiple times on the same node. Only the
* first invocation is effective and puts the base ref.
*/
if (kn->flags & KERNFS_REMOVED)
return;
if (kn->parent) {
kernfs_unlink_sibling(kn);
/* Update timestamps on the parent */
ps_iattr = kn->parent->iattr;
if (ps_iattr) {
ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
}
}
kn->flags |= KERNFS_REMOVED;
kn->u.removed_list = acxt->removed;
acxt->removed = kn;
}
/**
* kernfs_addrm_finish - finish up kernfs_node add/remove
* @acxt: addrm context to finish up
*
* Finish up kernfs_node add/remove. Resources acquired by
* kernfs_addrm_start() are released and removed kernfs_nodes are
* cleaned up.
*
* LOCKING:
* kernfs_mutex is released.
*/
void kernfs_addrm_finish(struct kernfs_addrm_cxt *acxt)
__releases(kernfs_mutex)
{
/* release resources acquired by kernfs_addrm_start() */
mutex_unlock(&kernfs_mutex);
/* kill removed kernfs_nodes */
while (acxt->removed) {
struct kernfs_node *kn = acxt->removed;
acxt->removed = kn->u.removed_list;
kernfs_deactivate(kn);
kernfs_unmap_bin_file(kn);
kernfs_put(kn);
}
}
/**
* kernfs_find_ns - find kernfs_node with the given name
* @parent: kernfs_node to search under
* @name: name to look for
* @ns: the namespace tag to use
*
* Look for kernfs_node with name @name under @parent. Returns pointer to
* the found kernfs_node on success, %NULL on failure.
*/
static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
const unsigned char *name,
const void *ns)
{
struct rb_node *node = parent->dir.children.rb_node;
bool has_ns = kernfs_ns_enabled(parent);
unsigned int hash;
lockdep_assert_held(&kernfs_mutex);
if (has_ns != (bool)ns) {
WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
has_ns ? "required" : "invalid", parent->name, name);
return NULL;
}
hash = kernfs_name_hash(name, ns);
while (node) {
struct kernfs_node *kn;
int result;
kn = rb_to_kn(node);
result = kernfs_name_compare(hash, name, ns, kn);
if (result < 0)
node = node->rb_left;
else if (result > 0)
node = node->rb_right;
else
return kn;
}
return NULL;
}
/**
* kernfs_find_and_get_ns - find and get kernfs_node with the given name
* @parent: kernfs_node to search under
* @name: name to look for
* @ns: the namespace tag to use
*
* Look for kernfs_node with name @name under @parent and get a reference
* if found. This function may sleep and returns pointer to the found
* kernfs_node on success, %NULL on failure.
*/
struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
const char *name, const void *ns)
{
struct kernfs_node *kn;
mutex_lock(&kernfs_mutex);
kn = kernfs_find_ns(parent, name, ns);
kernfs_get(kn);
mutex_unlock(&kernfs_mutex);
return kn;
}
EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
/**
* kernfs_create_root - create a new kernfs hierarchy
* @priv: opaque data associated with the new directory
*
* Returns the root of the new hierarchy on success, ERR_PTR() value on
* failure.
*/
struct kernfs_root *kernfs_create_root(void *priv)
{
struct kernfs_root *root;
struct kernfs_node *kn;
root = kzalloc(sizeof(*root), GFP_KERNEL);
if (!root)
return ERR_PTR(-ENOMEM);
ida_init(&root->ino_ida);
kn = kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, KERNFS_DIR);
if (!kn) {
ida_destroy(&root->ino_ida);
kfree(root);
return ERR_PTR(-ENOMEM);
}
kn->flags &= ~KERNFS_REMOVED;
kn->priv = priv;
kn->dir.root = root;
root->kn = kn;
return root;
}
/**
* kernfs_destroy_root - destroy a kernfs hierarchy
* @root: root of the hierarchy to destroy
*
* Destroy the hierarchy anchored at @root by removing all existing
* directories and destroying @root.
*/
void kernfs_destroy_root(struct kernfs_root *root)
{
kernfs_remove(root->kn); /* will also free @root */
}
/**
* kernfs_create_dir_ns - create a directory
* @parent: parent in which to create a new directory
* @name: name of the new directory
* @mode: mode of the new directory
* @priv: opaque data associated with the new directory
* @ns: optional namespace tag of the directory
*
* Returns the created node on success, ERR_PTR() value on failure.
*/
struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
const char *name, umode_t mode,
void *priv, const void *ns)
{
struct kernfs_addrm_cxt acxt;
struct kernfs_node *kn;
int rc;
/* allocate */
kn = kernfs_new_node(kernfs_root(parent), name, mode | S_IFDIR,
KERNFS_DIR);
if (!kn)
return ERR_PTR(-ENOMEM);
kn->dir.root = parent->dir.root;
kn->ns = ns;
kn->priv = priv;
/* link in */
kernfs_addrm_start(&acxt);
rc = kernfs_add_one(&acxt, kn, parent);
kernfs_addrm_finish(&acxt);
if (!rc)
return kn;
kernfs_put(kn);
return ERR_PTR(rc);
}
static struct dentry *kernfs_iop_lookup(struct inode *dir,
struct dentry *dentry,
unsigned int flags)
{
struct dentry *ret = NULL;
struct kernfs_node *parent = dentry->d_parent->d_fsdata;
struct kernfs_node *kn;
struct inode *inode;
const void *ns = NULL;
mutex_lock(&kernfs_mutex);
if (kernfs_ns_enabled(parent))
ns = kernfs_info(dir->i_sb)->ns;
kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
/* no such entry */
if (!kn) {
ret = ERR_PTR(-ENOENT);
goto out_unlock;
}
kernfs_get(kn);
dentry->d_fsdata = kn;
/* attach dentry and inode */
inode = kernfs_get_inode(dir->i_sb, kn);
if (!inode) {
ret = ERR_PTR(-ENOMEM);
goto out_unlock;
}
/* instantiate and hash dentry */
ret = d_materialise_unique(dentry, inode);
out_unlock:
mutex_unlock(&kernfs_mutex);
return ret;
}
const struct inode_operations kernfs_dir_iops = {
.lookup = kernfs_iop_lookup,
.permission = kernfs_iop_permission,
.setattr = kernfs_iop_setattr,
.getattr = kernfs_iop_getattr,
.setxattr = kernfs_iop_setxattr,
.removexattr = kernfs_iop_removexattr,
.getxattr = kernfs_iop_getxattr,
.listxattr = kernfs_iop_listxattr,
};
static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
{
struct kernfs_node *last;
while (true) {
struct rb_node *rbn;
last = pos;
if (kernfs_type(pos) != KERNFS_DIR)
break;
rbn = rb_first(&pos->dir.children);
if (!rbn)
break;
pos = rb_to_kn(rbn);
}
return last;
}
/**
* kernfs_next_descendant_post - find the next descendant for post-order walk
* @pos: the current position (%NULL to initiate traversal)
* @root: kernfs_node whose descendants to walk
*
* Find the next descendant to visit for post-order traversal of @root's
* descendants. @root is included in the iteration and the last node to be
* visited.
*/
static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
struct kernfs_node *root)
{
struct rb_node *rbn;
lockdep_assert_held(&kernfs_mutex);
/* if first iteration, visit leftmost descendant which may be root */
if (!pos)
return kernfs_leftmost_descendant(root);
/* if we visited @root, we're done */
if (pos == root)
return NULL;
/* if there's an unvisited sibling, visit its leftmost descendant */
rbn = rb_next(&pos->rb);
if (rbn)
return kernfs_leftmost_descendant(rb_to_kn(rbn));
/* no sibling left, visit parent */
return pos->parent;
}
static void __kernfs_remove(struct kernfs_addrm_cxt *acxt,
struct kernfs_node *kn)
{
struct kernfs_node *pos, *next;
if (!kn)
return;
pr_debug("kernfs %s: removing\n", kn->name);
next = NULL;
do {
pos = next;
next = kernfs_next_descendant_post(pos, kn);
if (pos)
kernfs_remove_one(acxt, pos);
} while (next);
}
/**
* kernfs_remove - remove a kernfs_node recursively
* @kn: the kernfs_node to remove
*
* Remove @kn along with all its subdirectories and files.
*/
void kernfs_remove(struct kernfs_node *kn)
{
struct kernfs_addrm_cxt acxt;
kernfs_addrm_start(&acxt);
__kernfs_remove(&acxt, kn);
kernfs_addrm_finish(&acxt);
}
/**
* kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
* @parent: parent of the target
* @name: name of the kernfs_node to remove
* @ns: namespace tag of the kernfs_node to remove
*
* Look for the kernfs_node with @name and @ns under @parent and remove it.
* Returns 0 on success, -ENOENT if such entry doesn't exist.
*/
int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
const void *ns)
{
struct kernfs_addrm_cxt acxt;
struct kernfs_node *kn;
if (!parent) {
WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
name);
return -ENOENT;
}
kernfs_addrm_start(&acxt);
kn = kernfs_find_ns(parent, name, ns);
if (kn)
__kernfs_remove(&acxt, kn);
kernfs_addrm_finish(&acxt);
if (kn)
return 0;
else
return -ENOENT;
}
/**
* kernfs_rename_ns - move and rename a kernfs_node
* @kn: target node
* @new_parent: new parent to put @sd under
* @new_name: new name
* @new_ns: new namespace tag
*/
int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
const char *new_name, const void *new_ns)
{
int error;
mutex_lock(&kernfs_mutex);
error = -ENOENT;
if ((kn->flags | new_parent->flags) & KERNFS_REMOVED)
goto out;
error = 0;
if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
(strcmp(kn->name, new_name) == 0))
goto out; /* nothing to rename */
error = -EEXIST;
if (kernfs_find_ns(new_parent, new_name, new_ns))
goto out;
/* rename kernfs_node */
if (strcmp(kn->name, new_name) != 0) {
error = -ENOMEM;
new_name = kstrdup(new_name, GFP_KERNEL);
if (!new_name)
goto out;
if (kn->flags & KERNFS_STATIC_NAME)
kn->flags &= ~KERNFS_STATIC_NAME;
else
kfree(kn->name);
kn->name = new_name;
}
/*
* Move to the appropriate place in the appropriate directories rbtree.
*/
kernfs_unlink_sibling(kn);
kernfs_get(new_parent);
kernfs_put(kn->parent);
kn->ns = new_ns;
kn->hash = kernfs_name_hash(kn->name, kn->ns);
kn->parent = new_parent;
kernfs_link_sibling(kn);
error = 0;
out:
mutex_unlock(&kernfs_mutex);
return error;
}
/* Relationship between s_mode and the DT_xxx types */
static inline unsigned char dt_type(struct kernfs_node *kn)
{
return (kn->mode >> 12) & 15;
}
static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
{
kernfs_put(filp->private_data);
return 0;
}
static struct kernfs_node *kernfs_dir_pos(const void *ns,
struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
{
if (pos) {
int valid = !(pos->flags & KERNFS_REMOVED) &&
pos->parent == parent && hash == pos->hash;
kernfs_put(pos);
if (!valid)
pos = NULL;
}
if (!pos && (hash > 1) && (hash < INT_MAX)) {
struct rb_node *node = parent->dir.children.rb_node;
while (node) {
pos = rb_to_kn(node);
if (hash < pos->hash)
node = node->rb_left;
else if (hash > pos->hash)
node = node->rb_right;
else
break;
}
}
/* Skip over entries in the wrong namespace */
while (pos && pos->ns != ns) {
struct rb_node *node = rb_next(&pos->rb);
if (!node)
pos = NULL;
else
pos = rb_to_kn(node);
}
return pos;
}
static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
{
pos = kernfs_dir_pos(ns, parent, ino, pos);
if (pos)
do {
struct rb_node *node = rb_next(&pos->rb);
if (!node)
pos = NULL;
else
pos = rb_to_kn(node);
} while (pos && pos->ns != ns);
return pos;
}
static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
{
struct dentry *dentry = file->f_path.dentry;
struct kernfs_node *parent = dentry->d_fsdata;
struct kernfs_node *pos = file->private_data;
const void *ns = NULL;
if (!dir_emit_dots(file, ctx))
return 0;
mutex_lock(&kernfs_mutex);
if (kernfs_ns_enabled(parent))
ns = kernfs_info(dentry->d_sb)->ns;
for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
pos;
pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
const char *name = pos->name;
unsigned int type = dt_type(pos);
int len = strlen(name);
ino_t ino = pos->ino;
ctx->pos = pos->hash;
file->private_data = pos;
kernfs_get(pos);
mutex_unlock(&kernfs_mutex);
if (!dir_emit(ctx, name, len, ino, type))
return 0;
mutex_lock(&kernfs_mutex);
}
mutex_unlock(&kernfs_mutex);
file->private_data = NULL;
ctx->pos = INT_MAX;
return 0;
}
static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
int whence)
{
struct inode *inode = file_inode(file);
loff_t ret;
mutex_lock(&inode->i_mutex);
ret = generic_file_llseek(file, offset, whence);
mutex_unlock(&inode->i_mutex);
return ret;
}
const struct file_operations kernfs_dir_fops = {
.read = generic_read_dir,
.iterate = kernfs_fop_readdir,
.release = kernfs_dir_fop_release,
.llseek = kernfs_dir_fop_llseek,
};