| /* |
| * fs/f2fs/inline.c |
| * Copyright (c) 2013, Intel Corporation |
| * Authors: Huajun Li <huajun.li@intel.com> |
| * Haicheng Li <haicheng.li@intel.com> |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/f2fs_fs.h> |
| |
| #include "f2fs.h" |
| #include "node.h" |
| |
| bool f2fs_may_inline_data(struct inode *inode) |
| { |
| if (f2fs_is_atomic_file(inode)) |
| return false; |
| |
| if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode)) |
| return false; |
| |
| if (i_size_read(inode) > MAX_INLINE_DATA) |
| return false; |
| |
| if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) |
| return false; |
| |
| return true; |
| } |
| |
| bool f2fs_may_inline_dentry(struct inode *inode) |
| { |
| if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY)) |
| return false; |
| |
| if (!S_ISDIR(inode->i_mode)) |
| return false; |
| |
| return true; |
| } |
| |
| void read_inline_data(struct page *page, struct page *ipage) |
| { |
| void *src_addr, *dst_addr; |
| |
| if (PageUptodate(page)) |
| return; |
| |
| f2fs_bug_on(F2FS_P_SB(page), page->index); |
| |
| zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE); |
| |
| /* Copy the whole inline data block */ |
| src_addr = inline_data_addr(ipage); |
| dst_addr = kmap_atomic(page); |
| memcpy(dst_addr, src_addr, MAX_INLINE_DATA); |
| flush_dcache_page(page); |
| kunmap_atomic(dst_addr); |
| SetPageUptodate(page); |
| } |
| |
| bool truncate_inline_inode(struct page *ipage, u64 from) |
| { |
| void *addr; |
| |
| if (from >= MAX_INLINE_DATA) |
| return false; |
| |
| addr = inline_data_addr(ipage); |
| |
| f2fs_wait_on_page_writeback(ipage, NODE, true); |
| memset(addr + from, 0, MAX_INLINE_DATA - from); |
| |
| return true; |
| } |
| |
| int f2fs_read_inline_data(struct inode *inode, struct page *page) |
| { |
| struct page *ipage; |
| |
| ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); |
| if (IS_ERR(ipage)) { |
| unlock_page(page); |
| return PTR_ERR(ipage); |
| } |
| |
| if (!f2fs_has_inline_data(inode)) { |
| f2fs_put_page(ipage, 1); |
| return -EAGAIN; |
| } |
| |
| if (page->index) |
| zero_user_segment(page, 0, PAGE_SIZE); |
| else |
| read_inline_data(page, ipage); |
| |
| SetPageUptodate(page); |
| f2fs_put_page(ipage, 1); |
| unlock_page(page); |
| return 0; |
| } |
| |
| int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page) |
| { |
| struct f2fs_io_info fio = { |
| .sbi = F2FS_I_SB(dn->inode), |
| .type = DATA, |
| .rw = WRITE_SYNC | REQ_PRIO, |
| .page = page, |
| .encrypted_page = NULL, |
| }; |
| int dirty, err; |
| |
| if (!f2fs_exist_data(dn->inode)) |
| goto clear_out; |
| |
| err = f2fs_reserve_block(dn, 0); |
| if (err) |
| return err; |
| |
| f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page)); |
| |
| read_inline_data(page, dn->inode_page); |
| set_page_dirty(page); |
| |
| /* clear dirty state */ |
| dirty = clear_page_dirty_for_io(page); |
| |
| /* write data page to try to make data consistent */ |
| set_page_writeback(page); |
| fio.old_blkaddr = dn->data_blkaddr; |
| write_data_page(dn, &fio); |
| f2fs_wait_on_page_writeback(page, DATA, true); |
| if (dirty) |
| inode_dec_dirty_pages(dn->inode); |
| |
| /* this converted inline_data should be recovered. */ |
| set_inode_flag(dn->inode, FI_APPEND_WRITE); |
| |
| /* clear inline data and flag after data writeback */ |
| truncate_inline_inode(dn->inode_page, 0); |
| clear_inline_node(dn->inode_page); |
| clear_out: |
| stat_dec_inline_inode(dn->inode); |
| f2fs_clear_inline_inode(dn->inode); |
| sync_inode_page(dn); |
| f2fs_put_dnode(dn); |
| return 0; |
| } |
| |
| int f2fs_convert_inline_inode(struct inode *inode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct dnode_of_data dn; |
| struct page *ipage, *page; |
| int err = 0; |
| |
| if (!f2fs_has_inline_data(inode)) |
| return 0; |
| |
| page = f2fs_grab_cache_page(inode->i_mapping, 0, false); |
| if (!page) |
| return -ENOMEM; |
| |
| f2fs_lock_op(sbi); |
| |
| ipage = get_node_page(sbi, inode->i_ino); |
| if (IS_ERR(ipage)) { |
| err = PTR_ERR(ipage); |
| goto out; |
| } |
| |
| set_new_dnode(&dn, inode, ipage, ipage, 0); |
| |
| if (f2fs_has_inline_data(inode)) |
| err = f2fs_convert_inline_page(&dn, page); |
| |
| f2fs_put_dnode(&dn); |
| out: |
| f2fs_unlock_op(sbi); |
| |
| f2fs_put_page(page, 1); |
| |
| f2fs_balance_fs(sbi, dn.node_changed); |
| |
| return err; |
| } |
| |
| int f2fs_write_inline_data(struct inode *inode, struct page *page) |
| { |
| void *src_addr, *dst_addr; |
| struct dnode_of_data dn; |
| int err; |
| |
| set_new_dnode(&dn, inode, NULL, NULL, 0); |
| err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); |
| if (err) |
| return err; |
| |
| if (!f2fs_has_inline_data(inode)) { |
| f2fs_put_dnode(&dn); |
| return -EAGAIN; |
| } |
| |
| f2fs_bug_on(F2FS_I_SB(inode), page->index); |
| |
| f2fs_wait_on_page_writeback(dn.inode_page, NODE, true); |
| src_addr = kmap_atomic(page); |
| dst_addr = inline_data_addr(dn.inode_page); |
| memcpy(dst_addr, src_addr, MAX_INLINE_DATA); |
| kunmap_atomic(src_addr); |
| |
| set_inode_flag(inode, FI_APPEND_WRITE); |
| set_inode_flag(inode, FI_DATA_EXIST); |
| |
| sync_inode_page(&dn); |
| clear_inline_node(dn.inode_page); |
| f2fs_put_dnode(&dn); |
| return 0; |
| } |
| |
| bool recover_inline_data(struct inode *inode, struct page *npage) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct f2fs_inode *ri = NULL; |
| void *src_addr, *dst_addr; |
| struct page *ipage; |
| |
| /* |
| * The inline_data recovery policy is as follows. |
| * [prev.] [next] of inline_data flag |
| * o o -> recover inline_data |
| * o x -> remove inline_data, and then recover data blocks |
| * x o -> remove inline_data, and then recover inline_data |
| * x x -> recover data blocks |
| */ |
| if (IS_INODE(npage)) |
| ri = F2FS_INODE(npage); |
| |
| if (f2fs_has_inline_data(inode) && |
| ri && (ri->i_inline & F2FS_INLINE_DATA)) { |
| process_inline: |
| ipage = get_node_page(sbi, inode->i_ino); |
| f2fs_bug_on(sbi, IS_ERR(ipage)); |
| |
| f2fs_wait_on_page_writeback(ipage, NODE, true); |
| |
| src_addr = inline_data_addr(npage); |
| dst_addr = inline_data_addr(ipage); |
| memcpy(dst_addr, src_addr, MAX_INLINE_DATA); |
| |
| set_inode_flag(inode, FI_INLINE_DATA); |
| set_inode_flag(inode, FI_DATA_EXIST); |
| |
| update_inode(inode, ipage); |
| f2fs_put_page(ipage, 1); |
| return true; |
| } |
| |
| if (f2fs_has_inline_data(inode)) { |
| ipage = get_node_page(sbi, inode->i_ino); |
| f2fs_bug_on(sbi, IS_ERR(ipage)); |
| if (!truncate_inline_inode(ipage, 0)) |
| return false; |
| f2fs_clear_inline_inode(inode); |
| update_inode(inode, ipage); |
| f2fs_put_page(ipage, 1); |
| } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) { |
| if (truncate_blocks(inode, 0, false)) |
| return false; |
| goto process_inline; |
| } |
| return false; |
| } |
| |
| struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, |
| struct fscrypt_name *fname, struct page **res_page) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb); |
| struct f2fs_inline_dentry *inline_dentry; |
| struct qstr name = FSTR_TO_QSTR(&fname->disk_name); |
| struct f2fs_dir_entry *de; |
| struct f2fs_dentry_ptr d; |
| struct page *ipage; |
| f2fs_hash_t namehash; |
| |
| ipage = get_node_page(sbi, dir->i_ino); |
| if (IS_ERR(ipage)) |
| return NULL; |
| |
| namehash = f2fs_dentry_hash(&name); |
| |
| inline_dentry = inline_data_addr(ipage); |
| |
| make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2); |
| de = find_target_dentry(fname, namehash, NULL, &d); |
| unlock_page(ipage); |
| if (de) |
| *res_page = ipage; |
| else |
| f2fs_put_page(ipage, 0); |
| |
| return de; |
| } |
| |
| struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir, |
| struct page **p) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(dir); |
| struct page *ipage; |
| struct f2fs_dir_entry *de; |
| struct f2fs_inline_dentry *dentry_blk; |
| |
| ipage = get_node_page(sbi, dir->i_ino); |
| if (IS_ERR(ipage)) |
| return NULL; |
| |
| dentry_blk = inline_data_addr(ipage); |
| de = &dentry_blk->dentry[1]; |
| *p = ipage; |
| unlock_page(ipage); |
| return de; |
| } |
| |
| int make_empty_inline_dir(struct inode *inode, struct inode *parent, |
| struct page *ipage) |
| { |
| struct f2fs_inline_dentry *dentry_blk; |
| struct f2fs_dentry_ptr d; |
| |
| dentry_blk = inline_data_addr(ipage); |
| |
| make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2); |
| do_make_empty_dir(inode, parent, &d); |
| |
| set_page_dirty(ipage); |
| |
| /* update i_size to MAX_INLINE_DATA */ |
| if (i_size_read(inode) < MAX_INLINE_DATA) { |
| f2fs_i_size_write(inode, MAX_INLINE_DATA); |
| set_inode_flag(inode, FI_UPDATE_DIR); |
| } |
| return 0; |
| } |
| |
| /* |
| * NOTE: ipage is grabbed by caller, but if any error occurs, we should |
| * release ipage in this function. |
| */ |
| static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage, |
| struct f2fs_inline_dentry *inline_dentry) |
| { |
| struct page *page; |
| struct dnode_of_data dn; |
| struct f2fs_dentry_block *dentry_blk; |
| int err; |
| |
| page = f2fs_grab_cache_page(dir->i_mapping, 0, false); |
| if (!page) { |
| f2fs_put_page(ipage, 1); |
| return -ENOMEM; |
| } |
| |
| set_new_dnode(&dn, dir, ipage, NULL, 0); |
| err = f2fs_reserve_block(&dn, 0); |
| if (err) |
| goto out; |
| |
| f2fs_wait_on_page_writeback(page, DATA, true); |
| zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE); |
| |
| dentry_blk = kmap_atomic(page); |
| |
| /* copy data from inline dentry block to new dentry block */ |
| memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap, |
| INLINE_DENTRY_BITMAP_SIZE); |
| memset(dentry_blk->dentry_bitmap + INLINE_DENTRY_BITMAP_SIZE, 0, |
| SIZE_OF_DENTRY_BITMAP - INLINE_DENTRY_BITMAP_SIZE); |
| /* |
| * we do not need to zero out remainder part of dentry and filename |
| * field, since we have used bitmap for marking the usage status of |
| * them, besides, we can also ignore copying/zeroing reserved space |
| * of dentry block, because them haven't been used so far. |
| */ |
| memcpy(dentry_blk->dentry, inline_dentry->dentry, |
| sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY); |
| memcpy(dentry_blk->filename, inline_dentry->filename, |
| NR_INLINE_DENTRY * F2FS_SLOT_LEN); |
| |
| kunmap_atomic(dentry_blk); |
| SetPageUptodate(page); |
| set_page_dirty(page); |
| |
| /* clear inline dir and flag after data writeback */ |
| truncate_inline_inode(ipage, 0); |
| |
| stat_dec_inline_dir(dir); |
| clear_inode_flag(dir, FI_INLINE_DENTRY); |
| |
| f2fs_i_depth_write(dir, 1); |
| if (i_size_read(dir) < PAGE_SIZE) { |
| f2fs_i_size_write(dir, PAGE_SIZE); |
| set_inode_flag(dir, FI_UPDATE_DIR); |
| } |
| |
| sync_inode_page(&dn); |
| out: |
| f2fs_put_page(page, 1); |
| return err; |
| } |
| |
| static int f2fs_add_inline_entries(struct inode *dir, |
| struct f2fs_inline_dentry *inline_dentry) |
| { |
| struct f2fs_dentry_ptr d; |
| unsigned long bit_pos = 0; |
| int err = 0; |
| |
| make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2); |
| |
| while (bit_pos < d.max) { |
| struct f2fs_dir_entry *de; |
| struct qstr new_name; |
| nid_t ino; |
| umode_t fake_mode; |
| |
| if (!test_bit_le(bit_pos, d.bitmap)) { |
| bit_pos++; |
| continue; |
| } |
| |
| de = &d.dentry[bit_pos]; |
| |
| if (unlikely(!de->name_len)) { |
| bit_pos++; |
| continue; |
| } |
| |
| new_name.name = d.filename[bit_pos]; |
| new_name.len = de->name_len; |
| |
| ino = le32_to_cpu(de->ino); |
| fake_mode = get_de_type(de) << S_SHIFT; |
| |
| err = f2fs_add_regular_entry(dir, &new_name, NULL, |
| ino, fake_mode); |
| if (err) |
| goto punch_dentry_pages; |
| |
| bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len)); |
| } |
| return 0; |
| punch_dentry_pages: |
| truncate_inode_pages(&dir->i_data, 0); |
| truncate_blocks(dir, 0, false); |
| remove_dirty_inode(dir); |
| return err; |
| } |
| |
| static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage, |
| struct f2fs_inline_dentry *inline_dentry) |
| { |
| struct f2fs_inline_dentry *backup_dentry; |
| int err; |
| |
| backup_dentry = f2fs_kmalloc(sizeof(struct f2fs_inline_dentry), |
| GFP_F2FS_ZERO); |
| if (!backup_dentry) { |
| f2fs_put_page(ipage, 1); |
| return -ENOMEM; |
| } |
| |
| memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA); |
| truncate_inline_inode(ipage, 0); |
| |
| unlock_page(ipage); |
| |
| err = f2fs_add_inline_entries(dir, backup_dentry); |
| if (err) |
| goto recover; |
| |
| lock_page(ipage); |
| |
| stat_dec_inline_dir(dir); |
| clear_inode_flag(dir, FI_INLINE_DENTRY); |
| update_inode(dir, ipage); |
| kfree(backup_dentry); |
| return 0; |
| recover: |
| lock_page(ipage); |
| memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA); |
| f2fs_i_depth_write(dir, 0); |
| f2fs_i_size_write(dir, MAX_INLINE_DATA); |
| update_inode(dir, ipage); |
| f2fs_put_page(ipage, 1); |
| |
| kfree(backup_dentry); |
| return err; |
| } |
| |
| static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage, |
| struct f2fs_inline_dentry *inline_dentry) |
| { |
| if (!F2FS_I(dir)->i_dir_level) |
| return f2fs_move_inline_dirents(dir, ipage, inline_dentry); |
| else |
| return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry); |
| } |
| |
| int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name, |
| struct inode *inode, nid_t ino, umode_t mode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(dir); |
| struct page *ipage; |
| unsigned int bit_pos; |
| f2fs_hash_t name_hash; |
| size_t namelen = name->len; |
| struct f2fs_inline_dentry *dentry_blk = NULL; |
| struct f2fs_dentry_ptr d; |
| int slots = GET_DENTRY_SLOTS(namelen); |
| struct page *page = NULL; |
| int err = 0; |
| |
| ipage = get_node_page(sbi, dir->i_ino); |
| if (IS_ERR(ipage)) |
| return PTR_ERR(ipage); |
| |
| dentry_blk = inline_data_addr(ipage); |
| bit_pos = room_for_filename(&dentry_blk->dentry_bitmap, |
| slots, NR_INLINE_DENTRY); |
| if (bit_pos >= NR_INLINE_DENTRY) { |
| err = f2fs_convert_inline_dir(dir, ipage, dentry_blk); |
| if (err) |
| return err; |
| err = -EAGAIN; |
| goto out; |
| } |
| |
| if (inode) { |
| down_write(&F2FS_I(inode)->i_sem); |
| page = init_inode_metadata(inode, dir, name, ipage); |
| if (IS_ERR(page)) { |
| err = PTR_ERR(page); |
| goto fail; |
| } |
| } |
| |
| f2fs_wait_on_page_writeback(ipage, NODE, true); |
| |
| name_hash = f2fs_dentry_hash(name); |
| make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2); |
| f2fs_update_dentry(ino, mode, &d, name, name_hash, bit_pos); |
| |
| set_page_dirty(ipage); |
| |
| /* we don't need to mark_inode_dirty now */ |
| if (inode) { |
| f2fs_i_pino_write(inode, dir->i_ino); |
| update_inode(inode, page); |
| f2fs_put_page(page, 1); |
| } |
| |
| update_parent_metadata(dir, inode, 0); |
| fail: |
| if (inode) |
| up_write(&F2FS_I(inode)->i_sem); |
| |
| if (is_inode_flag_set(dir, FI_UPDATE_DIR)) { |
| update_inode(dir, ipage); |
| clear_inode_flag(dir, FI_UPDATE_DIR); |
| } |
| out: |
| f2fs_put_page(ipage, 1); |
| return err; |
| } |
| |
| void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, |
| struct inode *dir, struct inode *inode) |
| { |
| struct f2fs_inline_dentry *inline_dentry; |
| int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len)); |
| unsigned int bit_pos; |
| int i; |
| |
| lock_page(page); |
| f2fs_wait_on_page_writeback(page, NODE, true); |
| |
| inline_dentry = inline_data_addr(page); |
| bit_pos = dentry - inline_dentry->dentry; |
| for (i = 0; i < slots; i++) |
| test_and_clear_bit_le(bit_pos + i, |
| &inline_dentry->dentry_bitmap); |
| |
| set_page_dirty(page); |
| |
| dir->i_ctime = dir->i_mtime = CURRENT_TIME; |
| mark_inode_dirty_sync(dir); |
| |
| if (inode) |
| f2fs_drop_nlink(dir, inode, page); |
| |
| f2fs_put_page(page, 1); |
| } |
| |
| bool f2fs_empty_inline_dir(struct inode *dir) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(dir); |
| struct page *ipage; |
| unsigned int bit_pos = 2; |
| struct f2fs_inline_dentry *dentry_blk; |
| |
| ipage = get_node_page(sbi, dir->i_ino); |
| if (IS_ERR(ipage)) |
| return false; |
| |
| dentry_blk = inline_data_addr(ipage); |
| bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, |
| NR_INLINE_DENTRY, |
| bit_pos); |
| |
| f2fs_put_page(ipage, 1); |
| |
| if (bit_pos < NR_INLINE_DENTRY) |
| return false; |
| |
| return true; |
| } |
| |
| int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, |
| struct fscrypt_str *fstr) |
| { |
| struct inode *inode = file_inode(file); |
| struct f2fs_inline_dentry *inline_dentry = NULL; |
| struct page *ipage = NULL; |
| struct f2fs_dentry_ptr d; |
| |
| if (ctx->pos == NR_INLINE_DENTRY) |
| return 0; |
| |
| ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); |
| if (IS_ERR(ipage)) |
| return PTR_ERR(ipage); |
| |
| inline_dentry = inline_data_addr(ipage); |
| |
| make_dentry_ptr(inode, &d, (void *)inline_dentry, 2); |
| |
| if (!f2fs_fill_dentries(ctx, &d, 0, fstr)) |
| ctx->pos = NR_INLINE_DENTRY; |
| |
| f2fs_put_page(ipage, 1); |
| return 0; |
| } |
| |
| int f2fs_inline_data_fiemap(struct inode *inode, |
| struct fiemap_extent_info *fieinfo, __u64 start, __u64 len) |
| { |
| __u64 byteaddr, ilen; |
| __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED | |
| FIEMAP_EXTENT_LAST; |
| struct node_info ni; |
| struct page *ipage; |
| int err = 0; |
| |
| ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); |
| if (IS_ERR(ipage)) |
| return PTR_ERR(ipage); |
| |
| if (!f2fs_has_inline_data(inode)) { |
| err = -EAGAIN; |
| goto out; |
| } |
| |
| ilen = min_t(size_t, MAX_INLINE_DATA, i_size_read(inode)); |
| if (start >= ilen) |
| goto out; |
| if (start + len < ilen) |
| ilen = start + len; |
| ilen -= start; |
| |
| get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni); |
| byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits; |
| byteaddr += (char *)inline_data_addr(ipage) - (char *)F2FS_INODE(ipage); |
| err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags); |
| out: |
| f2fs_put_page(ipage, 1); |
| return err; |
| } |