| /* |
| * Copyright 2013 Emilio López |
| * |
| * Emilio López <emilio@elopez.com.ar> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/clk-provider.h> |
| #include <linux/clkdev.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/reset-controller.h> |
| |
| #include "clk-factors.h" |
| |
| static DEFINE_SPINLOCK(clk_lock); |
| |
| /* Maximum number of parents our clocks have */ |
| #define SUNXI_MAX_PARENTS 5 |
| |
| /** |
| * sun4i_osc_clk_setup() - Setup function for gatable oscillator |
| */ |
| |
| #define SUNXI_OSC24M_GATE 0 |
| |
| static void __init sun4i_osc_clk_setup(struct device_node *node) |
| { |
| struct clk *clk; |
| struct clk_fixed_rate *fixed; |
| struct clk_gate *gate; |
| const char *clk_name = node->name; |
| u32 rate; |
| |
| if (of_property_read_u32(node, "clock-frequency", &rate)) |
| return; |
| |
| /* allocate fixed-rate and gate clock structs */ |
| fixed = kzalloc(sizeof(struct clk_fixed_rate), GFP_KERNEL); |
| if (!fixed) |
| return; |
| gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL); |
| if (!gate) |
| goto err_free_fixed; |
| |
| of_property_read_string(node, "clock-output-names", &clk_name); |
| |
| /* set up gate and fixed rate properties */ |
| gate->reg = of_iomap(node, 0); |
| gate->bit_idx = SUNXI_OSC24M_GATE; |
| gate->lock = &clk_lock; |
| fixed->fixed_rate = rate; |
| |
| clk = clk_register_composite(NULL, clk_name, |
| NULL, 0, |
| NULL, NULL, |
| &fixed->hw, &clk_fixed_rate_ops, |
| &gate->hw, &clk_gate_ops, |
| CLK_IS_ROOT); |
| |
| if (IS_ERR(clk)) |
| goto err_free_gate; |
| |
| of_clk_add_provider(node, of_clk_src_simple_get, clk); |
| clk_register_clkdev(clk, clk_name, NULL); |
| |
| return; |
| |
| err_free_gate: |
| kfree(gate); |
| err_free_fixed: |
| kfree(fixed); |
| } |
| CLK_OF_DECLARE(sun4i_osc, "allwinner,sun4i-a10-osc-clk", sun4i_osc_clk_setup); |
| |
| |
| |
| /** |
| * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1 |
| * PLL1 rate is calculated as follows |
| * rate = (parent_rate * n * (k + 1) >> p) / (m + 1); |
| * parent_rate is always 24Mhz |
| */ |
| |
| static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate, |
| u8 *n, u8 *k, u8 *m, u8 *p) |
| { |
| u8 div; |
| |
| /* Normalize value to a 6M multiple */ |
| div = *freq / 6000000; |
| *freq = 6000000 * div; |
| |
| /* we were called to round the frequency, we can now return */ |
| if (n == NULL) |
| return; |
| |
| /* m is always zero for pll1 */ |
| *m = 0; |
| |
| /* k is 1 only on these cases */ |
| if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000) |
| *k = 1; |
| else |
| *k = 0; |
| |
| /* p will be 3 for divs under 10 */ |
| if (div < 10) |
| *p = 3; |
| |
| /* p will be 2 for divs between 10 - 20 and odd divs under 32 */ |
| else if (div < 20 || (div < 32 && (div & 1))) |
| *p = 2; |
| |
| /* p will be 1 for even divs under 32, divs under 40 and odd pairs |
| * of divs between 40-62 */ |
| else if (div < 40 || (div < 64 && (div & 2))) |
| *p = 1; |
| |
| /* any other entries have p = 0 */ |
| else |
| *p = 0; |
| |
| /* calculate a suitable n based on k and p */ |
| div <<= *p; |
| div /= (*k + 1); |
| *n = div / 4; |
| } |
| |
| /** |
| * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1 |
| * PLL1 rate is calculated as follows |
| * rate = parent_rate * (n + 1) * (k + 1) / (m + 1); |
| * parent_rate should always be 24MHz |
| */ |
| static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate, |
| u8 *n, u8 *k, u8 *m, u8 *p) |
| { |
| /* |
| * We can operate only on MHz, this will make our life easier |
| * later. |
| */ |
| u32 freq_mhz = *freq / 1000000; |
| u32 parent_freq_mhz = parent_rate / 1000000; |
| |
| /* |
| * Round down the frequency to the closest multiple of either |
| * 6 or 16 |
| */ |
| u32 round_freq_6 = round_down(freq_mhz, 6); |
| u32 round_freq_16 = round_down(freq_mhz, 16); |
| |
| if (round_freq_6 > round_freq_16) |
| freq_mhz = round_freq_6; |
| else |
| freq_mhz = round_freq_16; |
| |
| *freq = freq_mhz * 1000000; |
| |
| /* |
| * If the factors pointer are null, we were just called to |
| * round down the frequency. |
| * Exit. |
| */ |
| if (n == NULL) |
| return; |
| |
| /* If the frequency is a multiple of 32 MHz, k is always 3 */ |
| if (!(freq_mhz % 32)) |
| *k = 3; |
| /* If the frequency is a multiple of 9 MHz, k is always 2 */ |
| else if (!(freq_mhz % 9)) |
| *k = 2; |
| /* If the frequency is a multiple of 8 MHz, k is always 1 */ |
| else if (!(freq_mhz % 8)) |
| *k = 1; |
| /* Otherwise, we don't use the k factor */ |
| else |
| *k = 0; |
| |
| /* |
| * If the frequency is a multiple of 2 but not a multiple of |
| * 3, m is 3. This is the first time we use 6 here, yet we |
| * will use it on several other places. |
| * We use this number because it's the lowest frequency we can |
| * generate (with n = 0, k = 0, m = 3), so every other frequency |
| * somehow relates to this frequency. |
| */ |
| if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4) |
| *m = 2; |
| /* |
| * If the frequency is a multiple of 6MHz, but the factor is |
| * odd, m will be 3 |
| */ |
| else if ((freq_mhz / 6) & 1) |
| *m = 3; |
| /* Otherwise, we end up with m = 1 */ |
| else |
| *m = 1; |
| |
| /* Calculate n thanks to the above factors we already got */ |
| *n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1; |
| |
| /* |
| * If n end up being outbound, and that we can still decrease |
| * m, do it. |
| */ |
| if ((*n + 1) > 31 && (*m + 1) > 1) { |
| *n = (*n + 1) / 2 - 1; |
| *m = (*m + 1) / 2 - 1; |
| } |
| } |
| |
| /** |
| * sun4i_get_pll5_factors() - calculates n, k factors for PLL5 |
| * PLL5 rate is calculated as follows |
| * rate = parent_rate * n * (k + 1) |
| * parent_rate is always 24Mhz |
| */ |
| |
| static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate, |
| u8 *n, u8 *k, u8 *m, u8 *p) |
| { |
| u8 div; |
| |
| /* Normalize value to a parent_rate multiple (24M) */ |
| div = *freq / parent_rate; |
| *freq = parent_rate * div; |
| |
| /* we were called to round the frequency, we can now return */ |
| if (n == NULL) |
| return; |
| |
| if (div < 31) |
| *k = 0; |
| else if (div / 2 < 31) |
| *k = 1; |
| else if (div / 3 < 31) |
| *k = 2; |
| else |
| *k = 3; |
| |
| *n = DIV_ROUND_UP(div, (*k+1)); |
| } |
| |
| /** |
| * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6 |
| * PLL6 rate is calculated as follows |
| * rate = parent_rate * n * (k + 1) / 2 |
| * parent_rate is always 24Mhz |
| */ |
| |
| static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate, |
| u8 *n, u8 *k, u8 *m, u8 *p) |
| { |
| u8 div; |
| |
| /* |
| * We always have 24MHz / 2, so we can just say that our |
| * parent clock is 12MHz. |
| */ |
| parent_rate = parent_rate / 2; |
| |
| /* Normalize value to a parent_rate multiple (24M / 2) */ |
| div = *freq / parent_rate; |
| *freq = parent_rate * div; |
| |
| /* we were called to round the frequency, we can now return */ |
| if (n == NULL) |
| return; |
| |
| *k = div / 32; |
| if (*k > 3) |
| *k = 3; |
| |
| *n = DIV_ROUND_UP(div, (*k+1)); |
| } |
| |
| /** |
| * sun4i_get_apb1_factors() - calculates m, p factors for APB1 |
| * APB1 rate is calculated as follows |
| * rate = (parent_rate >> p) / (m + 1); |
| */ |
| |
| static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate, |
| u8 *n, u8 *k, u8 *m, u8 *p) |
| { |
| u8 calcm, calcp; |
| |
| if (parent_rate < *freq) |
| *freq = parent_rate; |
| |
| parent_rate = DIV_ROUND_UP(parent_rate, *freq); |
| |
| /* Invalid rate! */ |
| if (parent_rate > 32) |
| return; |
| |
| if (parent_rate <= 4) |
| calcp = 0; |
| else if (parent_rate <= 8) |
| calcp = 1; |
| else if (parent_rate <= 16) |
| calcp = 2; |
| else |
| calcp = 3; |
| |
| calcm = (parent_rate >> calcp) - 1; |
| |
| *freq = (parent_rate >> calcp) / (calcm + 1); |
| |
| /* we were called to round the frequency, we can now return */ |
| if (n == NULL) |
| return; |
| |
| *m = calcm; |
| *p = calcp; |
| } |
| |
| |
| |
| /** |
| * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks |
| * MOD0 rate is calculated as follows |
| * rate = (parent_rate >> p) / (m + 1); |
| */ |
| |
| static void sun4i_get_mod0_factors(u32 *freq, u32 parent_rate, |
| u8 *n, u8 *k, u8 *m, u8 *p) |
| { |
| u8 div, calcm, calcp; |
| |
| /* These clocks can only divide, so we will never be able to achieve |
| * frequencies higher than the parent frequency */ |
| if (*freq > parent_rate) |
| *freq = parent_rate; |
| |
| div = DIV_ROUND_UP(parent_rate, *freq); |
| |
| if (div < 16) |
| calcp = 0; |
| else if (div / 2 < 16) |
| calcp = 1; |
| else if (div / 4 < 16) |
| calcp = 2; |
| else |
| calcp = 3; |
| |
| calcm = DIV_ROUND_UP(div, 1 << calcp); |
| |
| *freq = (parent_rate >> calcp) / calcm; |
| |
| /* we were called to round the frequency, we can now return */ |
| if (n == NULL) |
| return; |
| |
| *m = calcm - 1; |
| *p = calcp; |
| } |
| |
| |
| |
| /** |
| * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B |
| * CLK_OUT rate is calculated as follows |
| * rate = (parent_rate >> p) / (m + 1); |
| */ |
| |
| static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate, |
| u8 *n, u8 *k, u8 *m, u8 *p) |
| { |
| u8 div, calcm, calcp; |
| |
| /* These clocks can only divide, so we will never be able to achieve |
| * frequencies higher than the parent frequency */ |
| if (*freq > parent_rate) |
| *freq = parent_rate; |
| |
| div = DIV_ROUND_UP(parent_rate, *freq); |
| |
| if (div < 32) |
| calcp = 0; |
| else if (div / 2 < 32) |
| calcp = 1; |
| else if (div / 4 < 32) |
| calcp = 2; |
| else |
| calcp = 3; |
| |
| calcm = DIV_ROUND_UP(div, 1 << calcp); |
| |
| *freq = (parent_rate >> calcp) / calcm; |
| |
| /* we were called to round the frequency, we can now return */ |
| if (n == NULL) |
| return; |
| |
| *m = calcm - 1; |
| *p = calcp; |
| } |
| |
| |
| |
| /** |
| * sun7i_a20_gmac_clk_setup - Setup function for A20/A31 GMAC clock module |
| * |
| * This clock looks something like this |
| * ________________________ |
| * MII TX clock from PHY >-----|___________ _________|----> to GMAC core |
| * GMAC Int. RGMII TX clk >----|___________\__/__gate---|----> to PHY |
| * Ext. 125MHz RGMII TX clk >--|__divider__/ | |
| * |________________________| |
| * |
| * The external 125 MHz reference is optional, i.e. GMAC can use its |
| * internal TX clock just fine. The A31 GMAC clock module does not have |
| * the divider controls for the external reference. |
| * |
| * To keep it simple, let the GMAC use either the MII TX clock for MII mode, |
| * and its internal TX clock for GMII and RGMII modes. The GMAC driver should |
| * select the appropriate source and gate/ungate the output to the PHY. |
| * |
| * Only the GMAC should use this clock. Altering the clock so that it doesn't |
| * match the GMAC's operation parameters will result in the GMAC not being |
| * able to send traffic out. The GMAC driver should set the clock rate and |
| * enable/disable this clock to configure the required state. The clock |
| * driver then responds by auto-reparenting the clock. |
| */ |
| |
| #define SUN7I_A20_GMAC_GPIT 2 |
| #define SUN7I_A20_GMAC_MASK 0x3 |
| #define SUN7I_A20_GMAC_PARENTS 2 |
| |
| static void __init sun7i_a20_gmac_clk_setup(struct device_node *node) |
| { |
| struct clk *clk; |
| struct clk_mux *mux; |
| struct clk_gate *gate; |
| const char *clk_name = node->name; |
| const char *parents[SUN7I_A20_GMAC_PARENTS]; |
| void *reg; |
| |
| if (of_property_read_string(node, "clock-output-names", &clk_name)) |
| return; |
| |
| /* allocate mux and gate clock structs */ |
| mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL); |
| if (!mux) |
| return; |
| |
| gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL); |
| if (!gate) |
| goto free_mux; |
| |
| /* gmac clock requires exactly 2 parents */ |
| parents[0] = of_clk_get_parent_name(node, 0); |
| parents[1] = of_clk_get_parent_name(node, 1); |
| if (!parents[0] || !parents[1]) |
| goto free_gate; |
| |
| reg = of_iomap(node, 0); |
| if (!reg) |
| goto free_gate; |
| |
| /* set up gate and fixed rate properties */ |
| gate->reg = reg; |
| gate->bit_idx = SUN7I_A20_GMAC_GPIT; |
| gate->lock = &clk_lock; |
| mux->reg = reg; |
| mux->mask = SUN7I_A20_GMAC_MASK; |
| mux->flags = CLK_MUX_INDEX_BIT; |
| mux->lock = &clk_lock; |
| |
| clk = clk_register_composite(NULL, clk_name, |
| parents, SUN7I_A20_GMAC_PARENTS, |
| &mux->hw, &clk_mux_ops, |
| NULL, NULL, |
| &gate->hw, &clk_gate_ops, |
| 0); |
| |
| if (IS_ERR(clk)) |
| goto iounmap_reg; |
| |
| of_clk_add_provider(node, of_clk_src_simple_get, clk); |
| clk_register_clkdev(clk, clk_name, NULL); |
| |
| return; |
| |
| iounmap_reg: |
| iounmap(reg); |
| free_gate: |
| kfree(gate); |
| free_mux: |
| kfree(mux); |
| } |
| CLK_OF_DECLARE(sun7i_a20_gmac, "allwinner,sun7i-a20-gmac-clk", |
| sun7i_a20_gmac_clk_setup); |
| |
| |
| |
| /** |
| * clk_sunxi_mmc_phase_control() - configures MMC clock phase control |
| */ |
| |
| void clk_sunxi_mmc_phase_control(struct clk *clk, u8 sample, u8 output) |
| { |
| #define to_clk_composite(_hw) container_of(_hw, struct clk_composite, hw) |
| #define to_clk_factors(_hw) container_of(_hw, struct clk_factors, hw) |
| |
| struct clk_hw *hw = __clk_get_hw(clk); |
| struct clk_composite *composite = to_clk_composite(hw); |
| struct clk_hw *rate_hw = composite->rate_hw; |
| struct clk_factors *factors = to_clk_factors(rate_hw); |
| unsigned long flags = 0; |
| u32 reg; |
| |
| if (factors->lock) |
| spin_lock_irqsave(factors->lock, flags); |
| |
| reg = readl(factors->reg); |
| |
| /* set sample clock phase control */ |
| reg &= ~(0x7 << 20); |
| reg |= ((sample & 0x7) << 20); |
| |
| /* set output clock phase control */ |
| reg &= ~(0x7 << 8); |
| reg |= ((output & 0x7) << 8); |
| |
| writel(reg, factors->reg); |
| |
| if (factors->lock) |
| spin_unlock_irqrestore(factors->lock, flags); |
| } |
| EXPORT_SYMBOL(clk_sunxi_mmc_phase_control); |
| |
| |
| /** |
| * sunxi_factors_clk_setup() - Setup function for factor clocks |
| */ |
| |
| #define SUNXI_FACTORS_MUX_MASK 0x3 |
| |
| struct factors_data { |
| int enable; |
| int mux; |
| struct clk_factors_config *table; |
| void (*getter) (u32 *rate, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p); |
| const char *name; |
| }; |
| |
| static struct clk_factors_config sun4i_pll1_config = { |
| .nshift = 8, |
| .nwidth = 5, |
| .kshift = 4, |
| .kwidth = 2, |
| .mshift = 0, |
| .mwidth = 2, |
| .pshift = 16, |
| .pwidth = 2, |
| }; |
| |
| static struct clk_factors_config sun6i_a31_pll1_config = { |
| .nshift = 8, |
| .nwidth = 5, |
| .kshift = 4, |
| .kwidth = 2, |
| .mshift = 0, |
| .mwidth = 2, |
| }; |
| |
| static struct clk_factors_config sun4i_pll5_config = { |
| .nshift = 8, |
| .nwidth = 5, |
| .kshift = 4, |
| .kwidth = 2, |
| }; |
| |
| static struct clk_factors_config sun6i_a31_pll6_config = { |
| .nshift = 8, |
| .nwidth = 5, |
| .kshift = 4, |
| .kwidth = 2, |
| }; |
| |
| static struct clk_factors_config sun4i_apb1_config = { |
| .mshift = 0, |
| .mwidth = 5, |
| .pshift = 16, |
| .pwidth = 2, |
| }; |
| |
| /* user manual says "n" but it's really "p" */ |
| static struct clk_factors_config sun4i_mod0_config = { |
| .mshift = 0, |
| .mwidth = 4, |
| .pshift = 16, |
| .pwidth = 2, |
| }; |
| |
| /* user manual says "n" but it's really "p" */ |
| static struct clk_factors_config sun7i_a20_out_config = { |
| .mshift = 8, |
| .mwidth = 5, |
| .pshift = 20, |
| .pwidth = 2, |
| }; |
| |
| static const struct factors_data sun4i_pll1_data __initconst = { |
| .enable = 31, |
| .table = &sun4i_pll1_config, |
| .getter = sun4i_get_pll1_factors, |
| }; |
| |
| static const struct factors_data sun6i_a31_pll1_data __initconst = { |
| .enable = 31, |
| .table = &sun6i_a31_pll1_config, |
| .getter = sun6i_a31_get_pll1_factors, |
| }; |
| |
| static const struct factors_data sun7i_a20_pll4_data __initconst = { |
| .enable = 31, |
| .table = &sun4i_pll5_config, |
| .getter = sun4i_get_pll5_factors, |
| }; |
| |
| static const struct factors_data sun4i_pll5_data __initconst = { |
| .enable = 31, |
| .table = &sun4i_pll5_config, |
| .getter = sun4i_get_pll5_factors, |
| .name = "pll5", |
| }; |
| |
| static const struct factors_data sun4i_pll6_data __initconst = { |
| .enable = 31, |
| .table = &sun4i_pll5_config, |
| .getter = sun4i_get_pll5_factors, |
| .name = "pll6", |
| }; |
| |
| static const struct factors_data sun6i_a31_pll6_data __initconst = { |
| .enable = 31, |
| .table = &sun6i_a31_pll6_config, |
| .getter = sun6i_a31_get_pll6_factors, |
| }; |
| |
| static const struct factors_data sun4i_apb1_data __initconst = { |
| .table = &sun4i_apb1_config, |
| .getter = sun4i_get_apb1_factors, |
| }; |
| |
| static const struct factors_data sun4i_mod0_data __initconst = { |
| .enable = 31, |
| .mux = 24, |
| .table = &sun4i_mod0_config, |
| .getter = sun4i_get_mod0_factors, |
| }; |
| |
| static const struct factors_data sun7i_a20_out_data __initconst = { |
| .enable = 31, |
| .mux = 24, |
| .table = &sun7i_a20_out_config, |
| .getter = sun7i_a20_get_out_factors, |
| }; |
| |
| static struct clk * __init sunxi_factors_clk_setup(struct device_node *node, |
| const struct factors_data *data) |
| { |
| struct clk *clk; |
| struct clk_factors *factors; |
| struct clk_gate *gate = NULL; |
| struct clk_mux *mux = NULL; |
| struct clk_hw *gate_hw = NULL; |
| struct clk_hw *mux_hw = NULL; |
| const char *clk_name = node->name; |
| const char *parents[SUNXI_MAX_PARENTS]; |
| void *reg; |
| int i = 0; |
| |
| reg = of_iomap(node, 0); |
| |
| /* if we have a mux, we will have >1 parents */ |
| while (i < SUNXI_MAX_PARENTS && |
| (parents[i] = of_clk_get_parent_name(node, i)) != NULL) |
| i++; |
| |
| /* |
| * some factor clocks, such as pll5 and pll6, may have multiple |
| * outputs, and have their name designated in factors_data |
| */ |
| if (data->name) |
| clk_name = data->name; |
| else |
| of_property_read_string(node, "clock-output-names", &clk_name); |
| |
| factors = kzalloc(sizeof(struct clk_factors), GFP_KERNEL); |
| if (!factors) |
| return NULL; |
| |
| /* Add a gate if this factor clock can be gated */ |
| if (data->enable) { |
| gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL); |
| if (!gate) { |
| kfree(factors); |
| return NULL; |
| } |
| |
| /* set up gate properties */ |
| gate->reg = reg; |
| gate->bit_idx = data->enable; |
| gate->lock = &clk_lock; |
| gate_hw = &gate->hw; |
| } |
| |
| /* Add a mux if this factor clock can be muxed */ |
| if (data->mux) { |
| mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL); |
| if (!mux) { |
| kfree(factors); |
| kfree(gate); |
| return NULL; |
| } |
| |
| /* set up gate properties */ |
| mux->reg = reg; |
| mux->shift = data->mux; |
| mux->mask = SUNXI_FACTORS_MUX_MASK; |
| mux->lock = &clk_lock; |
| mux_hw = &mux->hw; |
| } |
| |
| /* set up factors properties */ |
| factors->reg = reg; |
| factors->config = data->table; |
| factors->get_factors = data->getter; |
| factors->lock = &clk_lock; |
| |
| clk = clk_register_composite(NULL, clk_name, |
| parents, i, |
| mux_hw, &clk_mux_ops, |
| &factors->hw, &clk_factors_ops, |
| gate_hw, &clk_gate_ops, 0); |
| |
| if (!IS_ERR(clk)) { |
| of_clk_add_provider(node, of_clk_src_simple_get, clk); |
| clk_register_clkdev(clk, clk_name, NULL); |
| } |
| |
| return clk; |
| } |
| |
| |
| |
| /** |
| * sunxi_mux_clk_setup() - Setup function for muxes |
| */ |
| |
| #define SUNXI_MUX_GATE_WIDTH 2 |
| |
| struct mux_data { |
| u8 shift; |
| }; |
| |
| static const struct mux_data sun4i_cpu_mux_data __initconst = { |
| .shift = 16, |
| }; |
| |
| static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = { |
| .shift = 12, |
| }; |
| |
| static const struct mux_data sun4i_apb1_mux_data __initconst = { |
| .shift = 24, |
| }; |
| |
| static void __init sunxi_mux_clk_setup(struct device_node *node, |
| struct mux_data *data) |
| { |
| struct clk *clk; |
| const char *clk_name = node->name; |
| const char *parents[SUNXI_MAX_PARENTS]; |
| void *reg; |
| int i = 0; |
| |
| reg = of_iomap(node, 0); |
| |
| while (i < SUNXI_MAX_PARENTS && |
| (parents[i] = of_clk_get_parent_name(node, i)) != NULL) |
| i++; |
| |
| of_property_read_string(node, "clock-output-names", &clk_name); |
| |
| clk = clk_register_mux(NULL, clk_name, parents, i, |
| CLK_SET_RATE_NO_REPARENT, reg, |
| data->shift, SUNXI_MUX_GATE_WIDTH, |
| 0, &clk_lock); |
| |
| if (clk) { |
| of_clk_add_provider(node, of_clk_src_simple_get, clk); |
| clk_register_clkdev(clk, clk_name, NULL); |
| } |
| } |
| |
| |
| |
| /** |
| * sunxi_divider_clk_setup() - Setup function for simple divider clocks |
| */ |
| |
| struct div_data { |
| u8 shift; |
| u8 pow; |
| u8 width; |
| }; |
| |
| static const struct div_data sun4i_axi_data __initconst = { |
| .shift = 0, |
| .pow = 0, |
| .width = 2, |
| }; |
| |
| static const struct div_data sun4i_ahb_data __initconst = { |
| .shift = 4, |
| .pow = 1, |
| .width = 2, |
| }; |
| |
| static const struct div_data sun4i_apb0_data __initconst = { |
| .shift = 8, |
| .pow = 1, |
| .width = 2, |
| }; |
| |
| static const struct div_data sun6i_a31_apb2_div_data __initconst = { |
| .shift = 0, |
| .pow = 0, |
| .width = 4, |
| }; |
| |
| static void __init sunxi_divider_clk_setup(struct device_node *node, |
| struct div_data *data) |
| { |
| struct clk *clk; |
| const char *clk_name = node->name; |
| const char *clk_parent; |
| void *reg; |
| |
| reg = of_iomap(node, 0); |
| |
| clk_parent = of_clk_get_parent_name(node, 0); |
| |
| of_property_read_string(node, "clock-output-names", &clk_name); |
| |
| clk = clk_register_divider(NULL, clk_name, clk_parent, 0, |
| reg, data->shift, data->width, |
| data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0, |
| &clk_lock); |
| if (clk) { |
| of_clk_add_provider(node, of_clk_src_simple_get, clk); |
| clk_register_clkdev(clk, clk_name, NULL); |
| } |
| } |
| |
| |
| |
| /** |
| * sunxi_gates_reset... - reset bits in leaf gate clk registers handling |
| */ |
| |
| struct gates_reset_data { |
| void __iomem *reg; |
| spinlock_t *lock; |
| struct reset_controller_dev rcdev; |
| }; |
| |
| static int sunxi_gates_reset_assert(struct reset_controller_dev *rcdev, |
| unsigned long id) |
| { |
| struct gates_reset_data *data = container_of(rcdev, |
| struct gates_reset_data, |
| rcdev); |
| unsigned long flags; |
| u32 reg; |
| |
| spin_lock_irqsave(data->lock, flags); |
| |
| reg = readl(data->reg); |
| writel(reg & ~BIT(id), data->reg); |
| |
| spin_unlock_irqrestore(data->lock, flags); |
| |
| return 0; |
| } |
| |
| static int sunxi_gates_reset_deassert(struct reset_controller_dev *rcdev, |
| unsigned long id) |
| { |
| struct gates_reset_data *data = container_of(rcdev, |
| struct gates_reset_data, |
| rcdev); |
| unsigned long flags; |
| u32 reg; |
| |
| spin_lock_irqsave(data->lock, flags); |
| |
| reg = readl(data->reg); |
| writel(reg | BIT(id), data->reg); |
| |
| spin_unlock_irqrestore(data->lock, flags); |
| |
| return 0; |
| } |
| |
| static struct reset_control_ops sunxi_gates_reset_ops = { |
| .assert = sunxi_gates_reset_assert, |
| .deassert = sunxi_gates_reset_deassert, |
| }; |
| |
| /** |
| * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks |
| */ |
| |
| #define SUNXI_GATES_MAX_SIZE 64 |
| |
| struct gates_data { |
| DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE); |
| u32 reset_mask; |
| }; |
| |
| static const struct gates_data sun4i_axi_gates_data __initconst = { |
| .mask = {1}, |
| }; |
| |
| static const struct gates_data sun4i_ahb_gates_data __initconst = { |
| .mask = {0x7F77FFF, 0x14FB3F}, |
| }; |
| |
| static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = { |
| .mask = {0x147667e7, 0x185915}, |
| }; |
| |
| static const struct gates_data sun5i_a13_ahb_gates_data __initconst = { |
| .mask = {0x107067e7, 0x185111}, |
| }; |
| |
| static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = { |
| .mask = {0xEDFE7F62, 0x794F931}, |
| }; |
| |
| static const struct gates_data sun7i_a20_ahb_gates_data __initconst = { |
| .mask = { 0x12f77fff, 0x16ff3f }, |
| }; |
| |
| static const struct gates_data sun4i_apb0_gates_data __initconst = { |
| .mask = {0x4EF}, |
| }; |
| |
| static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = { |
| .mask = {0x469}, |
| }; |
| |
| static const struct gates_data sun5i_a13_apb0_gates_data __initconst = { |
| .mask = {0x61}, |
| }; |
| |
| static const struct gates_data sun7i_a20_apb0_gates_data __initconst = { |
| .mask = { 0x4ff }, |
| }; |
| |
| static const struct gates_data sun4i_apb1_gates_data __initconst = { |
| .mask = {0xFF00F7}, |
| }; |
| |
| static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = { |
| .mask = {0xf0007}, |
| }; |
| |
| static const struct gates_data sun5i_a13_apb1_gates_data __initconst = { |
| .mask = {0xa0007}, |
| }; |
| |
| static const struct gates_data sun6i_a31_apb1_gates_data __initconst = { |
| .mask = {0x3031}, |
| }; |
| |
| static const struct gates_data sun6i_a31_apb2_gates_data __initconst = { |
| .mask = {0x3F000F}, |
| }; |
| |
| static const struct gates_data sun7i_a20_apb1_gates_data __initconst = { |
| .mask = { 0xff80ff }, |
| }; |
| |
| static const struct gates_data sun4i_a10_usb_gates_data __initconst = { |
| .mask = {0x1C0}, |
| .reset_mask = 0x07, |
| }; |
| |
| static const struct gates_data sun5i_a13_usb_gates_data __initconst = { |
| .mask = {0x140}, |
| .reset_mask = 0x03, |
| }; |
| |
| static const struct gates_data sun6i_a31_usb_gates_data __initconst = { |
| .mask = { BIT(18) | BIT(17) | BIT(16) | BIT(10) | BIT(9) | BIT(8) }, |
| .reset_mask = BIT(2) | BIT(1) | BIT(0), |
| }; |
| |
| static void __init sunxi_gates_clk_setup(struct device_node *node, |
| struct gates_data *data) |
| { |
| struct clk_onecell_data *clk_data; |
| struct gates_reset_data *reset_data; |
| const char *clk_parent; |
| const char *clk_name; |
| void *reg; |
| int qty; |
| int i = 0; |
| int j = 0; |
| int ignore; |
| |
| reg = of_iomap(node, 0); |
| |
| clk_parent = of_clk_get_parent_name(node, 0); |
| |
| /* Worst-case size approximation and memory allocation */ |
| qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE); |
| clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL); |
| if (!clk_data) |
| return; |
| clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL); |
| if (!clk_data->clks) { |
| kfree(clk_data); |
| return; |
| } |
| |
| for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) { |
| of_property_read_string_index(node, "clock-output-names", |
| j, &clk_name); |
| |
| /* No driver claims this clock, but it should remain gated */ |
| ignore = !strcmp("ahb_sdram", clk_name) ? CLK_IGNORE_UNUSED : 0; |
| |
| clk_data->clks[i] = clk_register_gate(NULL, clk_name, |
| clk_parent, ignore, |
| reg + 4 * (i/32), i % 32, |
| 0, &clk_lock); |
| WARN_ON(IS_ERR(clk_data->clks[i])); |
| |
| j++; |
| } |
| |
| /* Adjust to the real max */ |
| clk_data->clk_num = i; |
| |
| of_clk_add_provider(node, of_clk_src_onecell_get, clk_data); |
| |
| /* Register a reset controler for gates with reset bits */ |
| if (data->reset_mask == 0) |
| return; |
| |
| reset_data = kzalloc(sizeof(*reset_data), GFP_KERNEL); |
| if (!reset_data) |
| return; |
| |
| reset_data->reg = reg; |
| reset_data->lock = &clk_lock; |
| reset_data->rcdev.nr_resets = __fls(data->reset_mask) + 1; |
| reset_data->rcdev.ops = &sunxi_gates_reset_ops; |
| reset_data->rcdev.of_node = node; |
| reset_controller_register(&reset_data->rcdev); |
| } |
| |
| |
| |
| /** |
| * sunxi_divs_clk_setup() helper data |
| */ |
| |
| #define SUNXI_DIVS_MAX_QTY 2 |
| #define SUNXI_DIVISOR_WIDTH 2 |
| |
| struct divs_data { |
| const struct factors_data *factors; /* data for the factor clock */ |
| struct { |
| u8 fixed; /* is it a fixed divisor? if not... */ |
| struct clk_div_table *table; /* is it a table based divisor? */ |
| u8 shift; /* otherwise it's a normal divisor with this shift */ |
| u8 pow; /* is it power-of-two based? */ |
| u8 gate; /* is it independently gateable? */ |
| } div[SUNXI_DIVS_MAX_QTY]; |
| }; |
| |
| static struct clk_div_table pll6_sata_tbl[] = { |
| { .val = 0, .div = 6, }, |
| { .val = 1, .div = 12, }, |
| { .val = 2, .div = 18, }, |
| { .val = 3, .div = 24, }, |
| { } /* sentinel */ |
| }; |
| |
| static const struct divs_data pll5_divs_data __initconst = { |
| .factors = &sun4i_pll5_data, |
| .div = { |
| { .shift = 0, .pow = 0, }, /* M, DDR */ |
| { .shift = 16, .pow = 1, }, /* P, other */ |
| } |
| }; |
| |
| static const struct divs_data pll6_divs_data __initconst = { |
| .factors = &sun4i_pll6_data, |
| .div = { |
| { .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */ |
| { .fixed = 2 }, /* P, other */ |
| } |
| }; |
| |
| /** |
| * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks |
| * |
| * These clocks look something like this |
| * ________________________ |
| * | ___divisor 1---|----> to consumer |
| * parent >--| pll___/___divisor 2---|----> to consumer |
| * | \_______________|____> to consumer |
| * |________________________| |
| */ |
| |
| static void __init sunxi_divs_clk_setup(struct device_node *node, |
| struct divs_data *data) |
| { |
| struct clk_onecell_data *clk_data; |
| const char *parent; |
| const char *clk_name; |
| struct clk **clks, *pclk; |
| struct clk_hw *gate_hw, *rate_hw; |
| const struct clk_ops *rate_ops; |
| struct clk_gate *gate = NULL; |
| struct clk_fixed_factor *fix_factor; |
| struct clk_divider *divider; |
| void *reg; |
| int i = 0; |
| int flags, clkflags; |
| |
| /* Set up factor clock that we will be dividing */ |
| pclk = sunxi_factors_clk_setup(node, data->factors); |
| parent = __clk_get_name(pclk); |
| |
| reg = of_iomap(node, 0); |
| |
| clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL); |
| if (!clk_data) |
| return; |
| |
| clks = kzalloc((SUNXI_DIVS_MAX_QTY+1) * sizeof(*clks), GFP_KERNEL); |
| if (!clks) |
| goto free_clkdata; |
| |
| clk_data->clks = clks; |
| |
| /* It's not a good idea to have automatic reparenting changing |
| * our RAM clock! */ |
| clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT; |
| |
| for (i = 0; i < SUNXI_DIVS_MAX_QTY; i++) { |
| if (of_property_read_string_index(node, "clock-output-names", |
| i, &clk_name) != 0) |
| break; |
| |
| gate_hw = NULL; |
| rate_hw = NULL; |
| rate_ops = NULL; |
| |
| /* If this leaf clock can be gated, create a gate */ |
| if (data->div[i].gate) { |
| gate = kzalloc(sizeof(*gate), GFP_KERNEL); |
| if (!gate) |
| goto free_clks; |
| |
| gate->reg = reg; |
| gate->bit_idx = data->div[i].gate; |
| gate->lock = &clk_lock; |
| |
| gate_hw = &gate->hw; |
| } |
| |
| /* Leaves can be fixed or configurable divisors */ |
| if (data->div[i].fixed) { |
| fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL); |
| if (!fix_factor) |
| goto free_gate; |
| |
| fix_factor->mult = 1; |
| fix_factor->div = data->div[i].fixed; |
| |
| rate_hw = &fix_factor->hw; |
| rate_ops = &clk_fixed_factor_ops; |
| } else { |
| divider = kzalloc(sizeof(*divider), GFP_KERNEL); |
| if (!divider) |
| goto free_gate; |
| |
| flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0; |
| |
| divider->reg = reg; |
| divider->shift = data->div[i].shift; |
| divider->width = SUNXI_DIVISOR_WIDTH; |
| divider->flags = flags; |
| divider->lock = &clk_lock; |
| divider->table = data->div[i].table; |
| |
| rate_hw = ÷r->hw; |
| rate_ops = &clk_divider_ops; |
| } |
| |
| /* Wrap the (potential) gate and the divisor on a composite |
| * clock to unify them */ |
| clks[i] = clk_register_composite(NULL, clk_name, &parent, 1, |
| NULL, NULL, |
| rate_hw, rate_ops, |
| gate_hw, &clk_gate_ops, |
| clkflags); |
| |
| WARN_ON(IS_ERR(clk_data->clks[i])); |
| clk_register_clkdev(clks[i], clk_name, NULL); |
| } |
| |
| /* The last clock available on the getter is the parent */ |
| clks[i++] = pclk; |
| |
| /* Adjust to the real max */ |
| clk_data->clk_num = i; |
| |
| of_clk_add_provider(node, of_clk_src_onecell_get, clk_data); |
| |
| return; |
| |
| free_gate: |
| kfree(gate); |
| free_clks: |
| kfree(clks); |
| free_clkdata: |
| kfree(clk_data); |
| } |
| |
| |
| |
| /* Matches for factors clocks */ |
| static const struct of_device_id clk_factors_match[] __initconst = { |
| {.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,}, |
| {.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,}, |
| {.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,}, |
| {.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_data,}, |
| {.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,}, |
| {.compatible = "allwinner,sun4i-a10-mod0-clk", .data = &sun4i_mod0_data,}, |
| {.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,}, |
| {} |
| }; |
| |
| /* Matches for divider clocks */ |
| static const struct of_device_id clk_div_match[] __initconst = { |
| {.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,}, |
| {.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,}, |
| {.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,}, |
| {.compatible = "allwinner,sun6i-a31-apb2-div-clk", .data = &sun6i_a31_apb2_div_data,}, |
| {} |
| }; |
| |
| /* Matches for divided outputs */ |
| static const struct of_device_id clk_divs_match[] __initconst = { |
| {.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,}, |
| {.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,}, |
| {} |
| }; |
| |
| /* Matches for mux clocks */ |
| static const struct of_device_id clk_mux_match[] __initconst = { |
| {.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,}, |
| {.compatible = "allwinner,sun4i-a10-apb1-mux-clk", .data = &sun4i_apb1_mux_data,}, |
| {.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,}, |
| {} |
| }; |
| |
| /* Matches for gate clocks */ |
| static const struct of_device_id clk_gates_match[] __initconst = { |
| {.compatible = "allwinner,sun4i-a10-axi-gates-clk", .data = &sun4i_axi_gates_data,}, |
| {.compatible = "allwinner,sun4i-a10-ahb-gates-clk", .data = &sun4i_ahb_gates_data,}, |
| {.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,}, |
| {.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,}, |
| {.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,}, |
| {.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,}, |
| {.compatible = "allwinner,sun4i-a10-apb0-gates-clk", .data = &sun4i_apb0_gates_data,}, |
| {.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,}, |
| {.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,}, |
| {.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,}, |
| {.compatible = "allwinner,sun4i-a10-apb1-gates-clk", .data = &sun4i_apb1_gates_data,}, |
| {.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,}, |
| {.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,}, |
| {.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,}, |
| {.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,}, |
| {.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,}, |
| {.compatible = "allwinner,sun4i-a10-usb-clk", .data = &sun4i_a10_usb_gates_data,}, |
| {.compatible = "allwinner,sun5i-a13-usb-clk", .data = &sun5i_a13_usb_gates_data,}, |
| {.compatible = "allwinner,sun6i-a31-usb-clk", .data = &sun6i_a31_usb_gates_data,}, |
| {} |
| }; |
| |
| static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match, |
| void *function) |
| { |
| struct device_node *np; |
| const struct div_data *data; |
| const struct of_device_id *match; |
| void (*setup_function)(struct device_node *, const void *) = function; |
| |
| for_each_matching_node_and_match(np, clk_match, &match) { |
| data = match->data; |
| setup_function(np, data); |
| } |
| } |
| |
| /** |
| * System clock protection |
| * |
| * By enabling these critical clocks, we prevent their accidental gating |
| * by the framework |
| */ |
| static void __init sunxi_clock_protect(void) |
| { |
| struct clk *clk; |
| |
| /* memory bus clock - sun5i+ */ |
| clk = clk_get(NULL, "mbus"); |
| if (!IS_ERR(clk)) |
| clk_prepare_enable(clk); |
| |
| /* DDR clock - sun4i+ */ |
| clk = clk_get(NULL, "pll5_ddr"); |
| if (!IS_ERR(clk)) |
| clk_prepare_enable(clk); |
| } |
| |
| static void __init sunxi_init_clocks(struct device_node *np) |
| { |
| /* Register factor clocks */ |
| of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup); |
| |
| /* Register divider clocks */ |
| of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup); |
| |
| /* Register divided output clocks */ |
| of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup); |
| |
| /* Register mux clocks */ |
| of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup); |
| |
| /* Register gate clocks */ |
| of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup); |
| |
| /* Enable core system clocks */ |
| sunxi_clock_protect(); |
| } |
| CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sunxi_init_clocks); |
| CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sunxi_init_clocks); |
| CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sunxi_init_clocks); |
| CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sunxi_init_clocks); |
| CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sunxi_init_clocks); |