| /* |
| * drivers/cpufreq/cpufreq_conservative.c |
| * |
| * Copyright (C) 2001 Russell King |
| * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. |
| * Jun Nakajima <jun.nakajima@intel.com> |
| * (C) 2009 Alexander Clouter <alex@digriz.org.uk> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/cpufreq.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/kobject.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/notifier.h> |
| #include <linux/percpu-defs.h> |
| #include <linux/sysfs.h> |
| #include <linux/types.h> |
| |
| #include "cpufreq_governor.h" |
| |
| /* Conservative governor macors */ |
| #define DEF_FREQUENCY_UP_THRESHOLD (80) |
| #define DEF_FREQUENCY_DOWN_THRESHOLD (20) |
| #define DEF_SAMPLING_DOWN_FACTOR (1) |
| #define MAX_SAMPLING_DOWN_FACTOR (10) |
| |
| static struct dbs_data cs_dbs_data; |
| static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info); |
| |
| static struct cs_dbs_tuners cs_tuners = { |
| .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, |
| .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD, |
| .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR, |
| .ignore_nice = 0, |
| .freq_step = 5, |
| }; |
| |
| /* |
| * Every sampling_rate, we check, if current idle time is less than 20% |
| * (default), then we try to increase frequency Every sampling_rate * |
| * sampling_down_factor, we check, if current idle time is more than 80%, then |
| * we try to decrease frequency |
| * |
| * Any frequency increase takes it to the maximum frequency. Frequency reduction |
| * happens at minimum steps of 5% (default) of maximum frequency |
| */ |
| static void cs_check_cpu(int cpu, unsigned int load) |
| { |
| struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu); |
| struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy; |
| unsigned int freq_target; |
| |
| /* |
| * break out if we 'cannot' reduce the speed as the user might |
| * want freq_step to be zero |
| */ |
| if (cs_tuners.freq_step == 0) |
| return; |
| |
| /* Check for frequency increase */ |
| if (load > cs_tuners.up_threshold) { |
| dbs_info->down_skip = 0; |
| |
| /* if we are already at full speed then break out early */ |
| if (dbs_info->requested_freq == policy->max) |
| return; |
| |
| freq_target = (cs_tuners.freq_step * policy->max) / 100; |
| |
| /* max freq cannot be less than 100. But who knows.... */ |
| if (unlikely(freq_target == 0)) |
| freq_target = 5; |
| |
| dbs_info->requested_freq += freq_target; |
| if (dbs_info->requested_freq > policy->max) |
| dbs_info->requested_freq = policy->max; |
| |
| __cpufreq_driver_target(policy, dbs_info->requested_freq, |
| CPUFREQ_RELATION_H); |
| return; |
| } |
| |
| /* |
| * The optimal frequency is the frequency that is the lowest that can |
| * support the current CPU usage without triggering the up policy. To be |
| * safe, we focus 10 points under the threshold. |
| */ |
| if (load < (cs_tuners.down_threshold - 10)) { |
| freq_target = (cs_tuners.freq_step * policy->max) / 100; |
| |
| dbs_info->requested_freq -= freq_target; |
| if (dbs_info->requested_freq < policy->min) |
| dbs_info->requested_freq = policy->min; |
| |
| /* |
| * if we cannot reduce the frequency anymore, break out early |
| */ |
| if (policy->cur == policy->min) |
| return; |
| |
| __cpufreq_driver_target(policy, dbs_info->requested_freq, |
| CPUFREQ_RELATION_H); |
| return; |
| } |
| } |
| |
| static void cs_timer_update(struct cs_cpu_dbs_info_s *dbs_info, bool sample, |
| struct delayed_work *dw) |
| { |
| unsigned int cpu = dbs_info->cdbs.cpu; |
| int delay = delay_for_sampling_rate(cs_tuners.sampling_rate); |
| |
| if (sample) |
| dbs_check_cpu(&cs_dbs_data, cpu); |
| |
| schedule_delayed_work_on(smp_processor_id(), dw, delay); |
| } |
| |
| static void cs_timer_coordinated(struct cs_cpu_dbs_info_s *dbs_info_local, |
| struct delayed_work *dw) |
| { |
| struct cs_cpu_dbs_info_s *dbs_info; |
| ktime_t time_now; |
| s64 delta_us; |
| bool sample = true; |
| |
| /* use leader CPU's dbs_info */ |
| dbs_info = &per_cpu(cs_cpu_dbs_info, dbs_info_local->cdbs.cpu); |
| mutex_lock(&dbs_info->cdbs.timer_mutex); |
| |
| time_now = ktime_get(); |
| delta_us = ktime_us_delta(time_now, dbs_info->cdbs.time_stamp); |
| |
| /* Do nothing if we recently have sampled */ |
| if (delta_us < (s64)(cs_tuners.sampling_rate / 2)) |
| sample = false; |
| else |
| dbs_info->cdbs.time_stamp = time_now; |
| |
| cs_timer_update(dbs_info, sample, dw); |
| mutex_unlock(&dbs_info->cdbs.timer_mutex); |
| } |
| |
| static void cs_dbs_timer(struct work_struct *work) |
| { |
| struct delayed_work *dw = to_delayed_work(work); |
| struct cs_cpu_dbs_info_s *dbs_info = container_of(work, |
| struct cs_cpu_dbs_info_s, cdbs.work.work); |
| |
| if (policy_is_shared(dbs_info->cdbs.cur_policy)) { |
| cs_timer_coordinated(dbs_info, dw); |
| } else { |
| mutex_lock(&dbs_info->cdbs.timer_mutex); |
| cs_timer_update(dbs_info, true, dw); |
| mutex_unlock(&dbs_info->cdbs.timer_mutex); |
| } |
| } |
| static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct cpufreq_freqs *freq = data; |
| struct cs_cpu_dbs_info_s *dbs_info = |
| &per_cpu(cs_cpu_dbs_info, freq->cpu); |
| struct cpufreq_policy *policy; |
| |
| if (!dbs_info->enable) |
| return 0; |
| |
| policy = dbs_info->cdbs.cur_policy; |
| |
| /* |
| * we only care if our internally tracked freq moves outside the 'valid' |
| * ranges of freqency available to us otherwise we do not change it |
| */ |
| if (dbs_info->requested_freq > policy->max |
| || dbs_info->requested_freq < policy->min) |
| dbs_info->requested_freq = freq->new; |
| |
| return 0; |
| } |
| |
| /************************** sysfs interface ************************/ |
| static ssize_t show_sampling_rate_min(struct kobject *kobj, |
| struct attribute *attr, char *buf) |
| { |
| return sprintf(buf, "%u\n", cs_dbs_data.min_sampling_rate); |
| } |
| |
| static ssize_t store_sampling_down_factor(struct kobject *a, |
| struct attribute *b, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| ret = sscanf(buf, "%u", &input); |
| |
| if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1) |
| return -EINVAL; |
| |
| cs_tuners.sampling_down_factor = input; |
| return count; |
| } |
| |
| static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| ret = sscanf(buf, "%u", &input); |
| |
| if (ret != 1) |
| return -EINVAL; |
| |
| cs_tuners.sampling_rate = max(input, cs_dbs_data.min_sampling_rate); |
| return count; |
| } |
| |
| static ssize_t store_up_threshold(struct kobject *a, struct attribute *b, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| ret = sscanf(buf, "%u", &input); |
| |
| if (ret != 1 || input > 100 || input <= cs_tuners.down_threshold) |
| return -EINVAL; |
| |
| cs_tuners.up_threshold = input; |
| return count; |
| } |
| |
| static ssize_t store_down_threshold(struct kobject *a, struct attribute *b, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| ret = sscanf(buf, "%u", &input); |
| |
| /* cannot be lower than 11 otherwise freq will not fall */ |
| if (ret != 1 || input < 11 || input > 100 || |
| input >= cs_tuners.up_threshold) |
| return -EINVAL; |
| |
| cs_tuners.down_threshold = input; |
| return count; |
| } |
| |
| static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b, |
| const char *buf, size_t count) |
| { |
| unsigned int input, j; |
| int ret; |
| |
| ret = sscanf(buf, "%u", &input); |
| if (ret != 1) |
| return -EINVAL; |
| |
| if (input > 1) |
| input = 1; |
| |
| if (input == cs_tuners.ignore_nice) /* nothing to do */ |
| return count; |
| |
| cs_tuners.ignore_nice = input; |
| |
| /* we need to re-evaluate prev_cpu_idle */ |
| for_each_online_cpu(j) { |
| struct cs_cpu_dbs_info_s *dbs_info; |
| dbs_info = &per_cpu(cs_cpu_dbs_info, j); |
| dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j, |
| &dbs_info->cdbs.prev_cpu_wall); |
| if (cs_tuners.ignore_nice) |
| dbs_info->cdbs.prev_cpu_nice = |
| kcpustat_cpu(j).cpustat[CPUTIME_NICE]; |
| } |
| return count; |
| } |
| |
| static ssize_t store_freq_step(struct kobject *a, struct attribute *b, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| ret = sscanf(buf, "%u", &input); |
| |
| if (ret != 1) |
| return -EINVAL; |
| |
| if (input > 100) |
| input = 100; |
| |
| /* |
| * no need to test here if freq_step is zero as the user might actually |
| * want this, they would be crazy though :) |
| */ |
| cs_tuners.freq_step = input; |
| return count; |
| } |
| |
| show_one(cs, sampling_rate, sampling_rate); |
| show_one(cs, sampling_down_factor, sampling_down_factor); |
| show_one(cs, up_threshold, up_threshold); |
| show_one(cs, down_threshold, down_threshold); |
| show_one(cs, ignore_nice_load, ignore_nice); |
| show_one(cs, freq_step, freq_step); |
| |
| define_one_global_rw(sampling_rate); |
| define_one_global_rw(sampling_down_factor); |
| define_one_global_rw(up_threshold); |
| define_one_global_rw(down_threshold); |
| define_one_global_rw(ignore_nice_load); |
| define_one_global_rw(freq_step); |
| define_one_global_ro(sampling_rate_min); |
| |
| static struct attribute *dbs_attributes[] = { |
| &sampling_rate_min.attr, |
| &sampling_rate.attr, |
| &sampling_down_factor.attr, |
| &up_threshold.attr, |
| &down_threshold.attr, |
| &ignore_nice_load.attr, |
| &freq_step.attr, |
| NULL |
| }; |
| |
| static struct attribute_group cs_attr_group = { |
| .attrs = dbs_attributes, |
| .name = "conservative", |
| }; |
| |
| /************************** sysfs end ************************/ |
| |
| define_get_cpu_dbs_routines(cs_cpu_dbs_info); |
| |
| static struct notifier_block cs_cpufreq_notifier_block = { |
| .notifier_call = dbs_cpufreq_notifier, |
| }; |
| |
| static struct cs_ops cs_ops = { |
| .notifier_block = &cs_cpufreq_notifier_block, |
| }; |
| |
| static struct dbs_data cs_dbs_data = { |
| .governor = GOV_CONSERVATIVE, |
| .attr_group = &cs_attr_group, |
| .tuners = &cs_tuners, |
| .get_cpu_cdbs = get_cpu_cdbs, |
| .get_cpu_dbs_info_s = get_cpu_dbs_info_s, |
| .gov_dbs_timer = cs_dbs_timer, |
| .gov_check_cpu = cs_check_cpu, |
| .gov_ops = &cs_ops, |
| }; |
| |
| static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy, |
| unsigned int event) |
| { |
| return cpufreq_governor_dbs(&cs_dbs_data, policy, event); |
| } |
| |
| #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE |
| static |
| #endif |
| struct cpufreq_governor cpufreq_gov_conservative = { |
| .name = "conservative", |
| .governor = cs_cpufreq_governor_dbs, |
| .max_transition_latency = TRANSITION_LATENCY_LIMIT, |
| .owner = THIS_MODULE, |
| }; |
| |
| static int __init cpufreq_gov_dbs_init(void) |
| { |
| mutex_init(&cs_dbs_data.mutex); |
| return cpufreq_register_governor(&cpufreq_gov_conservative); |
| } |
| |
| static void __exit cpufreq_gov_dbs_exit(void) |
| { |
| cpufreq_unregister_governor(&cpufreq_gov_conservative); |
| } |
| |
| MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>"); |
| MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for " |
| "Low Latency Frequency Transition capable processors " |
| "optimised for use in a battery environment"); |
| MODULE_LICENSE("GPL"); |
| |
| #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE |
| fs_initcall(cpufreq_gov_dbs_init); |
| #else |
| module_init(cpufreq_gov_dbs_init); |
| #endif |
| module_exit(cpufreq_gov_dbs_exit); |