| /* SPDX-License-Identifier: GPL-2.0-or-later */ |
| /* |
| * Scatterlist Cryptographic API. |
| * |
| * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> |
| * Copyright (c) 2002 David S. Miller (davem@redhat.com) |
| * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au> |
| * |
| * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no> |
| * and Nettle, by Niels Möller. |
| */ |
| #ifndef _LINUX_CRYPTO_H |
| #define _LINUX_CRYPTO_H |
| |
| #include <linux/atomic.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/bug.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/uaccess.h> |
| #include <linux/completion.h> |
| |
| /* |
| * Autoloaded crypto modules should only use a prefixed name to avoid allowing |
| * arbitrary modules to be loaded. Loading from userspace may still need the |
| * unprefixed names, so retains those aliases as well. |
| * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 |
| * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro |
| * expands twice on the same line. Instead, use a separate base name for the |
| * alias. |
| */ |
| #define MODULE_ALIAS_CRYPTO(name) \ |
| __MODULE_INFO(alias, alias_userspace, name); \ |
| __MODULE_INFO(alias, alias_crypto, "crypto-" name) |
| |
| /* |
| * Algorithm masks and types. |
| */ |
| #define CRYPTO_ALG_TYPE_MASK 0x0000000f |
| #define CRYPTO_ALG_TYPE_CIPHER 0x00000001 |
| #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 |
| #define CRYPTO_ALG_TYPE_AEAD 0x00000003 |
| #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 |
| #define CRYPTO_ALG_TYPE_KPP 0x00000008 |
| #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a |
| #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b |
| #define CRYPTO_ALG_TYPE_RNG 0x0000000c |
| #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d |
| #define CRYPTO_ALG_TYPE_HASH 0x0000000e |
| #define CRYPTO_ALG_TYPE_SHASH 0x0000000e |
| #define CRYPTO_ALG_TYPE_AHASH 0x0000000f |
| |
| #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e |
| #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e |
| #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e |
| |
| #define CRYPTO_ALG_LARVAL 0x00000010 |
| #define CRYPTO_ALG_DEAD 0x00000020 |
| #define CRYPTO_ALG_DYING 0x00000040 |
| #define CRYPTO_ALG_ASYNC 0x00000080 |
| |
| /* |
| * Set this bit if and only if the algorithm requires another algorithm of |
| * the same type to handle corner cases. |
| */ |
| #define CRYPTO_ALG_NEED_FALLBACK 0x00000100 |
| |
| /* |
| * Set if the algorithm has passed automated run-time testing. Note that |
| * if there is no run-time testing for a given algorithm it is considered |
| * to have passed. |
| */ |
| |
| #define CRYPTO_ALG_TESTED 0x00000400 |
| |
| /* |
| * Set if the algorithm is an instance that is built from templates. |
| */ |
| #define CRYPTO_ALG_INSTANCE 0x00000800 |
| |
| /* Set this bit if the algorithm provided is hardware accelerated but |
| * not available to userspace via instruction set or so. |
| */ |
| #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 |
| |
| /* |
| * Mark a cipher as a service implementation only usable by another |
| * cipher and never by a normal user of the kernel crypto API |
| */ |
| #define CRYPTO_ALG_INTERNAL 0x00002000 |
| |
| /* |
| * Set if the algorithm has a ->setkey() method but can be used without |
| * calling it first, i.e. there is a default key. |
| */ |
| #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 |
| |
| /* |
| * Don't trigger module loading |
| */ |
| #define CRYPTO_NOLOAD 0x00008000 |
| |
| /* |
| * Transform masks and values (for crt_flags). |
| */ |
| #define CRYPTO_TFM_NEED_KEY 0x00000001 |
| |
| #define CRYPTO_TFM_REQ_MASK 0x000fff00 |
| #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100 |
| #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 |
| #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 |
| |
| /* |
| * Miscellaneous stuff. |
| */ |
| #define CRYPTO_MAX_ALG_NAME 128 |
| |
| /* |
| * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual |
| * declaration) is used to ensure that the crypto_tfm context structure is |
| * aligned correctly for the given architecture so that there are no alignment |
| * faults for C data types. In particular, this is required on platforms such |
| * as arm where pointers are 32-bit aligned but there are data types such as |
| * u64 which require 64-bit alignment. |
| */ |
| #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN |
| |
| #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) |
| |
| struct scatterlist; |
| struct crypto_async_request; |
| struct crypto_tfm; |
| struct crypto_type; |
| |
| typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); |
| |
| /** |
| * DOC: Block Cipher Context Data Structures |
| * |
| * These data structures define the operating context for each block cipher |
| * type. |
| */ |
| |
| struct crypto_async_request { |
| struct list_head list; |
| crypto_completion_t complete; |
| void *data; |
| struct crypto_tfm *tfm; |
| |
| u32 flags; |
| }; |
| |
| /** |
| * DOC: Block Cipher Algorithm Definitions |
| * |
| * These data structures define modular crypto algorithm implementations, |
| * managed via crypto_register_alg() and crypto_unregister_alg(). |
| */ |
| |
| /** |
| * struct cipher_alg - single-block symmetric ciphers definition |
| * @cia_min_keysize: Minimum key size supported by the transformation. This is |
| * the smallest key length supported by this transformation |
| * algorithm. This must be set to one of the pre-defined |
| * values as this is not hardware specific. Possible values |
| * for this field can be found via git grep "_MIN_KEY_SIZE" |
| * include/crypto/ |
| * @cia_max_keysize: Maximum key size supported by the transformation. This is |
| * the largest key length supported by this transformation |
| * algorithm. This must be set to one of the pre-defined values |
| * as this is not hardware specific. Possible values for this |
| * field can be found via git grep "_MAX_KEY_SIZE" |
| * include/crypto/ |
| * @cia_setkey: Set key for the transformation. This function is used to either |
| * program a supplied key into the hardware or store the key in the |
| * transformation context for programming it later. Note that this |
| * function does modify the transformation context. This function |
| * can be called multiple times during the existence of the |
| * transformation object, so one must make sure the key is properly |
| * reprogrammed into the hardware. This function is also |
| * responsible for checking the key length for validity. |
| * @cia_encrypt: Encrypt a single block. This function is used to encrypt a |
| * single block of data, which must be @cra_blocksize big. This |
| * always operates on a full @cra_blocksize and it is not possible |
| * to encrypt a block of smaller size. The supplied buffers must |
| * therefore also be at least of @cra_blocksize size. Both the |
| * input and output buffers are always aligned to @cra_alignmask. |
| * In case either of the input or output buffer supplied by user |
| * of the crypto API is not aligned to @cra_alignmask, the crypto |
| * API will re-align the buffers. The re-alignment means that a |
| * new buffer will be allocated, the data will be copied into the |
| * new buffer, then the processing will happen on the new buffer, |
| * then the data will be copied back into the original buffer and |
| * finally the new buffer will be freed. In case a software |
| * fallback was put in place in the @cra_init call, this function |
| * might need to use the fallback if the algorithm doesn't support |
| * all of the key sizes. In case the key was stored in |
| * transformation context, the key might need to be re-programmed |
| * into the hardware in this function. This function shall not |
| * modify the transformation context, as this function may be |
| * called in parallel with the same transformation object. |
| * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to |
| * @cia_encrypt, and the conditions are exactly the same. |
| * |
| * All fields are mandatory and must be filled. |
| */ |
| struct cipher_alg { |
| unsigned int cia_min_keysize; |
| unsigned int cia_max_keysize; |
| int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, |
| unsigned int keylen); |
| void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); |
| void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); |
| }; |
| |
| /** |
| * struct compress_alg - compression/decompression algorithm |
| * @coa_compress: Compress a buffer of specified length, storing the resulting |
| * data in the specified buffer. Return the length of the |
| * compressed data in dlen. |
| * @coa_decompress: Decompress the source buffer, storing the uncompressed |
| * data in the specified buffer. The length of the data is |
| * returned in dlen. |
| * |
| * All fields are mandatory. |
| */ |
| struct compress_alg { |
| int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, |
| unsigned int slen, u8 *dst, unsigned int *dlen); |
| int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, |
| unsigned int slen, u8 *dst, unsigned int *dlen); |
| }; |
| |
| #ifdef CONFIG_CRYPTO_STATS |
| /* |
| * struct crypto_istat_aead - statistics for AEAD algorithm |
| * @encrypt_cnt: number of encrypt requests |
| * @encrypt_tlen: total data size handled by encrypt requests |
| * @decrypt_cnt: number of decrypt requests |
| * @decrypt_tlen: total data size handled by decrypt requests |
| * @err_cnt: number of error for AEAD requests |
| */ |
| struct crypto_istat_aead { |
| atomic64_t encrypt_cnt; |
| atomic64_t encrypt_tlen; |
| atomic64_t decrypt_cnt; |
| atomic64_t decrypt_tlen; |
| atomic64_t err_cnt; |
| }; |
| |
| /* |
| * struct crypto_istat_akcipher - statistics for akcipher algorithm |
| * @encrypt_cnt: number of encrypt requests |
| * @encrypt_tlen: total data size handled by encrypt requests |
| * @decrypt_cnt: number of decrypt requests |
| * @decrypt_tlen: total data size handled by decrypt requests |
| * @verify_cnt: number of verify operation |
| * @sign_cnt: number of sign requests |
| * @err_cnt: number of error for akcipher requests |
| */ |
| struct crypto_istat_akcipher { |
| atomic64_t encrypt_cnt; |
| atomic64_t encrypt_tlen; |
| atomic64_t decrypt_cnt; |
| atomic64_t decrypt_tlen; |
| atomic64_t verify_cnt; |
| atomic64_t sign_cnt; |
| atomic64_t err_cnt; |
| }; |
| |
| /* |
| * struct crypto_istat_cipher - statistics for cipher algorithm |
| * @encrypt_cnt: number of encrypt requests |
| * @encrypt_tlen: total data size handled by encrypt requests |
| * @decrypt_cnt: number of decrypt requests |
| * @decrypt_tlen: total data size handled by decrypt requests |
| * @err_cnt: number of error for cipher requests |
| */ |
| struct crypto_istat_cipher { |
| atomic64_t encrypt_cnt; |
| atomic64_t encrypt_tlen; |
| atomic64_t decrypt_cnt; |
| atomic64_t decrypt_tlen; |
| atomic64_t err_cnt; |
| }; |
| |
| /* |
| * struct crypto_istat_compress - statistics for compress algorithm |
| * @compress_cnt: number of compress requests |
| * @compress_tlen: total data size handled by compress requests |
| * @decompress_cnt: number of decompress requests |
| * @decompress_tlen: total data size handled by decompress requests |
| * @err_cnt: number of error for compress requests |
| */ |
| struct crypto_istat_compress { |
| atomic64_t compress_cnt; |
| atomic64_t compress_tlen; |
| atomic64_t decompress_cnt; |
| atomic64_t decompress_tlen; |
| atomic64_t err_cnt; |
| }; |
| |
| /* |
| * struct crypto_istat_hash - statistics for has algorithm |
| * @hash_cnt: number of hash requests |
| * @hash_tlen: total data size hashed |
| * @err_cnt: number of error for hash requests |
| */ |
| struct crypto_istat_hash { |
| atomic64_t hash_cnt; |
| atomic64_t hash_tlen; |
| atomic64_t err_cnt; |
| }; |
| |
| /* |
| * struct crypto_istat_kpp - statistics for KPP algorithm |
| * @setsecret_cnt: number of setsecrey operation |
| * @generate_public_key_cnt: number of generate_public_key operation |
| * @compute_shared_secret_cnt: number of compute_shared_secret operation |
| * @err_cnt: number of error for KPP requests |
| */ |
| struct crypto_istat_kpp { |
| atomic64_t setsecret_cnt; |
| atomic64_t generate_public_key_cnt; |
| atomic64_t compute_shared_secret_cnt; |
| atomic64_t err_cnt; |
| }; |
| |
| /* |
| * struct crypto_istat_rng: statistics for RNG algorithm |
| * @generate_cnt: number of RNG generate requests |
| * @generate_tlen: total data size of generated data by the RNG |
| * @seed_cnt: number of times the RNG was seeded |
| * @err_cnt: number of error for RNG requests |
| */ |
| struct crypto_istat_rng { |
| atomic64_t generate_cnt; |
| atomic64_t generate_tlen; |
| atomic64_t seed_cnt; |
| atomic64_t err_cnt; |
| }; |
| #endif /* CONFIG_CRYPTO_STATS */ |
| |
| #define cra_cipher cra_u.cipher |
| #define cra_compress cra_u.compress |
| |
| /** |
| * struct crypto_alg - definition of a cryptograpic cipher algorithm |
| * @cra_flags: Flags describing this transformation. See include/linux/crypto.h |
| * CRYPTO_ALG_* flags for the flags which go in here. Those are |
| * used for fine-tuning the description of the transformation |
| * algorithm. |
| * @cra_blocksize: Minimum block size of this transformation. The size in bytes |
| * of the smallest possible unit which can be transformed with |
| * this algorithm. The users must respect this value. |
| * In case of HASH transformation, it is possible for a smaller |
| * block than @cra_blocksize to be passed to the crypto API for |
| * transformation, in case of any other transformation type, an |
| * error will be returned upon any attempt to transform smaller |
| * than @cra_blocksize chunks. |
| * @cra_ctxsize: Size of the operational context of the transformation. This |
| * value informs the kernel crypto API about the memory size |
| * needed to be allocated for the transformation context. |
| * @cra_alignmask: Alignment mask for the input and output data buffer. The data |
| * buffer containing the input data for the algorithm must be |
| * aligned to this alignment mask. The data buffer for the |
| * output data must be aligned to this alignment mask. Note that |
| * the Crypto API will do the re-alignment in software, but |
| * only under special conditions and there is a performance hit. |
| * The re-alignment happens at these occasions for different |
| * @cra_u types: cipher -- For both input data and output data |
| * buffer; ahash -- For output hash destination buf; shash -- |
| * For output hash destination buf. |
| * This is needed on hardware which is flawed by design and |
| * cannot pick data from arbitrary addresses. |
| * @cra_priority: Priority of this transformation implementation. In case |
| * multiple transformations with same @cra_name are available to |
| * the Crypto API, the kernel will use the one with highest |
| * @cra_priority. |
| * @cra_name: Generic name (usable by multiple implementations) of the |
| * transformation algorithm. This is the name of the transformation |
| * itself. This field is used by the kernel when looking up the |
| * providers of particular transformation. |
| * @cra_driver_name: Unique name of the transformation provider. This is the |
| * name of the provider of the transformation. This can be any |
| * arbitrary value, but in the usual case, this contains the |
| * name of the chip or provider and the name of the |
| * transformation algorithm. |
| * @cra_type: Type of the cryptographic transformation. This is a pointer to |
| * struct crypto_type, which implements callbacks common for all |
| * transformation types. There are multiple options, such as |
| * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type. |
| * This field might be empty. In that case, there are no common |
| * callbacks. This is the case for: cipher, compress, shash. |
| * @cra_u: Callbacks implementing the transformation. This is a union of |
| * multiple structures. Depending on the type of transformation selected |
| * by @cra_type and @cra_flags above, the associated structure must be |
| * filled with callbacks. This field might be empty. This is the case |
| * for ahash, shash. |
| * @cra_init: Initialize the cryptographic transformation object. This function |
| * is used to initialize the cryptographic transformation object. |
| * This function is called only once at the instantiation time, right |
| * after the transformation context was allocated. In case the |
| * cryptographic hardware has some special requirements which need to |
| * be handled by software, this function shall check for the precise |
| * requirement of the transformation and put any software fallbacks |
| * in place. |
| * @cra_exit: Deinitialize the cryptographic transformation object. This is a |
| * counterpart to @cra_init, used to remove various changes set in |
| * @cra_init. |
| * @cra_u.cipher: Union member which contains a single-block symmetric cipher |
| * definition. See @struct @cipher_alg. |
| * @cra_u.compress: Union member which contains a (de)compression algorithm. |
| * See @struct @compress_alg. |
| * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE |
| * @cra_list: internally used |
| * @cra_users: internally used |
| * @cra_refcnt: internally used |
| * @cra_destroy: internally used |
| * |
| * @stats: union of all possible crypto_istat_xxx structures |
| * @stats.aead: statistics for AEAD algorithm |
| * @stats.akcipher: statistics for akcipher algorithm |
| * @stats.cipher: statistics for cipher algorithm |
| * @stats.compress: statistics for compress algorithm |
| * @stats.hash: statistics for hash algorithm |
| * @stats.rng: statistics for rng algorithm |
| * @stats.kpp: statistics for KPP algorithm |
| * |
| * The struct crypto_alg describes a generic Crypto API algorithm and is common |
| * for all of the transformations. Any variable not documented here shall not |
| * be used by a cipher implementation as it is internal to the Crypto API. |
| */ |
| struct crypto_alg { |
| struct list_head cra_list; |
| struct list_head cra_users; |
| |
| u32 cra_flags; |
| unsigned int cra_blocksize; |
| unsigned int cra_ctxsize; |
| unsigned int cra_alignmask; |
| |
| int cra_priority; |
| refcount_t cra_refcnt; |
| |
| char cra_name[CRYPTO_MAX_ALG_NAME]; |
| char cra_driver_name[CRYPTO_MAX_ALG_NAME]; |
| |
| const struct crypto_type *cra_type; |
| |
| union { |
| struct cipher_alg cipher; |
| struct compress_alg compress; |
| } cra_u; |
| |
| int (*cra_init)(struct crypto_tfm *tfm); |
| void (*cra_exit)(struct crypto_tfm *tfm); |
| void (*cra_destroy)(struct crypto_alg *alg); |
| |
| struct module *cra_module; |
| |
| #ifdef CONFIG_CRYPTO_STATS |
| union { |
| struct crypto_istat_aead aead; |
| struct crypto_istat_akcipher akcipher; |
| struct crypto_istat_cipher cipher; |
| struct crypto_istat_compress compress; |
| struct crypto_istat_hash hash; |
| struct crypto_istat_rng rng; |
| struct crypto_istat_kpp kpp; |
| } stats; |
| #endif /* CONFIG_CRYPTO_STATS */ |
| |
| } CRYPTO_MINALIGN_ATTR; |
| |
| #ifdef CONFIG_CRYPTO_STATS |
| void crypto_stats_init(struct crypto_alg *alg); |
| void crypto_stats_get(struct crypto_alg *alg); |
| void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); |
| void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); |
| void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg); |
| void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg); |
| void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg); |
| void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg); |
| void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg); |
| void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg); |
| void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg); |
| void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg); |
| void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret); |
| void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret); |
| void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret); |
| void crypto_stats_rng_seed(struct crypto_alg *alg, int ret); |
| void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret); |
| void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); |
| void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); |
| #else |
| static inline void crypto_stats_init(struct crypto_alg *alg) |
| {} |
| static inline void crypto_stats_get(struct crypto_alg *alg) |
| {} |
| static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) |
| {} |
| static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) |
| {} |
| static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg) |
| {} |
| static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg) |
| {} |
| static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg) |
| {} |
| static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg) |
| {} |
| static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg) |
| {} |
| static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg) |
| {} |
| static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg) |
| {} |
| static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg) |
| {} |
| static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret) |
| {} |
| static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret) |
| {} |
| static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret) |
| {} |
| static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) |
| {} |
| static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) |
| {} |
| static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) |
| {} |
| static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) |
| {} |
| #endif |
| /* |
| * A helper struct for waiting for completion of async crypto ops |
| */ |
| struct crypto_wait { |
| struct completion completion; |
| int err; |
| }; |
| |
| /* |
| * Macro for declaring a crypto op async wait object on stack |
| */ |
| #define DECLARE_CRYPTO_WAIT(_wait) \ |
| struct crypto_wait _wait = { \ |
| COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } |
| |
| /* |
| * Async ops completion helper functioons |
| */ |
| void crypto_req_done(struct crypto_async_request *req, int err); |
| |
| static inline int crypto_wait_req(int err, struct crypto_wait *wait) |
| { |
| switch (err) { |
| case -EINPROGRESS: |
| case -EBUSY: |
| wait_for_completion(&wait->completion); |
| reinit_completion(&wait->completion); |
| err = wait->err; |
| break; |
| } |
| |
| return err; |
| } |
| |
| static inline void crypto_init_wait(struct crypto_wait *wait) |
| { |
| init_completion(&wait->completion); |
| } |
| |
| /* |
| * Algorithm registration interface. |
| */ |
| int crypto_register_alg(struct crypto_alg *alg); |
| void crypto_unregister_alg(struct crypto_alg *alg); |
| int crypto_register_algs(struct crypto_alg *algs, int count); |
| void crypto_unregister_algs(struct crypto_alg *algs, int count); |
| |
| /* |
| * Algorithm query interface. |
| */ |
| int crypto_has_alg(const char *name, u32 type, u32 mask); |
| |
| /* |
| * Transforms: user-instantiated objects which encapsulate algorithms |
| * and core processing logic. Managed via crypto_alloc_*() and |
| * crypto_free_*(), as well as the various helpers below. |
| */ |
| |
| struct crypto_tfm { |
| |
| u32 crt_flags; |
| |
| void (*exit)(struct crypto_tfm *tfm); |
| |
| struct crypto_alg *__crt_alg; |
| |
| void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; |
| }; |
| |
| struct crypto_cipher { |
| struct crypto_tfm base; |
| }; |
| |
| struct crypto_comp { |
| struct crypto_tfm base; |
| }; |
| |
| enum { |
| CRYPTOA_UNSPEC, |
| CRYPTOA_ALG, |
| CRYPTOA_TYPE, |
| CRYPTOA_U32, |
| __CRYPTOA_MAX, |
| }; |
| |
| #define CRYPTOA_MAX (__CRYPTOA_MAX - 1) |
| |
| /* Maximum number of (rtattr) parameters for each template. */ |
| #define CRYPTO_MAX_ATTRS 32 |
| |
| struct crypto_attr_alg { |
| char name[CRYPTO_MAX_ALG_NAME]; |
| }; |
| |
| struct crypto_attr_type { |
| u32 type; |
| u32 mask; |
| }; |
| |
| struct crypto_attr_u32 { |
| u32 num; |
| }; |
| |
| /* |
| * Transform user interface. |
| */ |
| |
| struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); |
| void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); |
| |
| static inline void crypto_free_tfm(struct crypto_tfm *tfm) |
| { |
| return crypto_destroy_tfm(tfm, tfm); |
| } |
| |
| int alg_test(const char *driver, const char *alg, u32 type, u32 mask); |
| |
| /* |
| * Transform helpers which query the underlying algorithm. |
| */ |
| static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) |
| { |
| return tfm->__crt_alg->cra_name; |
| } |
| |
| static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) |
| { |
| return tfm->__crt_alg->cra_driver_name; |
| } |
| |
| static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) |
| { |
| return tfm->__crt_alg->cra_priority; |
| } |
| |
| static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) |
| { |
| return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; |
| } |
| |
| static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) |
| { |
| return tfm->__crt_alg->cra_blocksize; |
| } |
| |
| static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) |
| { |
| return tfm->__crt_alg->cra_alignmask; |
| } |
| |
| static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) |
| { |
| return tfm->crt_flags; |
| } |
| |
| static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) |
| { |
| tfm->crt_flags |= flags; |
| } |
| |
| static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) |
| { |
| tfm->crt_flags &= ~flags; |
| } |
| |
| static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) |
| { |
| return tfm->__crt_ctx; |
| } |
| |
| static inline unsigned int crypto_tfm_ctx_alignment(void) |
| { |
| struct crypto_tfm *tfm; |
| return __alignof__(tfm->__crt_ctx); |
| } |
| |
| /** |
| * DOC: Single Block Cipher API |
| * |
| * The single block cipher API is used with the ciphers of type |
| * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). |
| * |
| * Using the single block cipher API calls, operations with the basic cipher |
| * primitive can be implemented. These cipher primitives exclude any block |
| * chaining operations including IV handling. |
| * |
| * The purpose of this single block cipher API is to support the implementation |
| * of templates or other concepts that only need to perform the cipher operation |
| * on one block at a time. Templates invoke the underlying cipher primitive |
| * block-wise and process either the input or the output data of these cipher |
| * operations. |
| */ |
| |
| static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) |
| { |
| return (struct crypto_cipher *)tfm; |
| } |
| |
| /** |
| * crypto_alloc_cipher() - allocate single block cipher handle |
| * @alg_name: is the cra_name / name or cra_driver_name / driver name of the |
| * single block cipher |
| * @type: specifies the type of the cipher |
| * @mask: specifies the mask for the cipher |
| * |
| * Allocate a cipher handle for a single block cipher. The returned struct |
| * crypto_cipher is the cipher handle that is required for any subsequent API |
| * invocation for that single block cipher. |
| * |
| * Return: allocated cipher handle in case of success; IS_ERR() is true in case |
| * of an error, PTR_ERR() returns the error code. |
| */ |
| static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, |
| u32 type, u32 mask) |
| { |
| type &= ~CRYPTO_ALG_TYPE_MASK; |
| type |= CRYPTO_ALG_TYPE_CIPHER; |
| mask |= CRYPTO_ALG_TYPE_MASK; |
| |
| return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); |
| } |
| |
| static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) |
| { |
| return &tfm->base; |
| } |
| |
| /** |
| * crypto_free_cipher() - zeroize and free the single block cipher handle |
| * @tfm: cipher handle to be freed |
| */ |
| static inline void crypto_free_cipher(struct crypto_cipher *tfm) |
| { |
| crypto_free_tfm(crypto_cipher_tfm(tfm)); |
| } |
| |
| /** |
| * crypto_has_cipher() - Search for the availability of a single block cipher |
| * @alg_name: is the cra_name / name or cra_driver_name / driver name of the |
| * single block cipher |
| * @type: specifies the type of the cipher |
| * @mask: specifies the mask for the cipher |
| * |
| * Return: true when the single block cipher is known to the kernel crypto API; |
| * false otherwise |
| */ |
| static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) |
| { |
| type &= ~CRYPTO_ALG_TYPE_MASK; |
| type |= CRYPTO_ALG_TYPE_CIPHER; |
| mask |= CRYPTO_ALG_TYPE_MASK; |
| |
| return crypto_has_alg(alg_name, type, mask); |
| } |
| |
| /** |
| * crypto_cipher_blocksize() - obtain block size for cipher |
| * @tfm: cipher handle |
| * |
| * The block size for the single block cipher referenced with the cipher handle |
| * tfm is returned. The caller may use that information to allocate appropriate |
| * memory for the data returned by the encryption or decryption operation |
| * |
| * Return: block size of cipher |
| */ |
| static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) |
| { |
| return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); |
| } |
| |
| static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) |
| { |
| return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); |
| } |
| |
| static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) |
| { |
| return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); |
| } |
| |
| static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, |
| u32 flags) |
| { |
| crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); |
| } |
| |
| static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, |
| u32 flags) |
| { |
| crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); |
| } |
| |
| /** |
| * crypto_cipher_setkey() - set key for cipher |
| * @tfm: cipher handle |
| * @key: buffer holding the key |
| * @keylen: length of the key in bytes |
| * |
| * The caller provided key is set for the single block cipher referenced by the |
| * cipher handle. |
| * |
| * Note, the key length determines the cipher type. Many block ciphers implement |
| * different cipher modes depending on the key size, such as AES-128 vs AES-192 |
| * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 |
| * is performed. |
| * |
| * Return: 0 if the setting of the key was successful; < 0 if an error occurred |
| */ |
| int crypto_cipher_setkey(struct crypto_cipher *tfm, |
| const u8 *key, unsigned int keylen); |
| |
| /** |
| * crypto_cipher_encrypt_one() - encrypt one block of plaintext |
| * @tfm: cipher handle |
| * @dst: points to the buffer that will be filled with the ciphertext |
| * @src: buffer holding the plaintext to be encrypted |
| * |
| * Invoke the encryption operation of one block. The caller must ensure that |
| * the plaintext and ciphertext buffers are at least one block in size. |
| */ |
| void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, |
| u8 *dst, const u8 *src); |
| |
| /** |
| * crypto_cipher_decrypt_one() - decrypt one block of ciphertext |
| * @tfm: cipher handle |
| * @dst: points to the buffer that will be filled with the plaintext |
| * @src: buffer holding the ciphertext to be decrypted |
| * |
| * Invoke the decryption operation of one block. The caller must ensure that |
| * the plaintext and ciphertext buffers are at least one block in size. |
| */ |
| void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, |
| u8 *dst, const u8 *src); |
| |
| static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) |
| { |
| return (struct crypto_comp *)tfm; |
| } |
| |
| static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, |
| u32 type, u32 mask) |
| { |
| type &= ~CRYPTO_ALG_TYPE_MASK; |
| type |= CRYPTO_ALG_TYPE_COMPRESS; |
| mask |= CRYPTO_ALG_TYPE_MASK; |
| |
| return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); |
| } |
| |
| static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) |
| { |
| return &tfm->base; |
| } |
| |
| static inline void crypto_free_comp(struct crypto_comp *tfm) |
| { |
| crypto_free_tfm(crypto_comp_tfm(tfm)); |
| } |
| |
| static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) |
| { |
| type &= ~CRYPTO_ALG_TYPE_MASK; |
| type |= CRYPTO_ALG_TYPE_COMPRESS; |
| mask |= CRYPTO_ALG_TYPE_MASK; |
| |
| return crypto_has_alg(alg_name, type, mask); |
| } |
| |
| static inline const char *crypto_comp_name(struct crypto_comp *tfm) |
| { |
| return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); |
| } |
| |
| int crypto_comp_compress(struct crypto_comp *tfm, |
| const u8 *src, unsigned int slen, |
| u8 *dst, unsigned int *dlen); |
| |
| int crypto_comp_decompress(struct crypto_comp *tfm, |
| const u8 *src, unsigned int slen, |
| u8 *dst, unsigned int *dlen); |
| |
| #endif /* _LINUX_CRYPTO_H */ |
| |