| /* |
| * Copyright 2002-2005, Instant802 Networks, Inc. |
| * Copyright 2005-2006, Devicescape Software, Inc. |
| * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> |
| * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/skbuff.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/rcupdate.h> |
| #include <net/mac80211.h> |
| #include <net/ieee80211_radiotap.h> |
| |
| #include "ieee80211_i.h" |
| #include "ieee80211_led.h" |
| #include "wep.h" |
| #include "wpa.h" |
| #include "tkip.h" |
| #include "wme.h" |
| |
| u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw, |
| struct tid_ampdu_rx *tid_agg_rx, |
| struct sk_buff *skb, u16 mpdu_seq_num, |
| int bar_req); |
| /* |
| * monitor mode reception |
| * |
| * This function cleans up the SKB, i.e. it removes all the stuff |
| * only useful for monitoring. |
| */ |
| static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, |
| struct sk_buff *skb, |
| int rtap_len) |
| { |
| skb_pull(skb, rtap_len); |
| |
| if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { |
| if (likely(skb->len > FCS_LEN)) |
| skb_trim(skb, skb->len - FCS_LEN); |
| else { |
| /* driver bug */ |
| WARN_ON(1); |
| dev_kfree_skb(skb); |
| skb = NULL; |
| } |
| } |
| |
| return skb; |
| } |
| |
| static inline int should_drop_frame(struct ieee80211_rx_status *status, |
| struct sk_buff *skb, |
| int present_fcs_len, |
| int radiotap_len) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| |
| if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) |
| return 1; |
| if (unlikely(skb->len < 16 + present_fcs_len + radiotap_len)) |
| return 1; |
| if (((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == |
| cpu_to_le16(IEEE80211_FTYPE_CTL)) && |
| ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) != |
| cpu_to_le16(IEEE80211_STYPE_PSPOLL)) && |
| ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) != |
| cpu_to_le16(IEEE80211_STYPE_BACK_REQ))) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * This function copies a received frame to all monitor interfaces and |
| * returns a cleaned-up SKB that no longer includes the FCS nor the |
| * radiotap header the driver might have added. |
| */ |
| static struct sk_buff * |
| ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, |
| struct ieee80211_rx_status *status, |
| struct ieee80211_rate *rate) |
| { |
| struct ieee80211_sub_if_data *sdata; |
| int needed_headroom = 0; |
| struct ieee80211_radiotap_header *rthdr; |
| __le64 *rttsft = NULL; |
| struct ieee80211_rtap_fixed_data { |
| u8 flags; |
| u8 rate; |
| __le16 chan_freq; |
| __le16 chan_flags; |
| u8 antsignal; |
| u8 padding_for_rxflags; |
| __le16 rx_flags; |
| } __attribute__ ((packed)) *rtfixed; |
| struct sk_buff *skb, *skb2; |
| struct net_device *prev_dev = NULL; |
| int present_fcs_len = 0; |
| int rtap_len = 0; |
| |
| /* |
| * First, we may need to make a copy of the skb because |
| * (1) we need to modify it for radiotap (if not present), and |
| * (2) the other RX handlers will modify the skb we got. |
| * |
| * We don't need to, of course, if we aren't going to return |
| * the SKB because it has a bad FCS/PLCP checksum. |
| */ |
| if (status->flag & RX_FLAG_RADIOTAP) |
| rtap_len = ieee80211_get_radiotap_len(origskb->data); |
| else |
| /* room for radiotap header, always present fields and TSFT */ |
| needed_headroom = sizeof(*rthdr) + sizeof(*rtfixed) + 8; |
| |
| if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) |
| present_fcs_len = FCS_LEN; |
| |
| if (!local->monitors) { |
| if (should_drop_frame(status, origskb, present_fcs_len, |
| rtap_len)) { |
| dev_kfree_skb(origskb); |
| return NULL; |
| } |
| |
| return remove_monitor_info(local, origskb, rtap_len); |
| } |
| |
| if (should_drop_frame(status, origskb, present_fcs_len, rtap_len)) { |
| /* only need to expand headroom if necessary */ |
| skb = origskb; |
| origskb = NULL; |
| |
| /* |
| * This shouldn't trigger often because most devices have an |
| * RX header they pull before we get here, and that should |
| * be big enough for our radiotap information. We should |
| * probably export the length to drivers so that we can have |
| * them allocate enough headroom to start with. |
| */ |
| if (skb_headroom(skb) < needed_headroom && |
| pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { |
| dev_kfree_skb(skb); |
| return NULL; |
| } |
| } else { |
| /* |
| * Need to make a copy and possibly remove radiotap header |
| * and FCS from the original. |
| */ |
| skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); |
| |
| origskb = remove_monitor_info(local, origskb, rtap_len); |
| |
| if (!skb) |
| return origskb; |
| } |
| |
| /* if necessary, prepend radiotap information */ |
| if (!(status->flag & RX_FLAG_RADIOTAP)) { |
| rtfixed = (void *) skb_push(skb, sizeof(*rtfixed)); |
| rtap_len = sizeof(*rthdr) + sizeof(*rtfixed); |
| if (status->flag & RX_FLAG_TSFT) { |
| rttsft = (void *) skb_push(skb, sizeof(*rttsft)); |
| rtap_len += 8; |
| } |
| rthdr = (void *) skb_push(skb, sizeof(*rthdr)); |
| memset(rthdr, 0, sizeof(*rthdr)); |
| memset(rtfixed, 0, sizeof(*rtfixed)); |
| rthdr->it_present = |
| cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | |
| (1 << IEEE80211_RADIOTAP_RATE) | |
| (1 << IEEE80211_RADIOTAP_CHANNEL) | |
| (1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL) | |
| (1 << IEEE80211_RADIOTAP_RX_FLAGS)); |
| rtfixed->flags = 0; |
| if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) |
| rtfixed->flags |= IEEE80211_RADIOTAP_F_FCS; |
| |
| if (rttsft) { |
| *rttsft = cpu_to_le64(status->mactime); |
| rthdr->it_present |= |
| cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); |
| } |
| |
| /* FIXME: when radiotap gets a 'bad PLCP' flag use it here */ |
| rtfixed->rx_flags = 0; |
| if (status->flag & |
| (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) |
| rtfixed->rx_flags |= |
| cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS); |
| |
| rtfixed->rate = rate->bitrate / 5; |
| |
| rtfixed->chan_freq = cpu_to_le16(status->freq); |
| |
| if (status->band == IEEE80211_BAND_5GHZ) |
| rtfixed->chan_flags = |
| cpu_to_le16(IEEE80211_CHAN_OFDM | |
| IEEE80211_CHAN_5GHZ); |
| else |
| rtfixed->chan_flags = |
| cpu_to_le16(IEEE80211_CHAN_DYN | |
| IEEE80211_CHAN_2GHZ); |
| |
| rtfixed->antsignal = status->ssi; |
| rthdr->it_len = cpu_to_le16(rtap_len); |
| } |
| |
| skb_reset_mac_header(skb); |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| skb->pkt_type = PACKET_OTHERHOST; |
| skb->protocol = htons(ETH_P_802_2); |
| |
| list_for_each_entry_rcu(sdata, &local->interfaces, list) { |
| if (!netif_running(sdata->dev)) |
| continue; |
| |
| if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR) |
| continue; |
| |
| if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) |
| continue; |
| |
| if (prev_dev) { |
| skb2 = skb_clone(skb, GFP_ATOMIC); |
| if (skb2) { |
| skb2->dev = prev_dev; |
| netif_rx(skb2); |
| } |
| } |
| |
| prev_dev = sdata->dev; |
| sdata->dev->stats.rx_packets++; |
| sdata->dev->stats.rx_bytes += skb->len; |
| } |
| |
| if (prev_dev) { |
| skb->dev = prev_dev; |
| netif_rx(skb); |
| } else |
| dev_kfree_skb(skb); |
| |
| return origskb; |
| } |
| |
| |
| static void ieee80211_parse_qos(struct ieee80211_txrx_data *rx) |
| { |
| u8 *data = rx->skb->data; |
| int tid; |
| |
| /* does the frame have a qos control field? */ |
| if (WLAN_FC_IS_QOS_DATA(rx->fc)) { |
| u8 *qc = data + ieee80211_get_hdrlen(rx->fc) - QOS_CONTROL_LEN; |
| /* frame has qos control */ |
| tid = qc[0] & QOS_CONTROL_TID_MASK; |
| if (qc[0] & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT) |
| rx->flags |= IEEE80211_TXRXD_RX_AMSDU; |
| else |
| rx->flags &= ~IEEE80211_TXRXD_RX_AMSDU; |
| } else { |
| if (unlikely((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)) { |
| /* Separate TID for management frames */ |
| tid = NUM_RX_DATA_QUEUES - 1; |
| } else { |
| /* no qos control present */ |
| tid = 0; /* 802.1d - Best Effort */ |
| } |
| } |
| |
| I802_DEBUG_INC(rx->local->wme_rx_queue[tid]); |
| /* only a debug counter, sta might not be assigned properly yet */ |
| if (rx->sta) |
| I802_DEBUG_INC(rx->sta->wme_rx_queue[tid]); |
| |
| rx->u.rx.queue = tid; |
| /* Set skb->priority to 1d tag if highest order bit of TID is not set. |
| * For now, set skb->priority to 0 for other cases. */ |
| rx->skb->priority = (tid > 7) ? 0 : tid; |
| } |
| |
| static void ieee80211_verify_ip_alignment(struct ieee80211_txrx_data *rx) |
| { |
| #ifdef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT |
| int hdrlen; |
| |
| if (!WLAN_FC_DATA_PRESENT(rx->fc)) |
| return; |
| |
| /* |
| * Drivers are required to align the payload data in a way that |
| * guarantees that the contained IP header is aligned to a four- |
| * byte boundary. In the case of regular frames, this simply means |
| * aligning the payload to a four-byte boundary (because either |
| * the IP header is directly contained, or IV/RFC1042 headers that |
| * have a length divisible by four are in front of it. |
| * |
| * With A-MSDU frames, however, the payload data address must |
| * yield two modulo four because there are 14-byte 802.3 headers |
| * within the A-MSDU frames that push the IP header further back |
| * to a multiple of four again. Thankfully, the specs were sane |
| * enough this time around to require padding each A-MSDU subframe |
| * to a length that is a multiple of four. |
| * |
| * Padding like atheros hardware adds which is inbetween the 802.11 |
| * header and the payload is not supported, the driver is required |
| * to move the 802.11 header further back in that case. |
| */ |
| hdrlen = ieee80211_get_hdrlen(rx->fc); |
| if (rx->flags & IEEE80211_TXRXD_RX_AMSDU) |
| hdrlen += ETH_HLEN; |
| WARN_ON_ONCE(((unsigned long)(rx->skb->data + hdrlen)) & 3); |
| #endif |
| } |
| |
| |
| static u32 ieee80211_rx_load_stats(struct ieee80211_local *local, |
| struct sk_buff *skb, |
| struct ieee80211_rx_status *status, |
| struct ieee80211_rate *rate) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| u32 load = 0, hdrtime; |
| |
| /* Estimate total channel use caused by this frame */ |
| |
| /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values, |
| * 1 usec = 1/8 * (1080 / 10) = 13.5 */ |
| |
| if (status->band == IEEE80211_BAND_5GHZ || |
| (status->band == IEEE80211_BAND_5GHZ && |
| rate->flags & IEEE80211_RATE_ERP_G)) |
| hdrtime = CHAN_UTIL_HDR_SHORT; |
| else |
| hdrtime = CHAN_UTIL_HDR_LONG; |
| |
| load = hdrtime; |
| if (!is_multicast_ether_addr(hdr->addr1)) |
| load += hdrtime; |
| |
| /* TODO: optimise again */ |
| load += skb->len * CHAN_UTIL_RATE_LCM / rate->bitrate; |
| |
| /* Divide channel_use by 8 to avoid wrapping around the counter */ |
| load >>= CHAN_UTIL_SHIFT; |
| |
| return load; |
| } |
| |
| /* rx handlers */ |
| |
| static ieee80211_rx_result |
| ieee80211_rx_h_if_stats(struct ieee80211_txrx_data *rx) |
| { |
| if (rx->sta) |
| rx->sta->channel_use_raw += rx->u.rx.load; |
| rx->sdata->channel_use_raw += rx->u.rx.load; |
| return RX_CONTINUE; |
| } |
| |
| static ieee80211_rx_result |
| ieee80211_rx_h_passive_scan(struct ieee80211_txrx_data *rx) |
| { |
| struct ieee80211_local *local = rx->local; |
| struct sk_buff *skb = rx->skb; |
| |
| if (unlikely(local->sta_hw_scanning)) |
| return ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status); |
| |
| if (unlikely(local->sta_sw_scanning)) { |
| /* drop all the other packets during a software scan anyway */ |
| if (ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status) |
| != RX_QUEUED) |
| dev_kfree_skb(skb); |
| return RX_QUEUED; |
| } |
| |
| if (unlikely(rx->flags & IEEE80211_TXRXD_RXIN_SCAN)) { |
| /* scanning finished during invoking of handlers */ |
| I802_DEBUG_INC(local->rx_handlers_drop_passive_scan); |
| return RX_DROP_UNUSABLE; |
| } |
| |
| return RX_CONTINUE; |
| } |
| |
| static ieee80211_rx_result |
| ieee80211_rx_h_check(struct ieee80211_txrx_data *rx) |
| { |
| struct ieee80211_hdr *hdr; |
| hdr = (struct ieee80211_hdr *) rx->skb->data; |
| |
| /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */ |
| if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) { |
| if (unlikely(rx->fc & IEEE80211_FCTL_RETRY && |
| rx->sta->last_seq_ctrl[rx->u.rx.queue] == |
| hdr->seq_ctrl)) { |
| if (rx->flags & IEEE80211_TXRXD_RXRA_MATCH) { |
| rx->local->dot11FrameDuplicateCount++; |
| rx->sta->num_duplicates++; |
| } |
| return RX_DROP_MONITOR; |
| } else |
| rx->sta->last_seq_ctrl[rx->u.rx.queue] = hdr->seq_ctrl; |
| } |
| |
| if (unlikely(rx->skb->len < 16)) { |
| I802_DEBUG_INC(rx->local->rx_handlers_drop_short); |
| return RX_DROP_MONITOR; |
| } |
| |
| /* Drop disallowed frame classes based on STA auth/assoc state; |
| * IEEE 802.11, Chap 5.5. |
| * |
| * 80211.o does filtering only based on association state, i.e., it |
| * drops Class 3 frames from not associated stations. hostapd sends |
| * deauth/disassoc frames when needed. In addition, hostapd is |
| * responsible for filtering on both auth and assoc states. |
| */ |
| if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA || |
| ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL && |
| (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) && |
| rx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS && |
| (!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) { |
| if ((!(rx->fc & IEEE80211_FCTL_FROMDS) && |
| !(rx->fc & IEEE80211_FCTL_TODS) && |
| (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) |
| || !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) { |
| /* Drop IBSS frames and frames for other hosts |
| * silently. */ |
| return RX_DROP_MONITOR; |
| } |
| |
| return RX_DROP_MONITOR; |
| } |
| |
| return RX_CONTINUE; |
| } |
| |
| |
| static ieee80211_rx_result |
| ieee80211_rx_h_decrypt(struct ieee80211_txrx_data *rx) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; |
| int keyidx; |
| int hdrlen; |
| ieee80211_rx_result result = RX_DROP_UNUSABLE; |
| struct ieee80211_key *stakey = NULL; |
| |
| /* |
| * Key selection 101 |
| * |
| * There are three types of keys: |
| * - GTK (group keys) |
| * - PTK (pairwise keys) |
| * - STK (station-to-station pairwise keys) |
| * |
| * When selecting a key, we have to distinguish between multicast |
| * (including broadcast) and unicast frames, the latter can only |
| * use PTKs and STKs while the former always use GTKs. Unless, of |
| * course, actual WEP keys ("pre-RSNA") are used, then unicast |
| * frames can also use key indizes like GTKs. Hence, if we don't |
| * have a PTK/STK we check the key index for a WEP key. |
| * |
| * Note that in a regular BSS, multicast frames are sent by the |
| * AP only, associated stations unicast the frame to the AP first |
| * which then multicasts it on their behalf. |
| * |
| * There is also a slight problem in IBSS mode: GTKs are negotiated |
| * with each station, that is something we don't currently handle. |
| * The spec seems to expect that one negotiates the same key with |
| * every station but there's no such requirement; VLANs could be |
| * possible. |
| */ |
| |
| if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) |
| return RX_CONTINUE; |
| |
| /* |
| * No point in finding a key and decrypting if the frame is neither |
| * addressed to us nor a multicast frame. |
| */ |
| if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) |
| return RX_CONTINUE; |
| |
| if (rx->sta) |
| stakey = rcu_dereference(rx->sta->key); |
| |
| if (!is_multicast_ether_addr(hdr->addr1) && stakey) { |
| rx->key = stakey; |
| } else { |
| /* |
| * The device doesn't give us the IV so we won't be |
| * able to look up the key. That's ok though, we |
| * don't need to decrypt the frame, we just won't |
| * be able to keep statistics accurate. |
| * Except for key threshold notifications, should |
| * we somehow allow the driver to tell us which key |
| * the hardware used if this flag is set? |
| */ |
| if ((rx->u.rx.status->flag & RX_FLAG_DECRYPTED) && |
| (rx->u.rx.status->flag & RX_FLAG_IV_STRIPPED)) |
| return RX_CONTINUE; |
| |
| hdrlen = ieee80211_get_hdrlen(rx->fc); |
| |
| if (rx->skb->len < 8 + hdrlen) |
| return RX_DROP_UNUSABLE; /* TODO: count this? */ |
| |
| /* |
| * no need to call ieee80211_wep_get_keyidx, |
| * it verifies a bunch of things we've done already |
| */ |
| keyidx = rx->skb->data[hdrlen + 3] >> 6; |
| |
| rx->key = rcu_dereference(rx->sdata->keys[keyidx]); |
| |
| /* |
| * RSNA-protected unicast frames should always be sent with |
| * pairwise or station-to-station keys, but for WEP we allow |
| * using a key index as well. |
| */ |
| if (rx->key && rx->key->conf.alg != ALG_WEP && |
| !is_multicast_ether_addr(hdr->addr1)) |
| rx->key = NULL; |
| } |
| |
| if (rx->key) { |
| rx->key->tx_rx_count++; |
| /* TODO: add threshold stuff again */ |
| } else { |
| #ifdef CONFIG_MAC80211_DEBUG |
| if (net_ratelimit()) |
| printk(KERN_DEBUG "%s: RX protected frame," |
| " but have no key\n", rx->dev->name); |
| #endif /* CONFIG_MAC80211_DEBUG */ |
| return RX_DROP_MONITOR; |
| } |
| |
| /* Check for weak IVs if possible */ |
| if (rx->sta && rx->key->conf.alg == ALG_WEP && |
| ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) && |
| (!(rx->u.rx.status->flag & RX_FLAG_IV_STRIPPED) || |
| !(rx->u.rx.status->flag & RX_FLAG_DECRYPTED)) && |
| ieee80211_wep_is_weak_iv(rx->skb, rx->key)) |
| rx->sta->wep_weak_iv_count++; |
| |
| switch (rx->key->conf.alg) { |
| case ALG_WEP: |
| result = ieee80211_crypto_wep_decrypt(rx); |
| break; |
| case ALG_TKIP: |
| result = ieee80211_crypto_tkip_decrypt(rx); |
| break; |
| case ALG_CCMP: |
| result = ieee80211_crypto_ccmp_decrypt(rx); |
| break; |
| } |
| |
| /* either the frame has been decrypted or will be dropped */ |
| rx->u.rx.status->flag |= RX_FLAG_DECRYPTED; |
| |
| return result; |
| } |
| |
| static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta) |
| { |
| struct ieee80211_sub_if_data *sdata; |
| DECLARE_MAC_BUF(mac); |
| |
| sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev); |
| |
| if (sdata->bss) |
| atomic_inc(&sdata->bss->num_sta_ps); |
| sta->flags |= WLAN_STA_PS; |
| sta->pspoll = 0; |
| #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| printk(KERN_DEBUG "%s: STA %s aid %d enters power save mode\n", |
| dev->name, print_mac(mac, sta->addr), sta->aid); |
| #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| } |
| |
| static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct sk_buff *skb; |
| int sent = 0; |
| struct ieee80211_sub_if_data *sdata; |
| struct ieee80211_tx_packet_data *pkt_data; |
| DECLARE_MAC_BUF(mac); |
| |
| sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev); |
| if (sdata->bss) |
| atomic_dec(&sdata->bss->num_sta_ps); |
| sta->flags &= ~(WLAN_STA_PS | WLAN_STA_TIM); |
| sta->pspoll = 0; |
| if (!skb_queue_empty(&sta->ps_tx_buf)) { |
| if (local->ops->set_tim) |
| local->ops->set_tim(local_to_hw(local), sta->aid, 0); |
| if (sdata->bss) |
| bss_tim_clear(local, sdata->bss, sta->aid); |
| } |
| #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| printk(KERN_DEBUG "%s: STA %s aid %d exits power save mode\n", |
| dev->name, print_mac(mac, sta->addr), sta->aid); |
| #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| /* Send all buffered frames to the station */ |
| while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) { |
| pkt_data = (struct ieee80211_tx_packet_data *) skb->cb; |
| sent++; |
| pkt_data->flags |= IEEE80211_TXPD_REQUEUE; |
| dev_queue_xmit(skb); |
| } |
| while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) { |
| pkt_data = (struct ieee80211_tx_packet_data *) skb->cb; |
| local->total_ps_buffered--; |
| sent++; |
| #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| printk(KERN_DEBUG "%s: STA %s aid %d send PS frame " |
| "since STA not sleeping anymore\n", dev->name, |
| print_mac(mac, sta->addr), sta->aid); |
| #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| pkt_data->flags |= IEEE80211_TXPD_REQUEUE; |
| dev_queue_xmit(skb); |
| } |
| |
| return sent; |
| } |
| |
| static ieee80211_rx_result |
| ieee80211_rx_h_sta_process(struct ieee80211_txrx_data *rx) |
| { |
| struct sta_info *sta = rx->sta; |
| struct net_device *dev = rx->dev; |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; |
| |
| if (!sta) |
| return RX_CONTINUE; |
| |
| /* Update last_rx only for IBSS packets which are for the current |
| * BSSID to avoid keeping the current IBSS network alive in cases where |
| * other STAs are using different BSSID. */ |
| if (rx->sdata->vif.type == IEEE80211_IF_TYPE_IBSS) { |
| u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, |
| IEEE80211_IF_TYPE_IBSS); |
| if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0) |
| sta->last_rx = jiffies; |
| } else |
| if (!is_multicast_ether_addr(hdr->addr1) || |
| rx->sdata->vif.type == IEEE80211_IF_TYPE_STA) { |
| /* Update last_rx only for unicast frames in order to prevent |
| * the Probe Request frames (the only broadcast frames from a |
| * STA in infrastructure mode) from keeping a connection alive. |
| */ |
| sta->last_rx = jiffies; |
| } |
| |
| if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) |
| return RX_CONTINUE; |
| |
| sta->rx_fragments++; |
| sta->rx_bytes += rx->skb->len; |
| sta->last_rssi = rx->u.rx.status->ssi; |
| sta->last_signal = rx->u.rx.status->signal; |
| sta->last_noise = rx->u.rx.status->noise; |
| |
| if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) { |
| /* Change STA power saving mode only in the end of a frame |
| * exchange sequence */ |
| if ((sta->flags & WLAN_STA_PS) && !(rx->fc & IEEE80211_FCTL_PM)) |
| rx->u.rx.sent_ps_buffered += ap_sta_ps_end(dev, sta); |
| else if (!(sta->flags & WLAN_STA_PS) && |
| (rx->fc & IEEE80211_FCTL_PM)) |
| ap_sta_ps_start(dev, sta); |
| } |
| |
| /* Drop data::nullfunc frames silently, since they are used only to |
| * control station power saving mode. */ |
| if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA && |
| (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) { |
| I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); |
| /* Update counter and free packet here to avoid counting this |
| * as a dropped packed. */ |
| sta->rx_packets++; |
| dev_kfree_skb(rx->skb); |
| return RX_QUEUED; |
| } |
| |
| return RX_CONTINUE; |
| } /* ieee80211_rx_h_sta_process */ |
| |
| static inline struct ieee80211_fragment_entry * |
| ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, |
| unsigned int frag, unsigned int seq, int rx_queue, |
| struct sk_buff **skb) |
| { |
| struct ieee80211_fragment_entry *entry; |
| int idx; |
| |
| idx = sdata->fragment_next; |
| entry = &sdata->fragments[sdata->fragment_next++]; |
| if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) |
| sdata->fragment_next = 0; |
| |
| if (!skb_queue_empty(&entry->skb_list)) { |
| #ifdef CONFIG_MAC80211_DEBUG |
| struct ieee80211_hdr *hdr = |
| (struct ieee80211_hdr *) entry->skb_list.next->data; |
| DECLARE_MAC_BUF(mac); |
| DECLARE_MAC_BUF(mac2); |
| printk(KERN_DEBUG "%s: RX reassembly removed oldest " |
| "fragment entry (idx=%d age=%lu seq=%d last_frag=%d " |
| "addr1=%s addr2=%s\n", |
| sdata->dev->name, idx, |
| jiffies - entry->first_frag_time, entry->seq, |
| entry->last_frag, print_mac(mac, hdr->addr1), |
| print_mac(mac2, hdr->addr2)); |
| #endif /* CONFIG_MAC80211_DEBUG */ |
| __skb_queue_purge(&entry->skb_list); |
| } |
| |
| __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ |
| *skb = NULL; |
| entry->first_frag_time = jiffies; |
| entry->seq = seq; |
| entry->rx_queue = rx_queue; |
| entry->last_frag = frag; |
| entry->ccmp = 0; |
| entry->extra_len = 0; |
| |
| return entry; |
| } |
| |
| static inline struct ieee80211_fragment_entry * |
| ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, |
| u16 fc, unsigned int frag, unsigned int seq, |
| int rx_queue, struct ieee80211_hdr *hdr) |
| { |
| struct ieee80211_fragment_entry *entry; |
| int i, idx; |
| |
| idx = sdata->fragment_next; |
| for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { |
| struct ieee80211_hdr *f_hdr; |
| u16 f_fc; |
| |
| idx--; |
| if (idx < 0) |
| idx = IEEE80211_FRAGMENT_MAX - 1; |
| |
| entry = &sdata->fragments[idx]; |
| if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || |
| entry->rx_queue != rx_queue || |
| entry->last_frag + 1 != frag) |
| continue; |
| |
| f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data; |
| f_fc = le16_to_cpu(f_hdr->frame_control); |
| |
| if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) || |
| compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 || |
| compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0) |
| continue; |
| |
| if (entry->first_frag_time + 2 * HZ < jiffies) { |
| __skb_queue_purge(&entry->skb_list); |
| continue; |
| } |
| return entry; |
| } |
| |
| return NULL; |
| } |
| |
| static ieee80211_rx_result |
| ieee80211_rx_h_defragment(struct ieee80211_txrx_data *rx) |
| { |
| struct ieee80211_hdr *hdr; |
| u16 sc; |
| unsigned int frag, seq; |
| struct ieee80211_fragment_entry *entry; |
| struct sk_buff *skb; |
| DECLARE_MAC_BUF(mac); |
| |
| hdr = (struct ieee80211_hdr *) rx->skb->data; |
| sc = le16_to_cpu(hdr->seq_ctrl); |
| frag = sc & IEEE80211_SCTL_FRAG; |
| |
| if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) || |
| (rx->skb)->len < 24 || |
| is_multicast_ether_addr(hdr->addr1))) { |
| /* not fragmented */ |
| goto out; |
| } |
| I802_DEBUG_INC(rx->local->rx_handlers_fragments); |
| |
| seq = (sc & IEEE80211_SCTL_SEQ) >> 4; |
| |
| if (frag == 0) { |
| /* This is the first fragment of a new frame. */ |
| entry = ieee80211_reassemble_add(rx->sdata, frag, seq, |
| rx->u.rx.queue, &(rx->skb)); |
| if (rx->key && rx->key->conf.alg == ALG_CCMP && |
| (rx->fc & IEEE80211_FCTL_PROTECTED)) { |
| /* Store CCMP PN so that we can verify that the next |
| * fragment has a sequential PN value. */ |
| entry->ccmp = 1; |
| memcpy(entry->last_pn, |
| rx->key->u.ccmp.rx_pn[rx->u.rx.queue], |
| CCMP_PN_LEN); |
| } |
| return RX_QUEUED; |
| } |
| |
| /* This is a fragment for a frame that should already be pending in |
| * fragment cache. Add this fragment to the end of the pending entry. |
| */ |
| entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq, |
| rx->u.rx.queue, hdr); |
| if (!entry) { |
| I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); |
| return RX_DROP_MONITOR; |
| } |
| |
| /* Verify that MPDUs within one MSDU have sequential PN values. |
| * (IEEE 802.11i, 8.3.3.4.5) */ |
| if (entry->ccmp) { |
| int i; |
| u8 pn[CCMP_PN_LEN], *rpn; |
| if (!rx->key || rx->key->conf.alg != ALG_CCMP) |
| return RX_DROP_UNUSABLE; |
| memcpy(pn, entry->last_pn, CCMP_PN_LEN); |
| for (i = CCMP_PN_LEN - 1; i >= 0; i--) { |
| pn[i]++; |
| if (pn[i]) |
| break; |
| } |
| rpn = rx->key->u.ccmp.rx_pn[rx->u.rx.queue]; |
| if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) { |
| if (net_ratelimit()) |
| printk(KERN_DEBUG "%s: defrag: CCMP PN not " |
| "sequential A2=%s" |
| " PN=%02x%02x%02x%02x%02x%02x " |
| "(expected %02x%02x%02x%02x%02x%02x)\n", |
| rx->dev->name, print_mac(mac, hdr->addr2), |
| rpn[0], rpn[1], rpn[2], rpn[3], rpn[4], |
| rpn[5], pn[0], pn[1], pn[2], pn[3], |
| pn[4], pn[5]); |
| return RX_DROP_UNUSABLE; |
| } |
| memcpy(entry->last_pn, pn, CCMP_PN_LEN); |
| } |
| |
| skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc)); |
| __skb_queue_tail(&entry->skb_list, rx->skb); |
| entry->last_frag = frag; |
| entry->extra_len += rx->skb->len; |
| if (rx->fc & IEEE80211_FCTL_MOREFRAGS) { |
| rx->skb = NULL; |
| return RX_QUEUED; |
| } |
| |
| rx->skb = __skb_dequeue(&entry->skb_list); |
| if (skb_tailroom(rx->skb) < entry->extra_len) { |
| I802_DEBUG_INC(rx->local->rx_expand_skb_head2); |
| if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, |
| GFP_ATOMIC))) { |
| I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); |
| __skb_queue_purge(&entry->skb_list); |
| return RX_DROP_UNUSABLE; |
| } |
| } |
| while ((skb = __skb_dequeue(&entry->skb_list))) { |
| memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); |
| dev_kfree_skb(skb); |
| } |
| |
| /* Complete frame has been reassembled - process it now */ |
| rx->flags |= IEEE80211_TXRXD_FRAGMENTED; |
| |
| out: |
| if (rx->sta) |
| rx->sta->rx_packets++; |
| if (is_multicast_ether_addr(hdr->addr1)) |
| rx->local->dot11MulticastReceivedFrameCount++; |
| else |
| ieee80211_led_rx(rx->local); |
| return RX_CONTINUE; |
| } |
| |
| static ieee80211_rx_result |
| ieee80211_rx_h_ps_poll(struct ieee80211_txrx_data *rx) |
| { |
| struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev); |
| struct sk_buff *skb; |
| int no_pending_pkts; |
| DECLARE_MAC_BUF(mac); |
| |
| if (likely(!rx->sta || |
| (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL || |
| (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL || |
| !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))) |
| return RX_CONTINUE; |
| |
| if ((sdata->vif.type != IEEE80211_IF_TYPE_AP) && |
| (sdata->vif.type != IEEE80211_IF_TYPE_VLAN)) |
| return RX_DROP_UNUSABLE; |
| |
| skb = skb_dequeue(&rx->sta->tx_filtered); |
| if (!skb) { |
| skb = skb_dequeue(&rx->sta->ps_tx_buf); |
| if (skb) |
| rx->local->total_ps_buffered--; |
| } |
| no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) && |
| skb_queue_empty(&rx->sta->ps_tx_buf); |
| |
| if (skb) { |
| struct ieee80211_hdr *hdr = |
| (struct ieee80211_hdr *) skb->data; |
| |
| /* tell TX path to send one frame even though the STA may |
| * still remain is PS mode after this frame exchange */ |
| rx->sta->pspoll = 1; |
| |
| #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| printk(KERN_DEBUG "STA %s aid %d: PS Poll (entries after %d)\n", |
| print_mac(mac, rx->sta->addr), rx->sta->aid, |
| skb_queue_len(&rx->sta->ps_tx_buf)); |
| #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| |
| /* Use MoreData flag to indicate whether there are more |
| * buffered frames for this STA */ |
| if (no_pending_pkts) { |
| hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA); |
| rx->sta->flags &= ~WLAN_STA_TIM; |
| } else |
| hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); |
| |
| dev_queue_xmit(skb); |
| |
| if (no_pending_pkts) { |
| if (rx->local->ops->set_tim) |
| rx->local->ops->set_tim(local_to_hw(rx->local), |
| rx->sta->aid, 0); |
| if (rx->sdata->bss) |
| bss_tim_clear(rx->local, rx->sdata->bss, rx->sta->aid); |
| } |
| #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| } else if (!rx->u.rx.sent_ps_buffered) { |
| printk(KERN_DEBUG "%s: STA %s sent PS Poll even " |
| "though there is no buffered frames for it\n", |
| rx->dev->name, print_mac(mac, rx->sta->addr)); |
| #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| |
| } |
| |
| /* Free PS Poll skb here instead of returning RX_DROP that would |
| * count as an dropped frame. */ |
| dev_kfree_skb(rx->skb); |
| |
| return RX_QUEUED; |
| } |
| |
| static ieee80211_rx_result |
| ieee80211_rx_h_remove_qos_control(struct ieee80211_txrx_data *rx) |
| { |
| u16 fc = rx->fc; |
| u8 *data = rx->skb->data; |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) data; |
| |
| if (!WLAN_FC_IS_QOS_DATA(fc)) |
| return RX_CONTINUE; |
| |
| /* remove the qos control field, update frame type and meta-data */ |
| memmove(data + 2, data, ieee80211_get_hdrlen(fc) - 2); |
| hdr = (struct ieee80211_hdr *) skb_pull(rx->skb, 2); |
| /* change frame type to non QOS */ |
| rx->fc = fc &= ~IEEE80211_STYPE_QOS_DATA; |
| hdr->frame_control = cpu_to_le16(fc); |
| |
| return RX_CONTINUE; |
| } |
| |
| static int |
| ieee80211_802_1x_port_control(struct ieee80211_txrx_data *rx) |
| { |
| if (unlikely(!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED))) { |
| #ifdef CONFIG_MAC80211_DEBUG |
| if (net_ratelimit()) |
| printk(KERN_DEBUG "%s: dropped frame " |
| "(unauthorized port)\n", rx->dev->name); |
| #endif /* CONFIG_MAC80211_DEBUG */ |
| return -EACCES; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| ieee80211_drop_unencrypted(struct ieee80211_txrx_data *rx) |
| { |
| /* |
| * Pass through unencrypted frames if the hardware has |
| * decrypted them already. |
| */ |
| if (rx->u.rx.status->flag & RX_FLAG_DECRYPTED) |
| return 0; |
| |
| /* Drop unencrypted frames if key is set. */ |
| if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) && |
| (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA && |
| (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC && |
| (rx->key || rx->sdata->drop_unencrypted))) { |
| if (net_ratelimit()) |
| printk(KERN_DEBUG "%s: RX non-WEP frame, but expected " |
| "encryption\n", rx->dev->name); |
| return -EACCES; |
| } |
| return 0; |
| } |
| |
| static int |
| ieee80211_data_to_8023(struct ieee80211_txrx_data *rx) |
| { |
| struct net_device *dev = rx->dev; |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; |
| u16 fc, hdrlen, ethertype; |
| u8 *payload; |
| u8 dst[ETH_ALEN]; |
| u8 src[ETH_ALEN]; |
| struct sk_buff *skb = rx->skb; |
| struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| DECLARE_MAC_BUF(mac); |
| DECLARE_MAC_BUF(mac2); |
| DECLARE_MAC_BUF(mac3); |
| DECLARE_MAC_BUF(mac4); |
| |
| fc = rx->fc; |
| |
| if (unlikely(!WLAN_FC_DATA_PRESENT(fc))) |
| return -1; |
| |
| hdrlen = ieee80211_get_hdrlen(fc); |
| |
| /* convert IEEE 802.11 header + possible LLC headers into Ethernet |
| * header |
| * IEEE 802.11 address fields: |
| * ToDS FromDS Addr1 Addr2 Addr3 Addr4 |
| * 0 0 DA SA BSSID n/a |
| * 0 1 DA BSSID SA n/a |
| * 1 0 BSSID SA DA n/a |
| * 1 1 RA TA DA SA |
| */ |
| |
| switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { |
| case IEEE80211_FCTL_TODS: |
| /* BSSID SA DA */ |
| memcpy(dst, hdr->addr3, ETH_ALEN); |
| memcpy(src, hdr->addr2, ETH_ALEN); |
| |
| if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_AP && |
| sdata->vif.type != IEEE80211_IF_TYPE_VLAN)) { |
| if (net_ratelimit()) |
| printk(KERN_DEBUG "%s: dropped ToDS frame " |
| "(BSSID=%s SA=%s DA=%s)\n", |
| dev->name, |
| print_mac(mac, hdr->addr1), |
| print_mac(mac2, hdr->addr2), |
| print_mac(mac3, hdr->addr3)); |
| return -1; |
| } |
| break; |
| case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): |
| /* RA TA DA SA */ |
| memcpy(dst, hdr->addr3, ETH_ALEN); |
| memcpy(src, hdr->addr4, ETH_ALEN); |
| |
| if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_WDS)) { |
| if (net_ratelimit()) |
| printk(KERN_DEBUG "%s: dropped FromDS&ToDS " |
| "frame (RA=%s TA=%s DA=%s SA=%s)\n", |
| rx->dev->name, |
| print_mac(mac, hdr->addr1), |
| print_mac(mac2, hdr->addr2), |
| print_mac(mac3, hdr->addr3), |
| print_mac(mac4, hdr->addr4)); |
| return -1; |
| } |
| break; |
| case IEEE80211_FCTL_FROMDS: |
| /* DA BSSID SA */ |
| memcpy(dst, hdr->addr1, ETH_ALEN); |
| memcpy(src, hdr->addr3, ETH_ALEN); |
| |
| if (sdata->vif.type != IEEE80211_IF_TYPE_STA || |
| (is_multicast_ether_addr(dst) && |
| !compare_ether_addr(src, dev->dev_addr))) |
| return -1; |
| break; |
| case 0: |
| /* DA SA BSSID */ |
| memcpy(dst, hdr->addr1, ETH_ALEN); |
| memcpy(src, hdr->addr2, ETH_ALEN); |
| |
| if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS) { |
| if (net_ratelimit()) { |
| printk(KERN_DEBUG "%s: dropped IBSS frame " |
| "(DA=%s SA=%s BSSID=%s)\n", |
| dev->name, |
| print_mac(mac, hdr->addr1), |
| print_mac(mac2, hdr->addr2), |
| print_mac(mac3, hdr->addr3)); |
| } |
| return -1; |
| } |
| break; |
| } |
| |
| if (unlikely(skb->len - hdrlen < 8)) { |
| if (net_ratelimit()) { |
| printk(KERN_DEBUG "%s: RX too short data frame " |
| "payload\n", dev->name); |
| } |
| return -1; |
| } |
| |
| payload = skb->data + hdrlen; |
| ethertype = (payload[6] << 8) | payload[7]; |
| |
| if (likely((compare_ether_addr(payload, rfc1042_header) == 0 && |
| ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || |
| compare_ether_addr(payload, bridge_tunnel_header) == 0)) { |
| /* remove RFC1042 or Bridge-Tunnel encapsulation and |
| * replace EtherType */ |
| skb_pull(skb, hdrlen + 6); |
| memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); |
| memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); |
| } else { |
| struct ethhdr *ehdr; |
| __be16 len; |
| |
| skb_pull(skb, hdrlen); |
| len = htons(skb->len); |
| ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); |
| memcpy(ehdr->h_dest, dst, ETH_ALEN); |
| memcpy(ehdr->h_source, src, ETH_ALEN); |
| ehdr->h_proto = len; |
| } |
| return 0; |
| } |
| |
| /* |
| * requires that rx->skb is a frame with ethernet header |
| */ |
| static bool ieee80211_frame_allowed(struct ieee80211_txrx_data *rx) |
| { |
| static const u8 pae_group_addr[ETH_ALEN] |
| = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; |
| struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; |
| |
| /* |
| * Allow EAPOL frames to us/the PAE group address regardless |
| * of whether the frame was encrypted or not. |
| */ |
| if (ehdr->h_proto == htons(ETH_P_PAE) && |
| (compare_ether_addr(ehdr->h_dest, rx->dev->dev_addr) == 0 || |
| compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0)) |
| return true; |
| |
| if (ieee80211_802_1x_port_control(rx) || |
| ieee80211_drop_unencrypted(rx)) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * requires that rx->skb is a frame with ethernet header |
| */ |
| static void |
| ieee80211_deliver_skb(struct ieee80211_txrx_data *rx) |
| { |
| struct net_device *dev = rx->dev; |
| struct ieee80211_local *local = rx->local; |
| struct sk_buff *skb, *xmit_skb; |
| struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; |
| struct sta_info *dsta; |
| |
| skb = rx->skb; |
| xmit_skb = NULL; |
| |
| if (local->bridge_packets && (sdata->vif.type == IEEE80211_IF_TYPE_AP || |
| sdata->vif.type == IEEE80211_IF_TYPE_VLAN) && |
| (rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) { |
| if (is_multicast_ether_addr(ehdr->h_dest)) { |
| /* |
| * send multicast frames both to higher layers in |
| * local net stack and back to the wireless medium |
| */ |
| xmit_skb = skb_copy(skb, GFP_ATOMIC); |
| if (!xmit_skb && net_ratelimit()) |
| printk(KERN_DEBUG "%s: failed to clone " |
| "multicast frame\n", dev->name); |
| } else { |
| dsta = sta_info_get(local, skb->data); |
| if (dsta && dsta->dev == dev) { |
| /* |
| * The destination station is associated to |
| * this AP (in this VLAN), so send the frame |
| * directly to it and do not pass it to local |
| * net stack. |
| */ |
| xmit_skb = skb; |
| skb = NULL; |
| } |
| if (dsta) |
| sta_info_put(dsta); |
| } |
| } |
| |
| if (skb) { |
| /* deliver to local stack */ |
| skb->protocol = eth_type_trans(skb, dev); |
| memset(skb->cb, 0, sizeof(skb->cb)); |
| netif_rx(skb); |
| } |
| |
| if (xmit_skb) { |
| /* send to wireless media */ |
| xmit_skb->protocol = htons(ETH_P_802_3); |
| skb_reset_network_header(xmit_skb); |
| skb_reset_mac_header(xmit_skb); |
| dev_queue_xmit(xmit_skb); |
| } |
| } |
| |
| static ieee80211_rx_result |
| ieee80211_rx_h_amsdu(struct ieee80211_txrx_data *rx) |
| { |
| struct net_device *dev = rx->dev; |
| struct ieee80211_local *local = rx->local; |
| u16 fc, ethertype; |
| u8 *payload; |
| struct sk_buff *skb = rx->skb, *frame = NULL; |
| const struct ethhdr *eth; |
| int remaining, err; |
| u8 dst[ETH_ALEN]; |
| u8 src[ETH_ALEN]; |
| DECLARE_MAC_BUF(mac); |
| |
| fc = rx->fc; |
| if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)) |
| return RX_CONTINUE; |
| |
| if (unlikely(!WLAN_FC_DATA_PRESENT(fc))) |
| return RX_DROP_MONITOR; |
| |
| if (!(rx->flags & IEEE80211_TXRXD_RX_AMSDU)) |
| return RX_CONTINUE; |
| |
| err = ieee80211_data_to_8023(rx); |
| if (unlikely(err)) |
| return RX_DROP_UNUSABLE; |
| |
| skb->dev = dev; |
| |
| dev->stats.rx_packets++; |
| dev->stats.rx_bytes += skb->len; |
| |
| /* skip the wrapping header */ |
| eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr)); |
| if (!eth) |
| return RX_DROP_UNUSABLE; |
| |
| while (skb != frame) { |
| u8 padding; |
| __be16 len = eth->h_proto; |
| unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len); |
| |
| remaining = skb->len; |
| memcpy(dst, eth->h_dest, ETH_ALEN); |
| memcpy(src, eth->h_source, ETH_ALEN); |
| |
| padding = ((4 - subframe_len) & 0x3); |
| /* the last MSDU has no padding */ |
| if (subframe_len > remaining) { |
| printk(KERN_DEBUG "%s: wrong buffer size", dev->name); |
| return RX_DROP_UNUSABLE; |
| } |
| |
| skb_pull(skb, sizeof(struct ethhdr)); |
| /* if last subframe reuse skb */ |
| if (remaining <= subframe_len + padding) |
| frame = skb; |
| else { |
| frame = dev_alloc_skb(local->hw.extra_tx_headroom + |
| subframe_len); |
| |
| if (frame == NULL) |
| return RX_DROP_UNUSABLE; |
| |
| skb_reserve(frame, local->hw.extra_tx_headroom + |
| sizeof(struct ethhdr)); |
| memcpy(skb_put(frame, ntohs(len)), skb->data, |
| ntohs(len)); |
| |
| eth = (struct ethhdr *) skb_pull(skb, ntohs(len) + |
| padding); |
| if (!eth) { |
| printk(KERN_DEBUG "%s: wrong buffer size ", |
| dev->name); |
| dev_kfree_skb(frame); |
| return RX_DROP_UNUSABLE; |
| } |
| } |
| |
| skb_reset_network_header(frame); |
| frame->dev = dev; |
| frame->priority = skb->priority; |
| rx->skb = frame; |
| |
| payload = frame->data; |
| ethertype = (payload[6] << 8) | payload[7]; |
| |
| if (likely((compare_ether_addr(payload, rfc1042_header) == 0 && |
| ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || |
| compare_ether_addr(payload, |
| bridge_tunnel_header) == 0)) { |
| /* remove RFC1042 or Bridge-Tunnel |
| * encapsulation and replace EtherType */ |
| skb_pull(frame, 6); |
| memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); |
| memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); |
| } else { |
| memcpy(skb_push(frame, sizeof(__be16)), |
| &len, sizeof(__be16)); |
| memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); |
| memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); |
| } |
| |
| if (!ieee80211_frame_allowed(rx)) { |
| if (skb == frame) /* last frame */ |
| return RX_DROP_UNUSABLE; |
| dev_kfree_skb(frame); |
| continue; |
| } |
| |
| ieee80211_deliver_skb(rx); |
| } |
| |
| return RX_QUEUED; |
| } |
| |
| static ieee80211_rx_result |
| ieee80211_rx_h_data(struct ieee80211_txrx_data *rx) |
| { |
| struct net_device *dev = rx->dev; |
| u16 fc; |
| int err; |
| |
| fc = rx->fc; |
| if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)) |
| return RX_CONTINUE; |
| |
| if (unlikely(!WLAN_FC_DATA_PRESENT(fc))) |
| return RX_DROP_MONITOR; |
| |
| err = ieee80211_data_to_8023(rx); |
| if (unlikely(err)) |
| return RX_DROP_UNUSABLE; |
| |
| if (!ieee80211_frame_allowed(rx)) |
| return RX_DROP_MONITOR; |
| |
| rx->skb->dev = dev; |
| |
| dev->stats.rx_packets++; |
| dev->stats.rx_bytes += rx->skb->len; |
| |
| ieee80211_deliver_skb(rx); |
| |
| return RX_QUEUED; |
| } |
| |
| static ieee80211_rx_result |
| ieee80211_rx_h_ctrl(struct ieee80211_txrx_data *rx) |
| { |
| struct ieee80211_local *local = rx->local; |
| struct ieee80211_hw *hw = &local->hw; |
| struct sk_buff *skb = rx->skb; |
| struct ieee80211_bar *bar = (struct ieee80211_bar *) skb->data; |
| struct tid_ampdu_rx *tid_agg_rx; |
| u16 start_seq_num; |
| u16 tid; |
| |
| if (likely((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL)) |
| return RX_CONTINUE; |
| |
| if ((rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BACK_REQ) { |
| if (!rx->sta) |
| return RX_CONTINUE; |
| tid = le16_to_cpu(bar->control) >> 12; |
| tid_agg_rx = &(rx->sta->ampdu_mlme.tid_rx[tid]); |
| if (tid_agg_rx->state != HT_AGG_STATE_OPERATIONAL) |
| return RX_CONTINUE; |
| |
| start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4; |
| |
| /* reset session timer */ |
| if (tid_agg_rx->timeout) { |
| unsigned long expires = |
| jiffies + (tid_agg_rx->timeout / 1000) * HZ; |
| mod_timer(&tid_agg_rx->session_timer, expires); |
| } |
| |
| /* manage reordering buffer according to requested */ |
| /* sequence number */ |
| rcu_read_lock(); |
| ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, NULL, |
| start_seq_num, 1); |
| rcu_read_unlock(); |
| return RX_DROP_UNUSABLE; |
| } |
| |
| return RX_CONTINUE; |
| } |
| |
| static ieee80211_rx_result |
| ieee80211_rx_h_mgmt(struct ieee80211_txrx_data *rx) |
| { |
| struct ieee80211_sub_if_data *sdata; |
| |
| if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) |
| return RX_DROP_MONITOR; |
| |
| sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev); |
| if ((sdata->vif.type == IEEE80211_IF_TYPE_STA || |
| sdata->vif.type == IEEE80211_IF_TYPE_IBSS) && |
| !(sdata->flags & IEEE80211_SDATA_USERSPACE_MLME)) |
| ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status); |
| else |
| return RX_DROP_MONITOR; |
| |
| return RX_QUEUED; |
| } |
| |
| static void ieee80211_rx_michael_mic_report(struct net_device *dev, |
| struct ieee80211_hdr *hdr, |
| struct ieee80211_txrx_data *rx) |
| { |
| int keyidx, hdrlen; |
| DECLARE_MAC_BUF(mac); |
| DECLARE_MAC_BUF(mac2); |
| |
| hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb); |
| if (rx->skb->len >= hdrlen + 4) |
| keyidx = rx->skb->data[hdrlen + 3] >> 6; |
| else |
| keyidx = -1; |
| |
| if (net_ratelimit()) |
| printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC " |
| "failure from %s to %s keyidx=%d\n", |
| dev->name, print_mac(mac, hdr->addr2), |
| print_mac(mac2, hdr->addr1), keyidx); |
| |
| if (!rx->sta) { |
| /* |
| * Some hardware seem to generate incorrect Michael MIC |
| * reports; ignore them to avoid triggering countermeasures. |
| */ |
| if (net_ratelimit()) |
| printk(KERN_DEBUG "%s: ignored spurious Michael MIC " |
| "error for unknown address %s\n", |
| dev->name, print_mac(mac, hdr->addr2)); |
| goto ignore; |
| } |
| |
| if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) { |
| if (net_ratelimit()) |
| printk(KERN_DEBUG "%s: ignored spurious Michael MIC " |
| "error for a frame with no PROTECTED flag (src " |
| "%s)\n", dev->name, print_mac(mac, hdr->addr2)); |
| goto ignore; |
| } |
| |
| if (rx->sdata->vif.type == IEEE80211_IF_TYPE_AP && keyidx) { |
| /* |
| * APs with pairwise keys should never receive Michael MIC |
| * errors for non-zero keyidx because these are reserved for |
| * group keys and only the AP is sending real multicast |
| * frames in the BSS. |
| */ |
| if (net_ratelimit()) |
| printk(KERN_DEBUG "%s: ignored Michael MIC error for " |
| "a frame with non-zero keyidx (%d)" |
| " (src %s)\n", dev->name, keyidx, |
| print_mac(mac, hdr->addr2)); |
| goto ignore; |
| } |
| |
| if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA && |
| ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT || |
| (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)) { |
| if (net_ratelimit()) |
| printk(KERN_DEBUG "%s: ignored spurious Michael MIC " |
| "error for a frame that cannot be encrypted " |
| "(fc=0x%04x) (src %s)\n", |
| dev->name, rx->fc, print_mac(mac, hdr->addr2)); |
| goto ignore; |
| } |
| |
| mac80211_ev_michael_mic_failure(rx->dev, keyidx, hdr); |
| ignore: |
| dev_kfree_skb(rx->skb); |
| rx->skb = NULL; |
| } |
| |
| static void ieee80211_rx_cooked_monitor(struct ieee80211_txrx_data *rx) |
| { |
| struct ieee80211_sub_if_data *sdata; |
| struct ieee80211_local *local = rx->local; |
| struct ieee80211_rtap_hdr { |
| struct ieee80211_radiotap_header hdr; |
| u8 flags; |
| u8 rate; |
| __le16 chan_freq; |
| __le16 chan_flags; |
| } __attribute__ ((packed)) *rthdr; |
| struct sk_buff *skb = rx->skb, *skb2; |
| struct net_device *prev_dev = NULL; |
| struct ieee80211_rx_status *status = rx->u.rx.status; |
| |
| if (rx->flags & IEEE80211_TXRXD_RX_CMNTR_REPORTED) |
| goto out_free_skb; |
| |
| if (skb_headroom(skb) < sizeof(*rthdr) && |
| pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC)) |
| goto out_free_skb; |
| |
| rthdr = (void *)skb_push(skb, sizeof(*rthdr)); |
| memset(rthdr, 0, sizeof(*rthdr)); |
| rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr)); |
| rthdr->hdr.it_present = |
| cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | |
| (1 << IEEE80211_RADIOTAP_RATE) | |
| (1 << IEEE80211_RADIOTAP_CHANNEL)); |
| |
| rthdr->rate = rx->u.rx.rate->bitrate / 5; |
| rthdr->chan_freq = cpu_to_le16(status->freq); |
| |
| if (status->band == IEEE80211_BAND_5GHZ) |
| rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM | |
| IEEE80211_CHAN_5GHZ); |
| else |
| rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN | |
| IEEE80211_CHAN_2GHZ); |
| |
| skb_set_mac_header(skb, 0); |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| skb->pkt_type = PACKET_OTHERHOST; |
| skb->protocol = htons(ETH_P_802_2); |
| |
| list_for_each_entry_rcu(sdata, &local->interfaces, list) { |
| if (!netif_running(sdata->dev)) |
| continue; |
| |
| if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR || |
| !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) |
| continue; |
| |
| if (prev_dev) { |
| skb2 = skb_clone(skb, GFP_ATOMIC); |
| if (skb2) { |
| skb2->dev = prev_dev; |
| netif_rx(skb2); |
| } |
| } |
| |
| prev_dev = sdata->dev; |
| sdata->dev->stats.rx_packets++; |
| sdata->dev->stats.rx_bytes += skb->len; |
| } |
| |
| if (prev_dev) { |
| skb->dev = prev_dev; |
| netif_rx(skb); |
| skb = NULL; |
| } else |
| goto out_free_skb; |
| |
| rx->flags |= IEEE80211_TXRXD_RX_CMNTR_REPORTED; |
| return; |
| |
| out_free_skb: |
| dev_kfree_skb(skb); |
| } |
| |
| typedef ieee80211_rx_result (*ieee80211_rx_handler)(struct ieee80211_txrx_data *); |
| static ieee80211_rx_handler ieee80211_rx_handlers[] = |
| { |
| ieee80211_rx_h_if_stats, |
| ieee80211_rx_h_passive_scan, |
| ieee80211_rx_h_check, |
| ieee80211_rx_h_decrypt, |
| ieee80211_rx_h_sta_process, |
| ieee80211_rx_h_defragment, |
| ieee80211_rx_h_ps_poll, |
| ieee80211_rx_h_michael_mic_verify, |
| /* this must be after decryption - so header is counted in MPDU mic |
| * must be before pae and data, so QOS_DATA format frames |
| * are not passed to user space by these functions |
| */ |
| ieee80211_rx_h_remove_qos_control, |
| ieee80211_rx_h_amsdu, |
| ieee80211_rx_h_data, |
| ieee80211_rx_h_ctrl, |
| ieee80211_rx_h_mgmt, |
| NULL |
| }; |
| |
| static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata, |
| struct ieee80211_txrx_data *rx, |
| struct sk_buff *skb) |
| { |
| ieee80211_rx_handler *handler; |
| ieee80211_rx_result res = RX_DROP_MONITOR; |
| |
| rx->skb = skb; |
| rx->sdata = sdata; |
| rx->dev = sdata->dev; |
| |
| for (handler = ieee80211_rx_handlers; *handler != NULL; handler++) { |
| res = (*handler)(rx); |
| |
| switch (res) { |
| case RX_CONTINUE: |
| continue; |
| case RX_DROP_UNUSABLE: |
| case RX_DROP_MONITOR: |
| I802_DEBUG_INC(sdata->local->rx_handlers_drop); |
| if (rx->sta) |
| rx->sta->rx_dropped++; |
| break; |
| case RX_QUEUED: |
| I802_DEBUG_INC(sdata->local->rx_handlers_queued); |
| break; |
| } |
| break; |
| } |
| |
| switch (res) { |
| case RX_CONTINUE: |
| case RX_DROP_MONITOR: |
| ieee80211_rx_cooked_monitor(rx); |
| break; |
| case RX_DROP_UNUSABLE: |
| dev_kfree_skb(rx->skb); |
| break; |
| } |
| } |
| |
| /* main receive path */ |
| |
| static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata, |
| u8 *bssid, struct ieee80211_txrx_data *rx, |
| struct ieee80211_hdr *hdr) |
| { |
| int multicast = is_multicast_ether_addr(hdr->addr1); |
| |
| switch (sdata->vif.type) { |
| case IEEE80211_IF_TYPE_STA: |
| if (!bssid) |
| return 0; |
| if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) { |
| if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN)) |
| return 0; |
| rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH; |
| } else if (!multicast && |
| compare_ether_addr(sdata->dev->dev_addr, |
| hdr->addr1) != 0) { |
| if (!(sdata->dev->flags & IFF_PROMISC)) |
| return 0; |
| rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH; |
| } |
| break; |
| case IEEE80211_IF_TYPE_IBSS: |
| if (!bssid) |
| return 0; |
| if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) { |
| if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN)) |
| return 0; |
| rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH; |
| } else if (!multicast && |
| compare_ether_addr(sdata->dev->dev_addr, |
| hdr->addr1) != 0) { |
| if (!(sdata->dev->flags & IFF_PROMISC)) |
| return 0; |
| rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH; |
| } else if (!rx->sta) |
| rx->sta = ieee80211_ibss_add_sta(sdata->dev, rx->skb, |
| bssid, hdr->addr2); |
| break; |
| case IEEE80211_IF_TYPE_VLAN: |
| case IEEE80211_IF_TYPE_AP: |
| if (!bssid) { |
| if (compare_ether_addr(sdata->dev->dev_addr, |
| hdr->addr1)) |
| return 0; |
| } else if (!ieee80211_bssid_match(bssid, |
| sdata->dev->dev_addr)) { |
| if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN)) |
| return 0; |
| rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH; |
| } |
| if (sdata->dev == sdata->local->mdev && |
| !(rx->flags & IEEE80211_TXRXD_RXIN_SCAN)) |
| /* do not receive anything via |
| * master device when not scanning */ |
| return 0; |
| break; |
| case IEEE80211_IF_TYPE_WDS: |
| if (bssid || |
| (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA) |
| return 0; |
| if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2)) |
| return 0; |
| break; |
| case IEEE80211_IF_TYPE_MNTR: |
| /* take everything */ |
| break; |
| case IEEE80211_IF_TYPE_INVALID: |
| /* should never get here */ |
| WARN_ON(1); |
| break; |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * This is the actual Rx frames handler. as it blongs to Rx path it must |
| * be called with rcu_read_lock protection. |
| */ |
| static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, |
| struct sk_buff *skb, |
| struct ieee80211_rx_status *status, |
| u32 load, |
| struct ieee80211_rate *rate) |
| { |
| struct ieee80211_local *local = hw_to_local(hw); |
| struct ieee80211_sub_if_data *sdata; |
| struct ieee80211_hdr *hdr; |
| struct ieee80211_txrx_data rx; |
| u16 type; |
| int prepares; |
| struct ieee80211_sub_if_data *prev = NULL; |
| struct sk_buff *skb_new; |
| u8 *bssid; |
| |
| hdr = (struct ieee80211_hdr *) skb->data; |
| memset(&rx, 0, sizeof(rx)); |
| rx.skb = skb; |
| rx.local = local; |
| |
| rx.u.rx.status = status; |
| rx.u.rx.load = load; |
| rx.u.rx.rate = rate; |
| rx.fc = le16_to_cpu(hdr->frame_control); |
| type = rx.fc & IEEE80211_FCTL_FTYPE; |
| |
| if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT) |
| local->dot11ReceivedFragmentCount++; |
| |
| rx.sta = sta_info_get(local, hdr->addr2); |
| if (rx.sta) { |
| rx.dev = rx.sta->dev; |
| rx.sdata = IEEE80211_DEV_TO_SUB_IF(rx.dev); |
| } |
| |
| if ((status->flag & RX_FLAG_MMIC_ERROR)) { |
| ieee80211_rx_michael_mic_report(local->mdev, hdr, &rx); |
| goto end; |
| } |
| |
| if (unlikely(local->sta_sw_scanning || local->sta_hw_scanning)) |
| rx.flags |= IEEE80211_TXRXD_RXIN_SCAN; |
| |
| ieee80211_parse_qos(&rx); |
| ieee80211_verify_ip_alignment(&rx); |
| |
| skb = rx.skb; |
| |
| list_for_each_entry_rcu(sdata, &local->interfaces, list) { |
| if (!netif_running(sdata->dev)) |
| continue; |
| |
| if (sdata->vif.type == IEEE80211_IF_TYPE_MNTR) |
| continue; |
| |
| bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); |
| rx.flags |= IEEE80211_TXRXD_RXRA_MATCH; |
| prepares = prepare_for_handlers(sdata, bssid, &rx, hdr); |
| |
| if (!prepares) |
| continue; |
| |
| /* |
| * frame is destined for this interface, but if it's not |
| * also for the previous one we handle that after the |
| * loop to avoid copying the SKB once too much |
| */ |
| |
| if (!prev) { |
| prev = sdata; |
| continue; |
| } |
| |
| /* |
| * frame was destined for the previous interface |
| * so invoke RX handlers for it |
| */ |
| |
| skb_new = skb_copy(skb, GFP_ATOMIC); |
| if (!skb_new) { |
| if (net_ratelimit()) |
| printk(KERN_DEBUG "%s: failed to copy " |
| "multicast frame for %s", |
| wiphy_name(local->hw.wiphy), |
| prev->dev->name); |
| continue; |
| } |
| rx.fc = le16_to_cpu(hdr->frame_control); |
| ieee80211_invoke_rx_handlers(prev, &rx, skb_new); |
| prev = sdata; |
| } |
| if (prev) { |
| rx.fc = le16_to_cpu(hdr->frame_control); |
| ieee80211_invoke_rx_handlers(prev, &rx, skb); |
| } else |
| dev_kfree_skb(skb); |
| |
| end: |
| if (rx.sta) |
| sta_info_put(rx.sta); |
| } |
| |
| #define SEQ_MODULO 0x1000 |
| #define SEQ_MASK 0xfff |
| |
| static inline int seq_less(u16 sq1, u16 sq2) |
| { |
| return (((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1)); |
| } |
| |
| static inline u16 seq_inc(u16 sq) |
| { |
| return ((sq + 1) & SEQ_MASK); |
| } |
| |
| static inline u16 seq_sub(u16 sq1, u16 sq2) |
| { |
| return ((sq1 - sq2) & SEQ_MASK); |
| } |
| |
| |
| /* |
| * As it function blongs to Rx path it must be called with |
| * the proper rcu_read_lock protection for its flow. |
| */ |
| u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw, |
| struct tid_ampdu_rx *tid_agg_rx, |
| struct sk_buff *skb, u16 mpdu_seq_num, |
| int bar_req) |
| { |
| struct ieee80211_local *local = hw_to_local(hw); |
| struct ieee80211_rx_status status; |
| u16 head_seq_num, buf_size; |
| int index; |
| u32 pkt_load; |
| struct ieee80211_supported_band *sband; |
| struct ieee80211_rate *rate; |
| |
| buf_size = tid_agg_rx->buf_size; |
| head_seq_num = tid_agg_rx->head_seq_num; |
| |
| /* frame with out of date sequence number */ |
| if (seq_less(mpdu_seq_num, head_seq_num)) { |
| dev_kfree_skb(skb); |
| return 1; |
| } |
| |
| /* if frame sequence number exceeds our buffering window size or |
| * block Ack Request arrived - release stored frames */ |
| if ((!seq_less(mpdu_seq_num, head_seq_num + buf_size)) || (bar_req)) { |
| /* new head to the ordering buffer */ |
| if (bar_req) |
| head_seq_num = mpdu_seq_num; |
| else |
| head_seq_num = |
| seq_inc(seq_sub(mpdu_seq_num, buf_size)); |
| /* release stored frames up to new head to stack */ |
| while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) { |
| index = seq_sub(tid_agg_rx->head_seq_num, |
| tid_agg_rx->ssn) |
| % tid_agg_rx->buf_size; |
| |
| if (tid_agg_rx->reorder_buf[index]) { |
| /* release the reordered frames to stack */ |
| memcpy(&status, |
| tid_agg_rx->reorder_buf[index]->cb, |
| sizeof(status)); |
| sband = local->hw.wiphy->bands[status.band]; |
| rate = &sband->bitrates[status.rate_idx]; |
| pkt_load = ieee80211_rx_load_stats(local, |
| tid_agg_rx->reorder_buf[index], |
| &status, rate); |
| __ieee80211_rx_handle_packet(hw, |
| tid_agg_rx->reorder_buf[index], |
| &status, pkt_load, rate); |
| tid_agg_rx->stored_mpdu_num--; |
| tid_agg_rx->reorder_buf[index] = NULL; |
| } |
| tid_agg_rx->head_seq_num = |
| seq_inc(tid_agg_rx->head_seq_num); |
| } |
| if (bar_req) |
| return 1; |
| } |
| |
| /* now the new frame is always in the range of the reordering */ |
| /* buffer window */ |
| index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) |
| % tid_agg_rx->buf_size; |
| /* check if we already stored this frame */ |
| if (tid_agg_rx->reorder_buf[index]) { |
| dev_kfree_skb(skb); |
| return 1; |
| } |
| |
| /* if arrived mpdu is in the right order and nothing else stored */ |
| /* release it immediately */ |
| if (mpdu_seq_num == tid_agg_rx->head_seq_num && |
| tid_agg_rx->stored_mpdu_num == 0) { |
| tid_agg_rx->head_seq_num = |
| seq_inc(tid_agg_rx->head_seq_num); |
| return 0; |
| } |
| |
| /* put the frame in the reordering buffer */ |
| tid_agg_rx->reorder_buf[index] = skb; |
| tid_agg_rx->stored_mpdu_num++; |
| /* release the buffer until next missing frame */ |
| index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) |
| % tid_agg_rx->buf_size; |
| while (tid_agg_rx->reorder_buf[index]) { |
| /* release the reordered frame back to stack */ |
| memcpy(&status, tid_agg_rx->reorder_buf[index]->cb, |
| sizeof(status)); |
| sband = local->hw.wiphy->bands[status.band]; |
| rate = &sband->bitrates[status.rate_idx]; |
| pkt_load = ieee80211_rx_load_stats(local, |
| tid_agg_rx->reorder_buf[index], |
| &status, rate); |
| __ieee80211_rx_handle_packet(hw, tid_agg_rx->reorder_buf[index], |
| &status, pkt_load, rate); |
| tid_agg_rx->stored_mpdu_num--; |
| tid_agg_rx->reorder_buf[index] = NULL; |
| tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); |
| index = seq_sub(tid_agg_rx->head_seq_num, |
| tid_agg_rx->ssn) % tid_agg_rx->buf_size; |
| } |
| return 1; |
| } |
| |
| static u8 ieee80211_rx_reorder_ampdu(struct ieee80211_local *local, |
| struct sk_buff *skb) |
| { |
| struct ieee80211_hw *hw = &local->hw; |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| struct sta_info *sta; |
| struct tid_ampdu_rx *tid_agg_rx; |
| u16 fc, sc; |
| u16 mpdu_seq_num; |
| u8 ret = 0, *qc; |
| int tid; |
| |
| sta = sta_info_get(local, hdr->addr2); |
| if (!sta) |
| return ret; |
| |
| fc = le16_to_cpu(hdr->frame_control); |
| |
| /* filter the QoS data rx stream according to |
| * STA/TID and check if this STA/TID is on aggregation */ |
| if (!WLAN_FC_IS_QOS_DATA(fc)) |
| goto end_reorder; |
| |
| qc = skb->data + ieee80211_get_hdrlen(fc) - QOS_CONTROL_LEN; |
| tid = qc[0] & QOS_CONTROL_TID_MASK; |
| tid_agg_rx = &(sta->ampdu_mlme.tid_rx[tid]); |
| |
| if (tid_agg_rx->state != HT_AGG_STATE_OPERATIONAL) |
| goto end_reorder; |
| |
| /* null data frames are excluded */ |
| if (unlikely(fc & IEEE80211_STYPE_NULLFUNC)) |
| goto end_reorder; |
| |
| /* new un-ordered ampdu frame - process it */ |
| |
| /* reset session timer */ |
| if (tid_agg_rx->timeout) { |
| unsigned long expires = |
| jiffies + (tid_agg_rx->timeout / 1000) * HZ; |
| mod_timer(&tid_agg_rx->session_timer, expires); |
| } |
| |
| /* if this mpdu is fragmented - terminate rx aggregation session */ |
| sc = le16_to_cpu(hdr->seq_ctrl); |
| if (sc & IEEE80211_SCTL_FRAG) { |
| ieee80211_sta_stop_rx_ba_session(sta->dev, sta->addr, |
| tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP); |
| ret = 1; |
| goto end_reorder; |
| } |
| |
| /* according to mpdu sequence number deal with reordering buffer */ |
| mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; |
| ret = ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb, |
| mpdu_seq_num, 0); |
| end_reorder: |
| if (sta) |
| sta_info_put(sta); |
| return ret; |
| } |
| |
| /* |
| * This is the receive path handler. It is called by a low level driver when an |
| * 802.11 MPDU is received from the hardware. |
| */ |
| void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb, |
| struct ieee80211_rx_status *status) |
| { |
| struct ieee80211_local *local = hw_to_local(hw); |
| u32 pkt_load; |
| struct ieee80211_rate *rate = NULL; |
| struct ieee80211_supported_band *sband; |
| |
| if (status->band < 0 || |
| status->band > IEEE80211_NUM_BANDS) { |
| WARN_ON(1); |
| return; |
| } |
| |
| sband = local->hw.wiphy->bands[status->band]; |
| |
| if (!sband || |
| status->rate_idx < 0 || |
| status->rate_idx >= sband->n_bitrates) { |
| WARN_ON(1); |
| return; |
| } |
| |
| rate = &sband->bitrates[status->rate_idx]; |
| |
| /* |
| * key references and virtual interfaces are protected using RCU |
| * and this requires that we are in a read-side RCU section during |
| * receive processing |
| */ |
| rcu_read_lock(); |
| |
| /* |
| * Frames with failed FCS/PLCP checksum are not returned, |
| * all other frames are returned without radiotap header |
| * if it was previously present. |
| * Also, frames with less than 16 bytes are dropped. |
| */ |
| skb = ieee80211_rx_monitor(local, skb, status, rate); |
| if (!skb) { |
| rcu_read_unlock(); |
| return; |
| } |
| |
| pkt_load = ieee80211_rx_load_stats(local, skb, status, rate); |
| local->channel_use_raw += pkt_load; |
| |
| if (!ieee80211_rx_reorder_ampdu(local, skb)) |
| __ieee80211_rx_handle_packet(hw, skb, status, pkt_load, rate); |
| |
| rcu_read_unlock(); |
| } |
| EXPORT_SYMBOL(__ieee80211_rx); |
| |
| /* This is a version of the rx handler that can be called from hard irq |
| * context. Post the skb on the queue and schedule the tasklet */ |
| void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb, |
| struct ieee80211_rx_status *status) |
| { |
| struct ieee80211_local *local = hw_to_local(hw); |
| |
| BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); |
| |
| skb->dev = local->mdev; |
| /* copy status into skb->cb for use by tasklet */ |
| memcpy(skb->cb, status, sizeof(*status)); |
| skb->pkt_type = IEEE80211_RX_MSG; |
| skb_queue_tail(&local->skb_queue, skb); |
| tasklet_schedule(&local->tasklet); |
| } |
| EXPORT_SYMBOL(ieee80211_rx_irqsafe); |