| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * acpi-cpufreq.c - ACPI Processor P-States Driver |
| * |
| * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> |
| * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> |
| * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> |
| * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com> |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <linux/sched.h> |
| #include <linux/cpufreq.h> |
| #include <linux/compiler.h> |
| #include <linux/dmi.h> |
| #include <linux/slab.h> |
| |
| #include <linux/acpi.h> |
| #include <linux/io.h> |
| #include <linux/delay.h> |
| #include <linux/uaccess.h> |
| |
| #include <acpi/processor.h> |
| |
| #include <asm/msr.h> |
| #include <asm/processor.h> |
| #include <asm/cpufeature.h> |
| #include <asm/cpu_device_id.h> |
| |
| MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); |
| MODULE_DESCRIPTION("ACPI Processor P-States Driver"); |
| MODULE_LICENSE("GPL"); |
| |
| enum { |
| UNDEFINED_CAPABLE = 0, |
| SYSTEM_INTEL_MSR_CAPABLE, |
| SYSTEM_AMD_MSR_CAPABLE, |
| SYSTEM_IO_CAPABLE, |
| }; |
| |
| #define INTEL_MSR_RANGE (0xffff) |
| #define AMD_MSR_RANGE (0x7) |
| #define HYGON_MSR_RANGE (0x7) |
| |
| #define MSR_K7_HWCR_CPB_DIS (1ULL << 25) |
| |
| struct acpi_cpufreq_data { |
| unsigned int resume; |
| unsigned int cpu_feature; |
| unsigned int acpi_perf_cpu; |
| cpumask_var_t freqdomain_cpus; |
| void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val); |
| u32 (*cpu_freq_read)(struct acpi_pct_register *reg); |
| }; |
| |
| /* acpi_perf_data is a pointer to percpu data. */ |
| static struct acpi_processor_performance __percpu *acpi_perf_data; |
| |
| static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data) |
| { |
| return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu); |
| } |
| |
| static struct cpufreq_driver acpi_cpufreq_driver; |
| |
| static unsigned int acpi_pstate_strict; |
| |
| static bool boost_state(unsigned int cpu) |
| { |
| u32 lo, hi; |
| u64 msr; |
| |
| switch (boot_cpu_data.x86_vendor) { |
| case X86_VENDOR_INTEL: |
| rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi); |
| msr = lo | ((u64)hi << 32); |
| return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); |
| case X86_VENDOR_HYGON: |
| case X86_VENDOR_AMD: |
| rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); |
| msr = lo | ((u64)hi << 32); |
| return !(msr & MSR_K7_HWCR_CPB_DIS); |
| } |
| return false; |
| } |
| |
| static int boost_set_msr(bool enable) |
| { |
| u32 msr_addr; |
| u64 msr_mask, val; |
| |
| switch (boot_cpu_data.x86_vendor) { |
| case X86_VENDOR_INTEL: |
| msr_addr = MSR_IA32_MISC_ENABLE; |
| msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE; |
| break; |
| case X86_VENDOR_HYGON: |
| case X86_VENDOR_AMD: |
| msr_addr = MSR_K7_HWCR; |
| msr_mask = MSR_K7_HWCR_CPB_DIS; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| rdmsrl(msr_addr, val); |
| |
| if (enable) |
| val &= ~msr_mask; |
| else |
| val |= msr_mask; |
| |
| wrmsrl(msr_addr, val); |
| return 0; |
| } |
| |
| static void boost_set_msr_each(void *p_en) |
| { |
| bool enable = (bool) p_en; |
| |
| boost_set_msr(enable); |
| } |
| |
| static int set_boost(struct cpufreq_policy *policy, int val) |
| { |
| on_each_cpu_mask(policy->cpus, boost_set_msr_each, |
| (void *)(long)val, 1); |
| pr_debug("CPU %*pbl: Core Boosting %sabled.\n", |
| cpumask_pr_args(policy->cpus), val ? "en" : "dis"); |
| |
| return 0; |
| } |
| |
| static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) |
| { |
| struct acpi_cpufreq_data *data = policy->driver_data; |
| |
| if (unlikely(!data)) |
| return -ENODEV; |
| |
| return cpufreq_show_cpus(data->freqdomain_cpus, buf); |
| } |
| |
| cpufreq_freq_attr_ro(freqdomain_cpus); |
| |
| #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB |
| static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf, |
| size_t count) |
| { |
| int ret; |
| unsigned int val = 0; |
| |
| if (!acpi_cpufreq_driver.set_boost) |
| return -EINVAL; |
| |
| ret = kstrtouint(buf, 10, &val); |
| if (ret || val > 1) |
| return -EINVAL; |
| |
| get_online_cpus(); |
| set_boost(policy, val); |
| put_online_cpus(); |
| |
| return count; |
| } |
| |
| static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf) |
| { |
| return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled); |
| } |
| |
| cpufreq_freq_attr_rw(cpb); |
| #endif |
| |
| static int check_est_cpu(unsigned int cpuid) |
| { |
| struct cpuinfo_x86 *cpu = &cpu_data(cpuid); |
| |
| return cpu_has(cpu, X86_FEATURE_EST); |
| } |
| |
| static int check_amd_hwpstate_cpu(unsigned int cpuid) |
| { |
| struct cpuinfo_x86 *cpu = &cpu_data(cpuid); |
| |
| return cpu_has(cpu, X86_FEATURE_HW_PSTATE); |
| } |
| |
| static unsigned extract_io(struct cpufreq_policy *policy, u32 value) |
| { |
| struct acpi_cpufreq_data *data = policy->driver_data; |
| struct acpi_processor_performance *perf; |
| int i; |
| |
| perf = to_perf_data(data); |
| |
| for (i = 0; i < perf->state_count; i++) { |
| if (value == perf->states[i].status) |
| return policy->freq_table[i].frequency; |
| } |
| return 0; |
| } |
| |
| static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr) |
| { |
| struct acpi_cpufreq_data *data = policy->driver_data; |
| struct cpufreq_frequency_table *pos; |
| struct acpi_processor_performance *perf; |
| |
| if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) |
| msr &= AMD_MSR_RANGE; |
| else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) |
| msr &= HYGON_MSR_RANGE; |
| else |
| msr &= INTEL_MSR_RANGE; |
| |
| perf = to_perf_data(data); |
| |
| cpufreq_for_each_entry(pos, policy->freq_table) |
| if (msr == perf->states[pos->driver_data].status) |
| return pos->frequency; |
| return policy->freq_table[0].frequency; |
| } |
| |
| static unsigned extract_freq(struct cpufreq_policy *policy, u32 val) |
| { |
| struct acpi_cpufreq_data *data = policy->driver_data; |
| |
| switch (data->cpu_feature) { |
| case SYSTEM_INTEL_MSR_CAPABLE: |
| case SYSTEM_AMD_MSR_CAPABLE: |
| return extract_msr(policy, val); |
| case SYSTEM_IO_CAPABLE: |
| return extract_io(policy, val); |
| default: |
| return 0; |
| } |
| } |
| |
| static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used) |
| { |
| u32 val, dummy; |
| |
| rdmsr(MSR_IA32_PERF_CTL, val, dummy); |
| return val; |
| } |
| |
| static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val) |
| { |
| u32 lo, hi; |
| |
| rdmsr(MSR_IA32_PERF_CTL, lo, hi); |
| lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE); |
| wrmsr(MSR_IA32_PERF_CTL, lo, hi); |
| } |
| |
| static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used) |
| { |
| u32 val, dummy; |
| |
| rdmsr(MSR_AMD_PERF_CTL, val, dummy); |
| return val; |
| } |
| |
| static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val) |
| { |
| wrmsr(MSR_AMD_PERF_CTL, val, 0); |
| } |
| |
| static u32 cpu_freq_read_io(struct acpi_pct_register *reg) |
| { |
| u32 val; |
| |
| acpi_os_read_port(reg->address, &val, reg->bit_width); |
| return val; |
| } |
| |
| static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val) |
| { |
| acpi_os_write_port(reg->address, val, reg->bit_width); |
| } |
| |
| struct drv_cmd { |
| struct acpi_pct_register *reg; |
| u32 val; |
| union { |
| void (*write)(struct acpi_pct_register *reg, u32 val); |
| u32 (*read)(struct acpi_pct_register *reg); |
| } func; |
| }; |
| |
| /* Called via smp_call_function_single(), on the target CPU */ |
| static void do_drv_read(void *_cmd) |
| { |
| struct drv_cmd *cmd = _cmd; |
| |
| cmd->val = cmd->func.read(cmd->reg); |
| } |
| |
| static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask) |
| { |
| struct acpi_processor_performance *perf = to_perf_data(data); |
| struct drv_cmd cmd = { |
| .reg = &perf->control_register, |
| .func.read = data->cpu_freq_read, |
| }; |
| int err; |
| |
| err = smp_call_function_any(mask, do_drv_read, &cmd, 1); |
| WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */ |
| return cmd.val; |
| } |
| |
| /* Called via smp_call_function_many(), on the target CPUs */ |
| static void do_drv_write(void *_cmd) |
| { |
| struct drv_cmd *cmd = _cmd; |
| |
| cmd->func.write(cmd->reg, cmd->val); |
| } |
| |
| static void drv_write(struct acpi_cpufreq_data *data, |
| const struct cpumask *mask, u32 val) |
| { |
| struct acpi_processor_performance *perf = to_perf_data(data); |
| struct drv_cmd cmd = { |
| .reg = &perf->control_register, |
| .val = val, |
| .func.write = data->cpu_freq_write, |
| }; |
| int this_cpu; |
| |
| this_cpu = get_cpu(); |
| if (cpumask_test_cpu(this_cpu, mask)) |
| do_drv_write(&cmd); |
| |
| smp_call_function_many(mask, do_drv_write, &cmd, 1); |
| put_cpu(); |
| } |
| |
| static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data) |
| { |
| u32 val; |
| |
| if (unlikely(cpumask_empty(mask))) |
| return 0; |
| |
| val = drv_read(data, mask); |
| |
| pr_debug("%s = %u\n", __func__, val); |
| |
| return val; |
| } |
| |
| static unsigned int get_cur_freq_on_cpu(unsigned int cpu) |
| { |
| struct acpi_cpufreq_data *data; |
| struct cpufreq_policy *policy; |
| unsigned int freq; |
| unsigned int cached_freq; |
| |
| pr_debug("%s (%d)\n", __func__, cpu); |
| |
| policy = cpufreq_cpu_get_raw(cpu); |
| if (unlikely(!policy)) |
| return 0; |
| |
| data = policy->driver_data; |
| if (unlikely(!data || !policy->freq_table)) |
| return 0; |
| |
| cached_freq = policy->freq_table[to_perf_data(data)->state].frequency; |
| freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data)); |
| if (freq != cached_freq) { |
| /* |
| * The dreaded BIOS frequency change behind our back. |
| * Force set the frequency on next target call. |
| */ |
| data->resume = 1; |
| } |
| |
| pr_debug("cur freq = %u\n", freq); |
| |
| return freq; |
| } |
| |
| static unsigned int check_freqs(struct cpufreq_policy *policy, |
| const struct cpumask *mask, unsigned int freq) |
| { |
| struct acpi_cpufreq_data *data = policy->driver_data; |
| unsigned int cur_freq; |
| unsigned int i; |
| |
| for (i = 0; i < 100; i++) { |
| cur_freq = extract_freq(policy, get_cur_val(mask, data)); |
| if (cur_freq == freq) |
| return 1; |
| udelay(10); |
| } |
| return 0; |
| } |
| |
| static int acpi_cpufreq_target(struct cpufreq_policy *policy, |
| unsigned int index) |
| { |
| struct acpi_cpufreq_data *data = policy->driver_data; |
| struct acpi_processor_performance *perf; |
| const struct cpumask *mask; |
| unsigned int next_perf_state = 0; /* Index into perf table */ |
| int result = 0; |
| |
| if (unlikely(!data)) { |
| return -ENODEV; |
| } |
| |
| perf = to_perf_data(data); |
| next_perf_state = policy->freq_table[index].driver_data; |
| if (perf->state == next_perf_state) { |
| if (unlikely(data->resume)) { |
| pr_debug("Called after resume, resetting to P%d\n", |
| next_perf_state); |
| data->resume = 0; |
| } else { |
| pr_debug("Already at target state (P%d)\n", |
| next_perf_state); |
| return 0; |
| } |
| } |
| |
| /* |
| * The core won't allow CPUs to go away until the governor has been |
| * stopped, so we can rely on the stability of policy->cpus. |
| */ |
| mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ? |
| cpumask_of(policy->cpu) : policy->cpus; |
| |
| drv_write(data, mask, perf->states[next_perf_state].control); |
| |
| if (acpi_pstate_strict) { |
| if (!check_freqs(policy, mask, |
| policy->freq_table[index].frequency)) { |
| pr_debug("%s (%d)\n", __func__, policy->cpu); |
| result = -EAGAIN; |
| } |
| } |
| |
| if (!result) |
| perf->state = next_perf_state; |
| |
| return result; |
| } |
| |
| static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy, |
| unsigned int target_freq) |
| { |
| struct acpi_cpufreq_data *data = policy->driver_data; |
| struct acpi_processor_performance *perf; |
| struct cpufreq_frequency_table *entry; |
| unsigned int next_perf_state, next_freq, index; |
| |
| /* |
| * Find the closest frequency above target_freq. |
| */ |
| if (policy->cached_target_freq == target_freq) |
| index = policy->cached_resolved_idx; |
| else |
| index = cpufreq_table_find_index_dl(policy, target_freq); |
| |
| entry = &policy->freq_table[index]; |
| next_freq = entry->frequency; |
| next_perf_state = entry->driver_data; |
| |
| perf = to_perf_data(data); |
| if (perf->state == next_perf_state) { |
| if (unlikely(data->resume)) |
| data->resume = 0; |
| else |
| return next_freq; |
| } |
| |
| data->cpu_freq_write(&perf->control_register, |
| perf->states[next_perf_state].control); |
| perf->state = next_perf_state; |
| return next_freq; |
| } |
| |
| static unsigned long |
| acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu) |
| { |
| struct acpi_processor_performance *perf; |
| |
| perf = to_perf_data(data); |
| if (cpu_khz) { |
| /* search the closest match to cpu_khz */ |
| unsigned int i; |
| unsigned long freq; |
| unsigned long freqn = perf->states[0].core_frequency * 1000; |
| |
| for (i = 0; i < (perf->state_count-1); i++) { |
| freq = freqn; |
| freqn = perf->states[i+1].core_frequency * 1000; |
| if ((2 * cpu_khz) > (freqn + freq)) { |
| perf->state = i; |
| return freq; |
| } |
| } |
| perf->state = perf->state_count-1; |
| return freqn; |
| } else { |
| /* assume CPU is at P0... */ |
| perf->state = 0; |
| return perf->states[0].core_frequency * 1000; |
| } |
| } |
| |
| static void free_acpi_perf_data(void) |
| { |
| unsigned int i; |
| |
| /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */ |
| for_each_possible_cpu(i) |
| free_cpumask_var(per_cpu_ptr(acpi_perf_data, i) |
| ->shared_cpu_map); |
| free_percpu(acpi_perf_data); |
| } |
| |
| static int cpufreq_boost_online(unsigned int cpu) |
| { |
| /* |
| * On the CPU_UP path we simply keep the boost-disable flag |
| * in sync with the current global state. |
| */ |
| return boost_set_msr(acpi_cpufreq_driver.boost_enabled); |
| } |
| |
| static int cpufreq_boost_down_prep(unsigned int cpu) |
| { |
| /* |
| * Clear the boost-disable bit on the CPU_DOWN path so that |
| * this cpu cannot block the remaining ones from boosting. |
| */ |
| return boost_set_msr(1); |
| } |
| |
| /* |
| * acpi_cpufreq_early_init - initialize ACPI P-States library |
| * |
| * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) |
| * in order to determine correct frequency and voltage pairings. We can |
| * do _PDC and _PSD and find out the processor dependency for the |
| * actual init that will happen later... |
| */ |
| static int __init acpi_cpufreq_early_init(void) |
| { |
| unsigned int i; |
| pr_debug("%s\n", __func__); |
| |
| acpi_perf_data = alloc_percpu(struct acpi_processor_performance); |
| if (!acpi_perf_data) { |
| pr_debug("Memory allocation error for acpi_perf_data.\n"); |
| return -ENOMEM; |
| } |
| for_each_possible_cpu(i) { |
| if (!zalloc_cpumask_var_node( |
| &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map, |
| GFP_KERNEL, cpu_to_node(i))) { |
| |
| /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */ |
| free_acpi_perf_data(); |
| return -ENOMEM; |
| } |
| } |
| |
| /* Do initialization in ACPI core */ |
| acpi_processor_preregister_performance(acpi_perf_data); |
| return 0; |
| } |
| |
| #ifdef CONFIG_SMP |
| /* |
| * Some BIOSes do SW_ANY coordination internally, either set it up in hw |
| * or do it in BIOS firmware and won't inform about it to OS. If not |
| * detected, this has a side effect of making CPU run at a different speed |
| * than OS intended it to run at. Detect it and handle it cleanly. |
| */ |
| static int bios_with_sw_any_bug; |
| |
| static int sw_any_bug_found(const struct dmi_system_id *d) |
| { |
| bios_with_sw_any_bug = 1; |
| return 0; |
| } |
| |
| static const struct dmi_system_id sw_any_bug_dmi_table[] = { |
| { |
| .callback = sw_any_bug_found, |
| .ident = "Supermicro Server X6DLP", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"), |
| DMI_MATCH(DMI_BIOS_VERSION, "080010"), |
| DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"), |
| }, |
| }, |
| { } |
| }; |
| |
| static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c) |
| { |
| /* Intel Xeon Processor 7100 Series Specification Update |
| * http://www.intel.com/Assets/PDF/specupdate/314554.pdf |
| * AL30: A Machine Check Exception (MCE) Occurring during an |
| * Enhanced Intel SpeedStep Technology Ratio Change May Cause |
| * Both Processor Cores to Lock Up. */ |
| if (c->x86_vendor == X86_VENDOR_INTEL) { |
| if ((c->x86 == 15) && |
| (c->x86_model == 6) && |
| (c->x86_stepping == 8)) { |
| pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n"); |
| return -ENODEV; |
| } |
| } |
| return 0; |
| } |
| #endif |
| |
| static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy) |
| { |
| unsigned int i; |
| unsigned int valid_states = 0; |
| unsigned int cpu = policy->cpu; |
| struct acpi_cpufreq_data *data; |
| unsigned int result = 0; |
| struct cpuinfo_x86 *c = &cpu_data(policy->cpu); |
| struct acpi_processor_performance *perf; |
| struct cpufreq_frequency_table *freq_table; |
| #ifdef CONFIG_SMP |
| static int blacklisted; |
| #endif |
| |
| pr_debug("%s\n", __func__); |
| |
| #ifdef CONFIG_SMP |
| if (blacklisted) |
| return blacklisted; |
| blacklisted = acpi_cpufreq_blacklist(c); |
| if (blacklisted) |
| return blacklisted; |
| #endif |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) { |
| result = -ENOMEM; |
| goto err_free; |
| } |
| |
| perf = per_cpu_ptr(acpi_perf_data, cpu); |
| data->acpi_perf_cpu = cpu; |
| policy->driver_data = data; |
| |
| if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) |
| acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; |
| |
| result = acpi_processor_register_performance(perf, cpu); |
| if (result) |
| goto err_free_mask; |
| |
| policy->shared_type = perf->shared_type; |
| |
| /* |
| * Will let policy->cpus know about dependency only when software |
| * coordination is required. |
| */ |
| if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || |
| policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { |
| cpumask_copy(policy->cpus, perf->shared_cpu_map); |
| } |
| cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map); |
| |
| #ifdef CONFIG_SMP |
| dmi_check_system(sw_any_bug_dmi_table); |
| if (bios_with_sw_any_bug && !policy_is_shared(policy)) { |
| policy->shared_type = CPUFREQ_SHARED_TYPE_ALL; |
| cpumask_copy(policy->cpus, topology_core_cpumask(cpu)); |
| } |
| |
| if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) { |
| cpumask_clear(policy->cpus); |
| cpumask_set_cpu(cpu, policy->cpus); |
| cpumask_copy(data->freqdomain_cpus, |
| topology_sibling_cpumask(cpu)); |
| policy->shared_type = CPUFREQ_SHARED_TYPE_HW; |
| pr_info_once("overriding BIOS provided _PSD data\n"); |
| } |
| #endif |
| |
| /* capability check */ |
| if (perf->state_count <= 1) { |
| pr_debug("No P-States\n"); |
| result = -ENODEV; |
| goto err_unreg; |
| } |
| |
| if (perf->control_register.space_id != perf->status_register.space_id) { |
| result = -ENODEV; |
| goto err_unreg; |
| } |
| |
| switch (perf->control_register.space_id) { |
| case ACPI_ADR_SPACE_SYSTEM_IO: |
| if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && |
| boot_cpu_data.x86 == 0xf) { |
| pr_debug("AMD K8 systems must use native drivers.\n"); |
| result = -ENODEV; |
| goto err_unreg; |
| } |
| pr_debug("SYSTEM IO addr space\n"); |
| data->cpu_feature = SYSTEM_IO_CAPABLE; |
| data->cpu_freq_read = cpu_freq_read_io; |
| data->cpu_freq_write = cpu_freq_write_io; |
| break; |
| case ACPI_ADR_SPACE_FIXED_HARDWARE: |
| pr_debug("HARDWARE addr space\n"); |
| if (check_est_cpu(cpu)) { |
| data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE; |
| data->cpu_freq_read = cpu_freq_read_intel; |
| data->cpu_freq_write = cpu_freq_write_intel; |
| break; |
| } |
| if (check_amd_hwpstate_cpu(cpu)) { |
| data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE; |
| data->cpu_freq_read = cpu_freq_read_amd; |
| data->cpu_freq_write = cpu_freq_write_amd; |
| break; |
| } |
| result = -ENODEV; |
| goto err_unreg; |
| default: |
| pr_debug("Unknown addr space %d\n", |
| (u32) (perf->control_register.space_id)); |
| result = -ENODEV; |
| goto err_unreg; |
| } |
| |
| freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table), |
| GFP_KERNEL); |
| if (!freq_table) { |
| result = -ENOMEM; |
| goto err_unreg; |
| } |
| |
| /* detect transition latency */ |
| policy->cpuinfo.transition_latency = 0; |
| for (i = 0; i < perf->state_count; i++) { |
| if ((perf->states[i].transition_latency * 1000) > |
| policy->cpuinfo.transition_latency) |
| policy->cpuinfo.transition_latency = |
| perf->states[i].transition_latency * 1000; |
| } |
| |
| /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */ |
| if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE && |
| policy->cpuinfo.transition_latency > 20 * 1000) { |
| policy->cpuinfo.transition_latency = 20 * 1000; |
| pr_info_once("P-state transition latency capped at 20 uS\n"); |
| } |
| |
| /* table init */ |
| for (i = 0; i < perf->state_count; i++) { |
| if (i > 0 && perf->states[i].core_frequency >= |
| freq_table[valid_states-1].frequency / 1000) |
| continue; |
| |
| freq_table[valid_states].driver_data = i; |
| freq_table[valid_states].frequency = |
| perf->states[i].core_frequency * 1000; |
| valid_states++; |
| } |
| freq_table[valid_states].frequency = CPUFREQ_TABLE_END; |
| policy->freq_table = freq_table; |
| perf->state = 0; |
| |
| switch (perf->control_register.space_id) { |
| case ACPI_ADR_SPACE_SYSTEM_IO: |
| /* |
| * The core will not set policy->cur, because |
| * cpufreq_driver->get is NULL, so we need to set it here. |
| * However, we have to guess it, because the current speed is |
| * unknown and not detectable via IO ports. |
| */ |
| policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); |
| break; |
| case ACPI_ADR_SPACE_FIXED_HARDWARE: |
| acpi_cpufreq_driver.get = get_cur_freq_on_cpu; |
| break; |
| default: |
| break; |
| } |
| |
| /* notify BIOS that we exist */ |
| acpi_processor_notify_smm(THIS_MODULE); |
| |
| pr_debug("CPU%u - ACPI performance management activated.\n", cpu); |
| for (i = 0; i < perf->state_count; i++) |
| pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n", |
| (i == perf->state ? '*' : ' '), i, |
| (u32) perf->states[i].core_frequency, |
| (u32) perf->states[i].power, |
| (u32) perf->states[i].transition_latency); |
| |
| /* |
| * the first call to ->target() should result in us actually |
| * writing something to the appropriate registers. |
| */ |
| data->resume = 1; |
| |
| policy->fast_switch_possible = !acpi_pstate_strict && |
| !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY); |
| |
| return result; |
| |
| err_unreg: |
| acpi_processor_unregister_performance(cpu); |
| err_free_mask: |
| free_cpumask_var(data->freqdomain_cpus); |
| err_free: |
| kfree(data); |
| policy->driver_data = NULL; |
| |
| return result; |
| } |
| |
| static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) |
| { |
| struct acpi_cpufreq_data *data = policy->driver_data; |
| |
| pr_debug("%s\n", __func__); |
| |
| policy->fast_switch_possible = false; |
| policy->driver_data = NULL; |
| acpi_processor_unregister_performance(data->acpi_perf_cpu); |
| free_cpumask_var(data->freqdomain_cpus); |
| kfree(policy->freq_table); |
| kfree(data); |
| |
| return 0; |
| } |
| |
| static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy) |
| { |
| struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data, |
| policy->cpu); |
| |
| if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq) |
| pr_warn(FW_WARN "P-state 0 is not max freq\n"); |
| } |
| |
| static int acpi_cpufreq_resume(struct cpufreq_policy *policy) |
| { |
| struct acpi_cpufreq_data *data = policy->driver_data; |
| |
| pr_debug("%s\n", __func__); |
| |
| data->resume = 1; |
| |
| return 0; |
| } |
| |
| static struct freq_attr *acpi_cpufreq_attr[] = { |
| &cpufreq_freq_attr_scaling_available_freqs, |
| &freqdomain_cpus, |
| #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB |
| &cpb, |
| #endif |
| NULL, |
| }; |
| |
| static struct cpufreq_driver acpi_cpufreq_driver = { |
| .verify = cpufreq_generic_frequency_table_verify, |
| .target_index = acpi_cpufreq_target, |
| .fast_switch = acpi_cpufreq_fast_switch, |
| .bios_limit = acpi_processor_get_bios_limit, |
| .init = acpi_cpufreq_cpu_init, |
| .exit = acpi_cpufreq_cpu_exit, |
| .ready = acpi_cpufreq_cpu_ready, |
| .resume = acpi_cpufreq_resume, |
| .name = "acpi-cpufreq", |
| .attr = acpi_cpufreq_attr, |
| }; |
| |
| static enum cpuhp_state acpi_cpufreq_online; |
| |
| static void __init acpi_cpufreq_boost_init(void) |
| { |
| int ret; |
| |
| if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) { |
| pr_debug("Boost capabilities not present in the processor\n"); |
| return; |
| } |
| |
| acpi_cpufreq_driver.set_boost = set_boost; |
| acpi_cpufreq_driver.boost_enabled = boost_state(0); |
| |
| /* |
| * This calls the online callback on all online cpu and forces all |
| * MSRs to the same value. |
| */ |
| ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online", |
| cpufreq_boost_online, cpufreq_boost_down_prep); |
| if (ret < 0) { |
| pr_err("acpi_cpufreq: failed to register hotplug callbacks\n"); |
| return; |
| } |
| acpi_cpufreq_online = ret; |
| } |
| |
| static void acpi_cpufreq_boost_exit(void) |
| { |
| if (acpi_cpufreq_online > 0) |
| cpuhp_remove_state_nocalls(acpi_cpufreq_online); |
| } |
| |
| static int __init acpi_cpufreq_init(void) |
| { |
| int ret; |
| |
| if (acpi_disabled) |
| return -ENODEV; |
| |
| /* don't keep reloading if cpufreq_driver exists */ |
| if (cpufreq_get_current_driver()) |
| return -EEXIST; |
| |
| pr_debug("%s\n", __func__); |
| |
| ret = acpi_cpufreq_early_init(); |
| if (ret) |
| return ret; |
| |
| #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB |
| /* this is a sysfs file with a strange name and an even stranger |
| * semantic - per CPU instantiation, but system global effect. |
| * Lets enable it only on AMD CPUs for compatibility reasons and |
| * only if configured. This is considered legacy code, which |
| * will probably be removed at some point in the future. |
| */ |
| if (!check_amd_hwpstate_cpu(0)) { |
| struct freq_attr **attr; |
| |
| pr_debug("CPB unsupported, do not expose it\n"); |
| |
| for (attr = acpi_cpufreq_attr; *attr; attr++) |
| if (*attr == &cpb) { |
| *attr = NULL; |
| break; |
| } |
| } |
| #endif |
| acpi_cpufreq_boost_init(); |
| |
| ret = cpufreq_register_driver(&acpi_cpufreq_driver); |
| if (ret) { |
| free_acpi_perf_data(); |
| acpi_cpufreq_boost_exit(); |
| } |
| return ret; |
| } |
| |
| static void __exit acpi_cpufreq_exit(void) |
| { |
| pr_debug("%s\n", __func__); |
| |
| acpi_cpufreq_boost_exit(); |
| |
| cpufreq_unregister_driver(&acpi_cpufreq_driver); |
| |
| free_acpi_perf_data(); |
| } |
| |
| module_param(acpi_pstate_strict, uint, 0644); |
| MODULE_PARM_DESC(acpi_pstate_strict, |
| "value 0 or non-zero. non-zero -> strict ACPI checks are " |
| "performed during frequency changes."); |
| |
| late_initcall(acpi_cpufreq_init); |
| module_exit(acpi_cpufreq_exit); |
| |
| static const struct x86_cpu_id acpi_cpufreq_ids[] = { |
| X86_MATCH_FEATURE(X86_FEATURE_ACPI, NULL), |
| X86_MATCH_FEATURE(X86_FEATURE_HW_PSTATE, NULL), |
| {} |
| }; |
| MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids); |
| |
| static const struct acpi_device_id processor_device_ids[] = { |
| {ACPI_PROCESSOR_OBJECT_HID, }, |
| {ACPI_PROCESSOR_DEVICE_HID, }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(acpi, processor_device_ids); |
| |
| MODULE_ALIAS("acpi"); |