blob: 44683073be0c4a7988d6f3eb917936b444470de1 [file] [log] [blame]
/*
* Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/kref.h>
#include <linux/random.h>
#include <linux/debugfs.h>
#include <linux/export.h>
#include <linux/delay.h>
#include <rdma/ib_umem.h>
#include <rdma/ib_umem_odp.h>
#include <rdma/ib_verbs.h>
#include "mlx5_ib.h"
enum {
MAX_PENDING_REG_MR = 8,
};
#define MLX5_UMR_ALIGN 2048
static void
create_mkey_callback(int status, struct mlx5_async_work *context);
static void
assign_mkey_variant(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey,
u32 *in)
{
u8 key = atomic_inc_return(&dev->mkey_var);
void *mkc;
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
MLX5_SET(mkc, mkc, mkey_7_0, key);
mkey->key = key;
}
static int
mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey,
u32 *in, int inlen)
{
assign_mkey_variant(dev, mkey, in);
return mlx5_core_create_mkey(dev->mdev, mkey, in, inlen);
}
static int
mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev,
struct mlx5_core_mkey *mkey,
struct mlx5_async_ctx *async_ctx,
u32 *in, int inlen, u32 *out, int outlen,
struct mlx5_async_work *context)
{
MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY);
assign_mkey_variant(dev, mkey, in);
return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen,
create_mkey_callback, context);
}
static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
static int mr_cache_max_order(struct mlx5_ib_dev *dev);
static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev)
{
return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled);
}
static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
{
WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
return mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
}
static bool use_umr_mtt_update(struct mlx5_ib_mr *mr, u64 start, u64 length)
{
return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >=
length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1));
}
static void create_mkey_callback(int status, struct mlx5_async_work *context)
{
struct mlx5_ib_mr *mr =
container_of(context, struct mlx5_ib_mr, cb_work);
struct mlx5_ib_dev *dev = mr->dev;
struct mlx5_cache_ent *ent = mr->cache_ent;
unsigned long flags;
if (status) {
mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
kfree(mr);
spin_lock_irqsave(&ent->lock, flags);
ent->pending--;
WRITE_ONCE(dev->fill_delay, 1);
spin_unlock_irqrestore(&ent->lock, flags);
mod_timer(&dev->delay_timer, jiffies + HZ);
return;
}
mr->mmkey.type = MLX5_MKEY_MR;
mr->mmkey.key |= mlx5_idx_to_mkey(
MLX5_GET(create_mkey_out, mr->out, mkey_index));
WRITE_ONCE(dev->cache.last_add, jiffies);
spin_lock_irqsave(&ent->lock, flags);
list_add_tail(&mr->list, &ent->head);
ent->available_mrs++;
ent->total_mrs++;
/* If we are doing fill_to_high_water then keep going. */
queue_adjust_cache_locked(ent);
ent->pending--;
spin_unlock_irqrestore(&ent->lock, flags);
}
static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc)
{
struct mlx5_ib_mr *mr;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return NULL;
mr->order = ent->order;
mr->cache_ent = ent;
mr->dev = ent->dev;
MLX5_SET(mkc, mkc, free, 1);
MLX5_SET(mkc, mkc, umr_en, 1);
MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7);
MLX5_SET(mkc, mkc, qpn, 0xffffff);
MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt);
MLX5_SET(mkc, mkc, log_page_size, ent->page);
return mr;
}
/* Asynchronously schedule new MRs to be populated in the cache. */
static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
{
size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
struct mlx5_ib_mr *mr;
void *mkc;
u32 *in;
int err = 0;
int i;
in = kzalloc(inlen, GFP_KERNEL);
if (!in)
return -ENOMEM;
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
for (i = 0; i < num; i++) {
mr = alloc_cache_mr(ent, mkc);
if (!mr) {
err = -ENOMEM;
break;
}
spin_lock_irq(&ent->lock);
if (ent->pending >= MAX_PENDING_REG_MR) {
err = -EAGAIN;
spin_unlock_irq(&ent->lock);
kfree(mr);
break;
}
ent->pending++;
spin_unlock_irq(&ent->lock);
err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey,
&ent->dev->async_ctx, in, inlen,
mr->out, sizeof(mr->out),
&mr->cb_work);
if (err) {
spin_lock_irq(&ent->lock);
ent->pending--;
spin_unlock_irq(&ent->lock);
mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
kfree(mr);
break;
}
}
kfree(in);
return err;
}
/* Synchronously create a MR in the cache */
static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent)
{
size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
struct mlx5_ib_mr *mr;
void *mkc;
u32 *in;
int err;
in = kzalloc(inlen, GFP_KERNEL);
if (!in)
return ERR_PTR(-ENOMEM);
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
mr = alloc_cache_mr(ent, mkc);
if (!mr) {
err = -ENOMEM;
goto free_in;
}
err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey, in, inlen);
if (err)
goto free_mr;
mr->mmkey.type = MLX5_MKEY_MR;
WRITE_ONCE(ent->dev->cache.last_add, jiffies);
spin_lock_irq(&ent->lock);
ent->total_mrs++;
spin_unlock_irq(&ent->lock);
kfree(in);
return mr;
free_mr:
kfree(mr);
free_in:
kfree(in);
return ERR_PTR(err);
}
static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
{
struct mlx5_ib_mr *mr;
lockdep_assert_held(&ent->lock);
if (list_empty(&ent->head))
return;
mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
list_del(&mr->list);
ent->available_mrs--;
ent->total_mrs--;
spin_unlock_irq(&ent->lock);
mlx5_core_destroy_mkey(ent->dev->mdev, &mr->mmkey);
kfree(mr);
spin_lock_irq(&ent->lock);
}
static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
bool limit_fill)
{
int err;
lockdep_assert_held(&ent->lock);
while (true) {
if (limit_fill)
target = ent->limit * 2;
if (target == ent->available_mrs + ent->pending)
return 0;
if (target > ent->available_mrs + ent->pending) {
u32 todo = target - (ent->available_mrs + ent->pending);
spin_unlock_irq(&ent->lock);
err = add_keys(ent, todo);
if (err == -EAGAIN)
usleep_range(3000, 5000);
spin_lock_irq(&ent->lock);
if (err) {
if (err != -EAGAIN)
return err;
} else
return 0;
} else {
remove_cache_mr_locked(ent);
}
}
}
static ssize_t size_write(struct file *filp, const char __user *buf,
size_t count, loff_t *pos)
{
struct mlx5_cache_ent *ent = filp->private_data;
u32 target;
int err;
err = kstrtou32_from_user(buf, count, 0, &target);
if (err)
return err;
/*
* Target is the new value of total_mrs the user requests, however we
* cannot free MRs that are in use. Compute the target value for
* available_mrs.
*/
spin_lock_irq(&ent->lock);
if (target < ent->total_mrs - ent->available_mrs) {
err = -EINVAL;
goto err_unlock;
}
target = target - (ent->total_mrs - ent->available_mrs);
if (target < ent->limit || target > ent->limit*2) {
err = -EINVAL;
goto err_unlock;
}
err = resize_available_mrs(ent, target, false);
if (err)
goto err_unlock;
spin_unlock_irq(&ent->lock);
return count;
err_unlock:
spin_unlock_irq(&ent->lock);
return err;
}
static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
loff_t *pos)
{
struct mlx5_cache_ent *ent = filp->private_data;
char lbuf[20];
int err;
err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs);
if (err < 0)
return err;
return simple_read_from_buffer(buf, count, pos, lbuf, err);
}
static const struct file_operations size_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.write = size_write,
.read = size_read,
};
static ssize_t limit_write(struct file *filp, const char __user *buf,
size_t count, loff_t *pos)
{
struct mlx5_cache_ent *ent = filp->private_data;
u32 var;
int err;
err = kstrtou32_from_user(buf, count, 0, &var);
if (err)
return err;
/*
* Upon set we immediately fill the cache to high water mark implied by
* the limit.
*/
spin_lock_irq(&ent->lock);
ent->limit = var;
err = resize_available_mrs(ent, 0, true);
spin_unlock_irq(&ent->lock);
if (err)
return err;
return count;
}
static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
loff_t *pos)
{
struct mlx5_cache_ent *ent = filp->private_data;
char lbuf[20];
int err;
err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
if (err < 0)
return err;
return simple_read_from_buffer(buf, count, pos, lbuf, err);
}
static const struct file_operations limit_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.write = limit_write,
.read = limit_read,
};
static bool someone_adding(struct mlx5_mr_cache *cache)
{
unsigned int i;
for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
struct mlx5_cache_ent *ent = &cache->ent[i];
bool ret;
spin_lock_irq(&ent->lock);
ret = ent->available_mrs < ent->limit;
spin_unlock_irq(&ent->lock);
if (ret)
return true;
}
return false;
}
/*
* Check if the bucket is outside the high/low water mark and schedule an async
* update. The cache refill has hysteresis, once the low water mark is hit it is
* refilled up to the high mark.
*/
static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
{
lockdep_assert_held(&ent->lock);
if (ent->disabled || READ_ONCE(ent->dev->fill_delay))
return;
if (ent->available_mrs < ent->limit) {
ent->fill_to_high_water = true;
queue_work(ent->dev->cache.wq, &ent->work);
} else if (ent->fill_to_high_water &&
ent->available_mrs + ent->pending < 2 * ent->limit) {
/*
* Once we start populating due to hitting a low water mark
* continue until we pass the high water mark.
*/
queue_work(ent->dev->cache.wq, &ent->work);
} else if (ent->available_mrs == 2 * ent->limit) {
ent->fill_to_high_water = false;
} else if (ent->available_mrs > 2 * ent->limit) {
/* Queue deletion of excess entries */
ent->fill_to_high_water = false;
if (ent->pending)
queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
msecs_to_jiffies(1000));
else
queue_work(ent->dev->cache.wq, &ent->work);
}
}
static void __cache_work_func(struct mlx5_cache_ent *ent)
{
struct mlx5_ib_dev *dev = ent->dev;
struct mlx5_mr_cache *cache = &dev->cache;
int err;
spin_lock_irq(&ent->lock);
if (ent->disabled)
goto out;
if (ent->fill_to_high_water &&
ent->available_mrs + ent->pending < 2 * ent->limit &&
!READ_ONCE(dev->fill_delay)) {
spin_unlock_irq(&ent->lock);
err = add_keys(ent, 1);
spin_lock_irq(&ent->lock);
if (ent->disabled)
goto out;
if (err) {
/*
* EAGAIN only happens if pending is positive, so we
* will be rescheduled from reg_mr_callback(). The only
* failure path here is ENOMEM.
*/
if (err != -EAGAIN) {
mlx5_ib_warn(
dev,
"command failed order %d, err %d\n",
ent->order, err);
queue_delayed_work(cache->wq, &ent->dwork,
msecs_to_jiffies(1000));
}
}
} else if (ent->available_mrs > 2 * ent->limit) {
bool need_delay;
/*
* The remove_cache_mr() logic is performed as garbage
* collection task. Such task is intended to be run when no
* other active processes are running.
*
* The need_resched() will return TRUE if there are user tasks
* to be activated in near future.
*
* In such case, we don't execute remove_cache_mr() and postpone
* the garbage collection work to try to run in next cycle, in
* order to free CPU resources to other tasks.
*/
spin_unlock_irq(&ent->lock);
need_delay = need_resched() || someone_adding(cache) ||
time_after(jiffies,
READ_ONCE(cache->last_add) + 300 * HZ);
spin_lock_irq(&ent->lock);
if (ent->disabled)
goto out;
if (need_delay)
queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
remove_cache_mr_locked(ent);
queue_adjust_cache_locked(ent);
}
out:
spin_unlock_irq(&ent->lock);
}
static void delayed_cache_work_func(struct work_struct *work)
{
struct mlx5_cache_ent *ent;
ent = container_of(work, struct mlx5_cache_ent, dwork.work);
__cache_work_func(ent);
}
static void cache_work_func(struct work_struct *work)
{
struct mlx5_cache_ent *ent;
ent = container_of(work, struct mlx5_cache_ent, work);
__cache_work_func(ent);
}
/* Allocate a special entry from the cache */
struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
unsigned int entry)
{
struct mlx5_mr_cache *cache = &dev->cache;
struct mlx5_cache_ent *ent;
struct mlx5_ib_mr *mr;
if (WARN_ON(entry <= MR_CACHE_LAST_STD_ENTRY ||
entry >= ARRAY_SIZE(cache->ent)))
return ERR_PTR(-EINVAL);
ent = &cache->ent[entry];
spin_lock_irq(&ent->lock);
if (list_empty(&ent->head)) {
spin_unlock_irq(&ent->lock);
mr = create_cache_mr(ent);
if (IS_ERR(mr))
return mr;
} else {
mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
list_del(&mr->list);
ent->available_mrs--;
queue_adjust_cache_locked(ent);
spin_unlock_irq(&ent->lock);
}
return mr;
}
/* Return a MR already available in the cache */
static struct mlx5_ib_mr *get_cache_mr(struct mlx5_cache_ent *req_ent)
{
struct mlx5_ib_dev *dev = req_ent->dev;
struct mlx5_ib_mr *mr = NULL;
struct mlx5_cache_ent *ent = req_ent;
/* Try larger MR pools from the cache to satisfy the allocation */
for (; ent != &dev->cache.ent[MR_CACHE_LAST_STD_ENTRY + 1]; ent++) {
mlx5_ib_dbg(dev, "order %u, cache index %zu\n", ent->order,
ent - dev->cache.ent);
spin_lock_irq(&ent->lock);
if (!list_empty(&ent->head)) {
mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
list);
list_del(&mr->list);
ent->available_mrs--;
queue_adjust_cache_locked(ent);
spin_unlock_irq(&ent->lock);
break;
}
queue_adjust_cache_locked(ent);
spin_unlock_irq(&ent->lock);
}
if (!mr)
req_ent->miss++;
return mr;
}
static void detach_mr_from_cache(struct mlx5_ib_mr *mr)
{
struct mlx5_cache_ent *ent = mr->cache_ent;
mr->cache_ent = NULL;
spin_lock_irq(&ent->lock);
ent->total_mrs--;
spin_unlock_irq(&ent->lock);
}
void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
{
struct mlx5_cache_ent *ent = mr->cache_ent;
if (!ent)
return;
if (mlx5_mr_cache_invalidate(mr)) {
detach_mr_from_cache(mr);
destroy_mkey(dev, mr);
return;
}
spin_lock_irq(&ent->lock);
list_add_tail(&mr->list, &ent->head);
ent->available_mrs++;
queue_adjust_cache_locked(ent);
spin_unlock_irq(&ent->lock);
}
static void clean_keys(struct mlx5_ib_dev *dev, int c)
{
struct mlx5_mr_cache *cache = &dev->cache;
struct mlx5_cache_ent *ent = &cache->ent[c];
struct mlx5_ib_mr *tmp_mr;
struct mlx5_ib_mr *mr;
LIST_HEAD(del_list);
cancel_delayed_work(&ent->dwork);
while (1) {
spin_lock_irq(&ent->lock);
if (list_empty(&ent->head)) {
spin_unlock_irq(&ent->lock);
break;
}
mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
list_move(&mr->list, &del_list);
ent->available_mrs--;
ent->total_mrs--;
spin_unlock_irq(&ent->lock);
mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
}
list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
list_del(&mr->list);
kfree(mr);
}
}
static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
{
if (!mlx5_debugfs_root || dev->is_rep)
return;
debugfs_remove_recursive(dev->cache.root);
dev->cache.root = NULL;
}
static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
{
struct mlx5_mr_cache *cache = &dev->cache;
struct mlx5_cache_ent *ent;
struct dentry *dir;
int i;
if (!mlx5_debugfs_root || dev->is_rep)
return;
cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
ent = &cache->ent[i];
sprintf(ent->name, "%d", ent->order);
dir = debugfs_create_dir(ent->name, cache->root);
debugfs_create_file("size", 0600, dir, ent, &size_fops);
debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
debugfs_create_u32("cur", 0400, dir, &ent->available_mrs);
debugfs_create_u32("miss", 0600, dir, &ent->miss);
}
}
static void delay_time_func(struct timer_list *t)
{
struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
WRITE_ONCE(dev->fill_delay, 0);
}
int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
{
struct mlx5_mr_cache *cache = &dev->cache;
struct mlx5_cache_ent *ent;
int i;
mutex_init(&dev->slow_path_mutex);
cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
if (!cache->wq) {
mlx5_ib_warn(dev, "failed to create work queue\n");
return -ENOMEM;
}
mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
timer_setup(&dev->delay_timer, delay_time_func, 0);
for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
ent = &cache->ent[i];
INIT_LIST_HEAD(&ent->head);
spin_lock_init(&ent->lock);
ent->order = i + 2;
ent->dev = dev;
ent->limit = 0;
INIT_WORK(&ent->work, cache_work_func);
INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
if (i > MR_CACHE_LAST_STD_ENTRY) {
mlx5_odp_init_mr_cache_entry(ent);
continue;
}
if (ent->order > mr_cache_max_order(dev))
continue;
ent->page = PAGE_SHIFT;
ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) /
MLX5_IB_UMR_OCTOWORD;
ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) &&
!dev->is_rep &&
mlx5_core_is_pf(dev->mdev))
ent->limit = dev->mdev->profile->mr_cache[i].limit;
else
ent->limit = 0;
spin_lock_irq(&ent->lock);
queue_adjust_cache_locked(ent);
spin_unlock_irq(&ent->lock);
}
mlx5_mr_cache_debugfs_init(dev);
return 0;
}
int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
{
unsigned int i;
if (!dev->cache.wq)
return 0;
for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
struct mlx5_cache_ent *ent = &dev->cache.ent[i];
spin_lock_irq(&ent->lock);
ent->disabled = true;
spin_unlock_irq(&ent->lock);
cancel_work_sync(&ent->work);
cancel_delayed_work_sync(&ent->dwork);
}
mlx5_mr_cache_debugfs_cleanup(dev);
mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
clean_keys(dev, i);
destroy_workqueue(dev->cache.wq);
del_timer_sync(&dev->delay_timer);
return 0;
}
static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
struct ib_pd *pd)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
MLX5_SET(mkc, mkc, lr, 1);
if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
MLX5_SET(mkc, mkc, relaxed_ordering_write,
!!(acc & IB_ACCESS_RELAXED_ORDERING));
if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
MLX5_SET(mkc, mkc, relaxed_ordering_read,
!!(acc & IB_ACCESS_RELAXED_ORDERING));
MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
MLX5_SET(mkc, mkc, qpn, 0xffffff);
MLX5_SET64(mkc, mkc, start_addr, start_addr);
}
struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
struct mlx5_ib_mr *mr;
void *mkc;
u32 *in;
int err;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
in = kzalloc(inlen, GFP_KERNEL);
if (!in) {
err = -ENOMEM;
goto err_free;
}
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
MLX5_SET(mkc, mkc, length64, 1);
set_mkc_access_pd_addr_fields(mkc, acc, 0, pd);
err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
if (err)
goto err_in;
kfree(in);
mr->mmkey.type = MLX5_MKEY_MR;
mr->ibmr.lkey = mr->mmkey.key;
mr->ibmr.rkey = mr->mmkey.key;
mr->umem = NULL;
return &mr->ibmr;
err_in:
kfree(in);
err_free:
kfree(mr);
return ERR_PTR(err);
}
static int get_octo_len(u64 addr, u64 len, int page_shift)
{
u64 page_size = 1ULL << page_shift;
u64 offset;
int npages;
offset = addr & (page_size - 1);
npages = ALIGN(len + offset, page_size) >> page_shift;
return (npages + 1) / 2;
}
static int mr_cache_max_order(struct mlx5_ib_dev *dev)
{
if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
return MR_CACHE_LAST_STD_ENTRY + 2;
return MLX5_MAX_UMR_SHIFT;
}
static int mr_umem_get(struct mlx5_ib_dev *dev, u64 start, u64 length,
int access_flags, struct ib_umem **umem, int *npages,
int *page_shift, int *ncont, int *order)
{
struct ib_umem *u;
*umem = NULL;
if (access_flags & IB_ACCESS_ON_DEMAND) {
struct ib_umem_odp *odp;
odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
&mlx5_mn_ops);
if (IS_ERR(odp)) {
mlx5_ib_dbg(dev, "umem get failed (%ld)\n",
PTR_ERR(odp));
return PTR_ERR(odp);
}
u = &odp->umem;
*page_shift = odp->page_shift;
*ncont = ib_umem_odp_num_pages(odp);
*npages = *ncont << (*page_shift - PAGE_SHIFT);
if (order)
*order = ilog2(roundup_pow_of_two(*ncont));
} else {
u = ib_umem_get(&dev->ib_dev, start, length, access_flags);
if (IS_ERR(u)) {
mlx5_ib_dbg(dev, "umem get failed (%ld)\n", PTR_ERR(u));
return PTR_ERR(u);
}
mlx5_ib_cont_pages(u, start, MLX5_MKEY_PAGE_SHIFT_MASK, npages,
page_shift, ncont, order);
}
if (!*npages) {
mlx5_ib_warn(dev, "avoid zero region\n");
ib_umem_release(u);
return -EINVAL;
}
*umem = u;
mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n",
*npages, *ncont, *order, *page_shift);
return 0;
}
static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct mlx5_ib_umr_context *context =
container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
context->status = wc->status;
complete(&context->done);
}
static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
{
context->cqe.done = mlx5_ib_umr_done;
context->status = -1;
init_completion(&context->done);
}
static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev,
struct mlx5_umr_wr *umrwr)
{
struct umr_common *umrc = &dev->umrc;
const struct ib_send_wr *bad;
int err;
struct mlx5_ib_umr_context umr_context;
mlx5_ib_init_umr_context(&umr_context);
umrwr->wr.wr_cqe = &umr_context.cqe;
down(&umrc->sem);
err = ib_post_send(umrc->qp, &umrwr->wr, &bad);
if (err) {
mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err);
} else {
wait_for_completion(&umr_context.done);
if (umr_context.status != IB_WC_SUCCESS) {
mlx5_ib_warn(dev, "reg umr failed (%u)\n",
umr_context.status);
err = -EFAULT;
}
}
up(&umrc->sem);
return err;
}
static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev,
unsigned int order)
{
struct mlx5_mr_cache *cache = &dev->cache;
if (order < cache->ent[0].order)
return &cache->ent[0];
order = order - cache->ent[0].order;
if (order > MR_CACHE_LAST_STD_ENTRY)
return NULL;
return &cache->ent[order];
}
static struct mlx5_ib_mr *
alloc_mr_from_cache(struct ib_pd *pd, struct ib_umem *umem, u64 virt_addr,
u64 len, int npages, int page_shift, unsigned int order,
int access_flags)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct mlx5_cache_ent *ent = mr_cache_ent_from_order(dev, order);
struct mlx5_ib_mr *mr;
if (!ent)
return ERR_PTR(-E2BIG);
mr = get_cache_mr(ent);
if (!mr) {
mr = create_cache_mr(ent);
if (IS_ERR(mr))
return mr;
}
mr->ibmr.pd = pd;
mr->umem = umem;
mr->access_flags = access_flags;
mr->desc_size = sizeof(struct mlx5_mtt);
mr->mmkey.iova = virt_addr;
mr->mmkey.size = len;
mr->mmkey.pd = to_mpd(pd)->pdn;
return mr;
}
#define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \
MLX5_UMR_MTT_ALIGNMENT)
#define MLX5_SPARE_UMR_CHUNK 0x10000
int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages,
int page_shift, int flags)
{
struct mlx5_ib_dev *dev = mr->dev;
struct device *ddev = dev->ib_dev.dev.parent;
int size;
void *xlt;
dma_addr_t dma;
struct mlx5_umr_wr wr;
struct ib_sge sg;
int err = 0;
int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT)
? sizeof(struct mlx5_klm)
: sizeof(struct mlx5_mtt);
const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size;
const int page_mask = page_align - 1;
size_t pages_mapped = 0;
size_t pages_to_map = 0;
size_t pages_iter = 0;
size_t size_to_map = 0;
gfp_t gfp;
bool use_emergency_page = false;
if ((flags & MLX5_IB_UPD_XLT_INDIRECT) &&
!umr_can_use_indirect_mkey(dev))
return -EPERM;
/* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
* so we need to align the offset and length accordingly
*/
if (idx & page_mask) {
npages += idx & page_mask;
idx &= ~page_mask;
}
gfp = flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : GFP_KERNEL;
gfp |= __GFP_ZERO | __GFP_NOWARN;
pages_to_map = ALIGN(npages, page_align);
size = desc_size * pages_to_map;
size = min_t(int, size, MLX5_MAX_UMR_CHUNK);
xlt = (void *)__get_free_pages(gfp, get_order(size));
if (!xlt && size > MLX5_SPARE_UMR_CHUNK) {
mlx5_ib_dbg(dev, "Failed to allocate %d bytes of order %d. fallback to spare UMR allocation od %d bytes\n",
size, get_order(size), MLX5_SPARE_UMR_CHUNK);
size = MLX5_SPARE_UMR_CHUNK;
xlt = (void *)__get_free_pages(gfp, get_order(size));
}
if (!xlt) {
mlx5_ib_warn(dev, "Using XLT emergency buffer\n");
xlt = (void *)mlx5_ib_get_xlt_emergency_page();
size = PAGE_SIZE;
memset(xlt, 0, size);
use_emergency_page = true;
}
pages_iter = size / desc_size;
dma = dma_map_single(ddev, xlt, size, DMA_TO_DEVICE);
if (dma_mapping_error(ddev, dma)) {
mlx5_ib_err(dev, "unable to map DMA during XLT update.\n");
err = -ENOMEM;
goto free_xlt;
}
if (mr->umem->is_odp) {
if (!(flags & MLX5_IB_UPD_XLT_INDIRECT)) {
struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
size_t max_pages = ib_umem_odp_num_pages(odp) - idx;
pages_to_map = min_t(size_t, pages_to_map, max_pages);
}
}
sg.addr = dma;
sg.lkey = dev->umrc.pd->local_dma_lkey;
memset(&wr, 0, sizeof(wr));
wr.wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT;
if (!(flags & MLX5_IB_UPD_XLT_ENABLE))
wr.wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE;
wr.wr.sg_list = &sg;
wr.wr.num_sge = 1;
wr.wr.opcode = MLX5_IB_WR_UMR;
wr.pd = mr->ibmr.pd;
wr.mkey = mr->mmkey.key;
wr.length = mr->mmkey.size;
wr.virt_addr = mr->mmkey.iova;
wr.access_flags = mr->access_flags;
wr.page_shift = page_shift;
for (pages_mapped = 0;
pages_mapped < pages_to_map && !err;
pages_mapped += pages_iter, idx += pages_iter) {
npages = min_t(int, pages_iter, pages_to_map - pages_mapped);
size_to_map = npages * desc_size;
dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE);
if (mr->umem->is_odp) {
mlx5_odp_populate_xlt(xlt, idx, npages, mr, flags);
} else {
__mlx5_ib_populate_pas(dev, mr->umem, page_shift, idx,
npages, xlt,
MLX5_IB_MTT_PRESENT);
/* Clear padding after the pages
* brought from the umem.
*/
memset(xlt + size_to_map, 0, size - size_to_map);
}
dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE);
sg.length = ALIGN(size_to_map, MLX5_UMR_MTT_ALIGNMENT);
if (pages_mapped + pages_iter >= pages_to_map) {
if (flags & MLX5_IB_UPD_XLT_ENABLE)
wr.wr.send_flags |=
MLX5_IB_SEND_UMR_ENABLE_MR |
MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS |
MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
if (flags & MLX5_IB_UPD_XLT_PD ||
flags & MLX5_IB_UPD_XLT_ACCESS)
wr.wr.send_flags |=
MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
if (flags & MLX5_IB_UPD_XLT_ADDR)
wr.wr.send_flags |=
MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
}
wr.offset = idx * desc_size;
wr.xlt_size = sg.length;
err = mlx5_ib_post_send_wait(dev, &wr);
}
dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
free_xlt:
if (use_emergency_page)
mlx5_ib_put_xlt_emergency_page();
else
free_pages((unsigned long)xlt, get_order(size));
return err;
}
/*
* If ibmr is NULL it will be allocated by reg_create.
* Else, the given ibmr will be used.
*/
static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd,
u64 virt_addr, u64 length,
struct ib_umem *umem, int npages,
int page_shift, int access_flags,
bool populate)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct mlx5_ib_mr *mr;
__be64 *pas;
void *mkc;
int inlen;
u32 *in;
int err;
bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
mr->ibmr.pd = pd;
mr->access_flags = access_flags;
inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
if (populate)
inlen += sizeof(*pas) * roundup(npages, 2);
in = kvzalloc(inlen, GFP_KERNEL);
if (!in) {
err = -ENOMEM;
goto err_1;
}
pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
if (populate && !(access_flags & IB_ACCESS_ON_DEMAND))
mlx5_ib_populate_pas(dev, umem, page_shift, pas,
pg_cap ? MLX5_IB_MTT_PRESENT : 0);
/* The pg_access bit allows setting the access flags
* in the page list submitted with the command. */
MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
MLX5_SET(mkc, mkc, free, !populate);
MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
MLX5_SET(mkc, mkc, relaxed_ordering_write,
!!(access_flags & IB_ACCESS_RELAXED_ORDERING));
if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
MLX5_SET(mkc, mkc, relaxed_ordering_read,
!!(access_flags & IB_ACCESS_RELAXED_ORDERING));
MLX5_SET(mkc, mkc, a, !!(access_flags & IB_ACCESS_REMOTE_ATOMIC));
MLX5_SET(mkc, mkc, rw, !!(access_flags & IB_ACCESS_REMOTE_WRITE));
MLX5_SET(mkc, mkc, rr, !!(access_flags & IB_ACCESS_REMOTE_READ));
MLX5_SET(mkc, mkc, lw, !!(access_flags & IB_ACCESS_LOCAL_WRITE));
MLX5_SET(mkc, mkc, lr, 1);
MLX5_SET(mkc, mkc, umr_en, 1);
MLX5_SET64(mkc, mkc, start_addr, virt_addr);
MLX5_SET64(mkc, mkc, len, length);
MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
MLX5_SET(mkc, mkc, bsf_octword_size, 0);
MLX5_SET(mkc, mkc, translations_octword_size,
get_octo_len(virt_addr, length, page_shift));
MLX5_SET(mkc, mkc, log_page_size, page_shift);
MLX5_SET(mkc, mkc, qpn, 0xffffff);
if (populate) {
MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
get_octo_len(virt_addr, length, page_shift));
}
err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
if (err) {
mlx5_ib_warn(dev, "create mkey failed\n");
goto err_2;
}
mr->mmkey.type = MLX5_MKEY_MR;
mr->desc_size = sizeof(struct mlx5_mtt);
mr->dev = dev;
kvfree(in);
mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
return mr;
err_2:
kvfree(in);
err_1:
if (!ibmr)
kfree(mr);
return ERR_PTR(err);
}
static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
int npages, u64 length, int access_flags)
{
mr->npages = npages;
atomic_add(npages, &dev->mdev->priv.reg_pages);
mr->ibmr.lkey = mr->mmkey.key;
mr->ibmr.rkey = mr->mmkey.key;
mr->ibmr.length = length;
mr->access_flags = access_flags;
}
static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
u64 length, int acc, int mode)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
struct mlx5_ib_mr *mr;
void *mkc;
u32 *in;
int err;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
in = kzalloc(inlen, GFP_KERNEL);
if (!in) {
err = -ENOMEM;
goto err_free;
}
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
MLX5_SET64(mkc, mkc, len, length);
set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
if (err)
goto err_in;
kfree(in);
mr->umem = NULL;
set_mr_fields(dev, mr, 0, length, acc);
return &mr->ibmr;
err_in:
kfree(in);
err_free:
kfree(mr);
return ERR_PTR(err);
}
int mlx5_ib_advise_mr(struct ib_pd *pd,
enum ib_uverbs_advise_mr_advice advice,
u32 flags,
struct ib_sge *sg_list,
u32 num_sge,
struct uverbs_attr_bundle *attrs)
{
if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE)
return -EOPNOTSUPP;
return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
sg_list, num_sge);
}
struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
struct ib_dm_mr_attr *attr,
struct uverbs_attr_bundle *attrs)
{
struct mlx5_ib_dm *mdm = to_mdm(dm);
struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
u64 start_addr = mdm->dev_addr + attr->offset;
int mode;
switch (mdm->type) {
case MLX5_IB_UAPI_DM_TYPE_MEMIC:
if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
return ERR_PTR(-EINVAL);
mode = MLX5_MKC_ACCESS_MODE_MEMIC;
start_addr -= pci_resource_start(dev->pdev, 0);
break;
case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
return ERR_PTR(-EINVAL);
mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
break;
default:
return ERR_PTR(-EINVAL);
}
return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
attr->access_flags, mode);
}
struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
u64 virt_addr, int access_flags,
struct ib_udata *udata)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct mlx5_ib_mr *mr = NULL;
bool use_umr;
struct ib_umem *umem;
int page_shift;
int npages;
int ncont;
int order;
int err;
if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
return ERR_PTR(-EOPNOTSUPP);
mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
start, virt_addr, length, access_flags);
if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && !start &&
length == U64_MAX) {
if (virt_addr != start)
return ERR_PTR(-EINVAL);
if (!(access_flags & IB_ACCESS_ON_DEMAND) ||
!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
return ERR_PTR(-EINVAL);
mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags);
if (IS_ERR(mr))
return ERR_CAST(mr);
return &mr->ibmr;
}
err = mr_umem_get(dev, start, length, access_flags, &umem,
&npages, &page_shift, &ncont, &order);
if (err < 0)
return ERR_PTR(err);
use_umr = mlx5_ib_can_use_umr(dev, true, access_flags);
if (order <= mr_cache_max_order(dev) && use_umr) {
mr = alloc_mr_from_cache(pd, umem, virt_addr, length, ncont,
page_shift, order, access_flags);
if (PTR_ERR(mr) == -EAGAIN) {
mlx5_ib_dbg(dev, "cache empty for order %d\n", order);
mr = NULL;
}
} else if (!MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) {
if (access_flags & IB_ACCESS_ON_DEMAND) {
err = -EINVAL;
pr_err("Got MR registration for ODP MR > 512MB, not supported for Connect-IB\n");
goto error;
}
use_umr = false;
}
if (!mr) {
mutex_lock(&dev->slow_path_mutex);
mr = reg_create(NULL, pd, virt_addr, length, umem, ncont,
page_shift, access_flags, !use_umr);
mutex_unlock(&dev->slow_path_mutex);
}
if (IS_ERR(mr)) {
err = PTR_ERR(mr);
goto error;
}
mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
mr->umem = umem;
set_mr_fields(dev, mr, npages, length, access_flags);
if (use_umr) {
int update_xlt_flags = MLX5_IB_UPD_XLT_ENABLE;
if (access_flags & IB_ACCESS_ON_DEMAND)
update_xlt_flags |= MLX5_IB_UPD_XLT_ZAP;
err = mlx5_ib_update_xlt(mr, 0, ncont, page_shift,
update_xlt_flags);
if (err) {
dereg_mr(dev, mr);
return ERR_PTR(err);
}
}
if (is_odp_mr(mr)) {
to_ib_umem_odp(mr->umem)->private = mr;
init_waitqueue_head(&mr->q_deferred_work);
atomic_set(&mr->num_deferred_work, 0);
err = xa_err(xa_store(&dev->odp_mkeys,
mlx5_base_mkey(mr->mmkey.key), &mr->mmkey,
GFP_KERNEL));
if (err) {
dereg_mr(dev, mr);
return ERR_PTR(err);
}
}
return &mr->ibmr;
error:
ib_umem_release(umem);
return ERR_PTR(err);
}
/**
* mlx5_mr_cache_invalidate - Fence all DMA on the MR
* @mr: The MR to fence
*
* Upon return the NIC will not be doing any DMA to the pages under the MR,
* and any DMA inprogress will be completed. Failure of this function
* indicates the HW has failed catastrophically.
*/
int mlx5_mr_cache_invalidate(struct mlx5_ib_mr *mr)
{
struct mlx5_umr_wr umrwr = {};
if (mr->dev->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
return 0;
umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR |
MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
umrwr.wr.opcode = MLX5_IB_WR_UMR;
umrwr.pd = mr->dev->umrc.pd;
umrwr.mkey = mr->mmkey.key;
umrwr.ignore_free_state = 1;
return mlx5_ib_post_send_wait(mr->dev, &umrwr);
}
static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr,
int access_flags, int flags)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct mlx5_umr_wr umrwr = {};
int err;
umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE;
umrwr.wr.opcode = MLX5_IB_WR_UMR;
umrwr.mkey = mr->mmkey.key;
if (flags & IB_MR_REREG_PD || flags & IB_MR_REREG_ACCESS) {
umrwr.pd = pd;
umrwr.access_flags = access_flags;
umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
}
err = mlx5_ib_post_send_wait(dev, &umrwr);
return err;
}
int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
u64 length, u64 virt_addr, int new_access_flags,
struct ib_pd *new_pd, struct ib_udata *udata)
{
struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
struct mlx5_ib_mr *mr = to_mmr(ib_mr);
struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd;
int access_flags = flags & IB_MR_REREG_ACCESS ?
new_access_flags :
mr->access_flags;
int page_shift = 0;
int upd_flags = 0;
int npages = 0;
int ncont = 0;
int order = 0;
u64 addr, len;
int err;
mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
start, virt_addr, length, access_flags);
atomic_sub(mr->npages, &dev->mdev->priv.reg_pages);
if (!mr->umem)
return -EINVAL;
if (is_odp_mr(mr))
return -EOPNOTSUPP;
if (flags & IB_MR_REREG_TRANS) {
addr = virt_addr;
len = length;
} else {
addr = mr->umem->address;
len = mr->umem->length;
}
if (flags != IB_MR_REREG_PD) {
/*
* Replace umem. This needs to be done whether or not UMR is
* used.
*/
flags |= IB_MR_REREG_TRANS;
ib_umem_release(mr->umem);
mr->umem = NULL;
err = mr_umem_get(dev, addr, len, access_flags, &mr->umem,
&npages, &page_shift, &ncont, &order);
if (err)
goto err;
}
if (!mlx5_ib_can_use_umr(dev, true, access_flags) ||
(flags & IB_MR_REREG_TRANS && !use_umr_mtt_update(mr, addr, len))) {
/*
* UMR can't be used - MKey needs to be replaced.
*/
if (mr->cache_ent)
detach_mr_from_cache(mr);
err = destroy_mkey(dev, mr);
if (err)
goto err;
mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont,
page_shift, access_flags, true);
if (IS_ERR(mr)) {
err = PTR_ERR(mr);
mr = to_mmr(ib_mr);
goto err;
}
} else {
/*
* Send a UMR WQE
*/
mr->ibmr.pd = pd;
mr->access_flags = access_flags;
mr->mmkey.iova = addr;
mr->mmkey.size = len;
mr->mmkey.pd = to_mpd(pd)->pdn;
if (flags & IB_MR_REREG_TRANS) {
upd_flags = MLX5_IB_UPD_XLT_ADDR;
if (flags & IB_MR_REREG_PD)
upd_flags |= MLX5_IB_UPD_XLT_PD;
if (flags & IB_MR_REREG_ACCESS)
upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
err = mlx5_ib_update_xlt(mr, 0, npages, page_shift,
upd_flags);
} else {
err = rereg_umr(pd, mr, access_flags, flags);
}
if (err)
goto err;
}
set_mr_fields(dev, mr, npages, len, access_flags);
return 0;
err:
ib_umem_release(mr->umem);
mr->umem = NULL;
clean_mr(dev, mr);
return err;
}
static int
mlx5_alloc_priv_descs(struct ib_device *device,
struct mlx5_ib_mr *mr,
int ndescs,
int desc_size)
{
int size = ndescs * desc_size;
int add_size;
int ret;
add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
if (!mr->descs_alloc)
return -ENOMEM;
mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
mr->desc_map = dma_map_single(device->dev.parent, mr->descs,
size, DMA_TO_DEVICE);
if (dma_mapping_error(device->dev.parent, mr->desc_map)) {
ret = -ENOMEM;
goto err;
}
return 0;
err:
kfree(mr->descs_alloc);
return ret;
}
static void
mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
{
if (mr->descs) {
struct ib_device *device = mr->ibmr.device;
int size = mr->max_descs * mr->desc_size;
dma_unmap_single(device->dev.parent, mr->desc_map,
size, DMA_TO_DEVICE);
kfree(mr->descs_alloc);
mr->descs = NULL;
}
}
static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
{
if (mr->sig) {
if (mlx5_core_destroy_psv(dev->mdev,
mr->sig->psv_memory.psv_idx))
mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
mr->sig->psv_memory.psv_idx);
if (mlx5_core_destroy_psv(dev->mdev,
mr->sig->psv_wire.psv_idx))
mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
mr->sig->psv_wire.psv_idx);
xa_erase(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key));
kfree(mr->sig);
mr->sig = NULL;
}
if (!mr->cache_ent) {
destroy_mkey(dev, mr);
mlx5_free_priv_descs(mr);
}
}
static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
{
int npages = mr->npages;
struct ib_umem *umem = mr->umem;
/* Stop all DMA */
if (is_odp_mr(mr))
mlx5_ib_fence_odp_mr(mr);
else
clean_mr(dev, mr);
if (mr->cache_ent)
mlx5_mr_cache_free(dev, mr);
else
kfree(mr);
ib_umem_release(umem);
atomic_sub(npages, &dev->mdev->priv.reg_pages);
}
int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
{
struct mlx5_ib_mr *mmr = to_mmr(ibmr);
if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr);
dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr);
}
if (is_odp_mr(mmr) && to_ib_umem_odp(mmr->umem)->is_implicit_odp) {
mlx5_ib_free_implicit_mr(mmr);
return 0;
}
dereg_mr(to_mdev(ibmr->device), mmr);
return 0;
}
static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
int access_mode, int page_shift)
{
void *mkc;
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
MLX5_SET(mkc, mkc, free, 1);
MLX5_SET(mkc, mkc, qpn, 0xffffff);
MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
MLX5_SET(mkc, mkc, umr_en, 1);
MLX5_SET(mkc, mkc, log_page_size, page_shift);
}
static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
int ndescs, int desc_size, int page_shift,
int access_mode, u32 *in, int inlen)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
int err;
mr->access_mode = access_mode;
mr->desc_size = desc_size;
mr->max_descs = ndescs;
err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
if (err)
return err;
mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
if (err)
goto err_free_descs;
mr->mmkey.type = MLX5_MKEY_MR;
mr->ibmr.lkey = mr->mmkey.key;
mr->ibmr.rkey = mr->mmkey.key;
return 0;
err_free_descs:
mlx5_free_priv_descs(mr);
return err;
}
static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
u32 max_num_sg, u32 max_num_meta_sg,
int desc_size, int access_mode)
{
int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
int page_shift = 0;
struct mlx5_ib_mr *mr;
u32 *in;
int err;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
mr->ibmr.pd = pd;
mr->ibmr.device = pd->device;
in = kzalloc(inlen, GFP_KERNEL);
if (!in) {
err = -ENOMEM;
goto err_free;
}
if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
page_shift = PAGE_SHIFT;
err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
access_mode, in, inlen);
if (err)
goto err_free_in;
mr->umem = NULL;
kfree(in);
return mr;
err_free_in:
kfree(in);
err_free:
kfree(mr);
return ERR_PTR(err);
}
static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
int ndescs, u32 *in, int inlen)
{
return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
inlen);
}
static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
int ndescs, u32 *in, int inlen)
{
return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
}
static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
int max_num_sg, int max_num_meta_sg,
u32 *in, int inlen)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
u32 psv_index[2];
void *mkc;
int err;
mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
if (!mr->sig)
return -ENOMEM;
/* create mem & wire PSVs */
err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
if (err)
goto err_free_sig;
mr->sig->psv_memory.psv_idx = psv_index[0];
mr->sig->psv_wire.psv_idx = psv_index[1];
mr->sig->sig_status_checked = true;
mr->sig->sig_err_exists = false;
/* Next UMR, Arm SIGERR */
++mr->sig->sigerr_count;
mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
sizeof(struct mlx5_klm),
MLX5_MKC_ACCESS_MODE_KLMS);
if (IS_ERR(mr->klm_mr)) {
err = PTR_ERR(mr->klm_mr);
goto err_destroy_psv;
}
mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
sizeof(struct mlx5_mtt),
MLX5_MKC_ACCESS_MODE_MTT);
if (IS_ERR(mr->mtt_mr)) {
err = PTR_ERR(mr->mtt_mr);
goto err_free_klm_mr;
}
/* Set bsf descriptors for mkey */
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
MLX5_SET(mkc, mkc, bsf_en, 1);
MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
if (err)
goto err_free_mtt_mr;
err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
mr->sig, GFP_KERNEL));
if (err)
goto err_free_descs;
return 0;
err_free_descs:
destroy_mkey(dev, mr);
mlx5_free_priv_descs(mr);
err_free_mtt_mr:
dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr);
mr->mtt_mr = NULL;
err_free_klm_mr:
dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr);
mr->klm_mr = NULL;
err_destroy_psv:
if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
mr->sig->psv_memory.psv_idx);
if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
mr->sig->psv_wire.psv_idx);
err_free_sig:
kfree(mr->sig);
return err;
}
static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
enum ib_mr_type mr_type, u32 max_num_sg,
u32 max_num_meta_sg)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
int ndescs = ALIGN(max_num_sg, 4);
struct mlx5_ib_mr *mr;
u32 *in;
int err;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
in = kzalloc(inlen, GFP_KERNEL);
if (!in) {
err = -ENOMEM;
goto err_free;
}
mr->ibmr.device = pd->device;
mr->umem = NULL;
switch (mr_type) {
case IB_MR_TYPE_MEM_REG:
err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
break;
case IB_MR_TYPE_SG_GAPS:
err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
break;
case IB_MR_TYPE_INTEGRITY:
err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
max_num_meta_sg, in, inlen);
break;
default:
mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
err = -EINVAL;
}
if (err)
goto err_free_in;
kfree(in);
return &mr->ibmr;
err_free_in:
kfree(in);
err_free:
kfree(mr);
return ERR_PTR(err);
}
struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
u32 max_num_sg, struct ib_udata *udata)
{
return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
}
struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
u32 max_num_sg, u32 max_num_meta_sg)
{
return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
max_num_meta_sg);
}
struct ib_mw *mlx5_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
struct ib_udata *udata)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
struct mlx5_ib_mw *mw = NULL;
u32 *in = NULL;
void *mkc;
int ndescs;
int err;
struct mlx5_ib_alloc_mw req = {};
struct {
__u32 comp_mask;
__u32 response_length;
} resp = {};
err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
if (err)
return ERR_PTR(err);
if (req.comp_mask || req.reserved1 || req.reserved2)
return ERR_PTR(-EOPNOTSUPP);
if (udata->inlen > sizeof(req) &&
!ib_is_udata_cleared(udata, sizeof(req),
udata->inlen - sizeof(req)))
return ERR_PTR(-EOPNOTSUPP);
ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
mw = kzalloc(sizeof(*mw), GFP_KERNEL);
in = kzalloc(inlen, GFP_KERNEL);
if (!mw || !in) {
err = -ENOMEM;
goto free;
}
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
MLX5_SET(mkc, mkc, free, 1);
MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
MLX5_SET(mkc, mkc, umr_en, 1);
MLX5_SET(mkc, mkc, lr, 1);
MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
MLX5_SET(mkc, mkc, en_rinval, !!((type == IB_MW_TYPE_2)));
MLX5_SET(mkc, mkc, qpn, 0xffffff);
err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
if (err)
goto free;
mw->mmkey.type = MLX5_MKEY_MW;
mw->ibmw.rkey = mw->mmkey.key;
mw->ndescs = ndescs;
resp.response_length = min(offsetof(typeof(resp), response_length) +
sizeof(resp.response_length), udata->outlen);
if (resp.response_length) {
err = ib_copy_to_udata(udata, &resp, resp.response_length);
if (err) {
mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
goto free;
}
}
if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
err = xa_err(xa_store(&dev->odp_mkeys,
mlx5_base_mkey(mw->mmkey.key), &mw->mmkey,
GFP_KERNEL));
if (err)
goto free_mkey;
}
kfree(in);
return &mw->ibmw;
free_mkey:
mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
free:
kfree(mw);
kfree(in);
return ERR_PTR(err);
}
int mlx5_ib_dealloc_mw(struct ib_mw *mw)
{
struct mlx5_ib_dev *dev = to_mdev(mw->device);
struct mlx5_ib_mw *mmw = to_mmw(mw);
int err;
if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key));
/*
* pagefault_single_data_segment() may be accessing mmw under
* SRCU if the user bound an ODP MR to this MW.
*/
synchronize_srcu(&dev->odp_srcu);
}
err = mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey);
if (err)
return err;
kfree(mmw);
return 0;
}
int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
struct ib_mr_status *mr_status)
{
struct mlx5_ib_mr *mmr = to_mmr(ibmr);
int ret = 0;
if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
pr_err("Invalid status check mask\n");
ret = -EINVAL;
goto done;
}
mr_status->fail_status = 0;
if (check_mask & IB_MR_CHECK_SIG_STATUS) {
if (!mmr->sig) {
ret = -EINVAL;
pr_err("signature status check requested on a non-signature enabled MR\n");
goto done;
}
mmr->sig->sig_status_checked = true;
if (!mmr->sig->sig_err_exists)
goto done;
if (ibmr->lkey == mmr->sig->err_item.key)
memcpy(&mr_status->sig_err, &mmr->sig->err_item,
sizeof(mr_status->sig_err));
else {
mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
mr_status->sig_err.sig_err_offset = 0;
mr_status->sig_err.key = mmr->sig->err_item.key;
}
mmr->sig->sig_err_exists = false;
mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
}
done:
return ret;
}
static int
mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
int data_sg_nents, unsigned int *data_sg_offset,
struct scatterlist *meta_sg, int meta_sg_nents,
unsigned int *meta_sg_offset)
{
struct mlx5_ib_mr *mr = to_mmr(ibmr);
unsigned int sg_offset = 0;
int n = 0;
mr->meta_length = 0;
if (data_sg_nents == 1) {
n++;
mr->ndescs = 1;
if (data_sg_offset)
sg_offset = *data_sg_offset;
mr->data_length = sg_dma_len(data_sg) - sg_offset;
mr->data_iova = sg_dma_address(data_sg) + sg_offset;
if (meta_sg_nents == 1) {
n++;
mr->meta_ndescs = 1;
if (meta_sg_offset)
sg_offset = *meta_sg_offset;
else
sg_offset = 0;
mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
}
ibmr->length = mr->data_length + mr->meta_length;
}
return n;
}
static int
mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
struct scatterlist *sgl,
unsigned short sg_nents,
unsigned int *sg_offset_p,
struct scatterlist *meta_sgl,
unsigned short meta_sg_nents,
unsigned int *meta_sg_offset_p)
{
struct scatterlist *sg = sgl;
struct mlx5_klm *klms = mr->descs;
unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
u32 lkey = mr->ibmr.pd->local_dma_lkey;
int i, j = 0;
mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
mr->ibmr.length = 0;
for_each_sg(sgl, sg, sg_nents, i) {
if (unlikely(i >= mr->max_descs))
break;
klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
klms[i].key = cpu_to_be32(lkey);
mr->ibmr.length += sg_dma_len(sg) - sg_offset;
sg_offset = 0;
}
if (sg_offset_p)
*sg_offset_p = sg_offset;
mr->ndescs = i;
mr->data_length = mr->ibmr.length;
if (meta_sg_nents) {
sg = meta_sgl;
sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
if (unlikely(i + j >= mr->max_descs))
break;
klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
sg_offset);
klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
sg_offset);
klms[i + j].key = cpu_to_be32(lkey);
mr->ibmr.length += sg_dma_len(sg) - sg_offset;
sg_offset = 0;
}
if (meta_sg_offset_p)
*meta_sg_offset_p = sg_offset;
mr->meta_ndescs = j;
mr->meta_length = mr->ibmr.length - mr->data_length;
}
return i + j;
}
static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
{
struct mlx5_ib_mr *mr = to_mmr(ibmr);
__be64 *descs;
if (unlikely(mr->ndescs == mr->max_descs))
return -ENOMEM;
descs = mr->descs;
descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
return 0;
}
static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
{
struct mlx5_ib_mr *mr = to_mmr(ibmr);
__be64 *descs;
if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs))
return -ENOMEM;
descs = mr->descs;
descs[mr->ndescs + mr->meta_ndescs++] =
cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
return 0;
}
static int
mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
int data_sg_nents, unsigned int *data_sg_offset,
struct scatterlist *meta_sg, int meta_sg_nents,
unsigned int *meta_sg_offset)
{
struct mlx5_ib_mr *mr = to_mmr(ibmr);
struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
int n;
pi_mr->ndescs = 0;
pi_mr->meta_ndescs = 0;
pi_mr->meta_length = 0;
ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
pi_mr->desc_size * pi_mr->max_descs,
DMA_TO_DEVICE);
pi_mr->ibmr.page_size = ibmr->page_size;
n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
mlx5_set_page);
if (n != data_sg_nents)
return n;
pi_mr->data_iova = pi_mr->ibmr.iova;
pi_mr->data_length = pi_mr->ibmr.length;
pi_mr->ibmr.length = pi_mr->data_length;
ibmr->length = pi_mr->data_length;
if (meta_sg_nents) {
u64 page_mask = ~((u64)ibmr->page_size - 1);
u64 iova = pi_mr->data_iova;
n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
meta_sg_offset, mlx5_set_page_pi);
pi_mr->meta_length = pi_mr->ibmr.length;
/*
* PI address for the HW is the offset of the metadata address
* relative to the first data page address.
* It equals to first data page address + size of data pages +
* metadata offset at the first metadata page
*/
pi_mr->pi_iova = (iova & page_mask) +
pi_mr->ndescs * ibmr->page_size +
(pi_mr->ibmr.iova & ~page_mask);
/*
* In order to use one MTT MR for data and metadata, we register
* also the gaps between the end of the data and the start of
* the metadata (the sig MR will verify that the HW will access
* to right addresses). This mapping is safe because we use
* internal mkey for the registration.
*/
pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
pi_mr->ibmr.iova = iova;
ibmr->length += pi_mr->meta_length;
}
ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
pi_mr->desc_size * pi_mr->max_descs,
DMA_TO_DEVICE);
return n;
}
static int
mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
int data_sg_nents, unsigned int *data_sg_offset,
struct scatterlist *meta_sg, int meta_sg_nents,
unsigned int *meta_sg_offset)
{
struct mlx5_ib_mr *mr = to_mmr(ibmr);
struct mlx5_ib_mr *pi_mr = mr->klm_mr;
int n;
pi_mr->ndescs = 0;
pi_mr->meta_ndescs = 0;
pi_mr->meta_length = 0;
ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
pi_mr->desc_size * pi_mr->max_descs,
DMA_TO_DEVICE);
n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
meta_sg, meta_sg_nents, meta_sg_offset);
ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
pi_mr->desc_size * pi_mr->max_descs,
DMA_TO_DEVICE);
/* This is zero-based memory region */
pi_mr->data_iova = 0;
pi_mr->ibmr.iova = 0;
pi_mr->pi_iova = pi_mr->data_length;
ibmr->length = pi_mr->ibmr.length;
return n;
}
int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
int data_sg_nents, unsigned int *data_sg_offset,
struct scatterlist *meta_sg, int meta_sg_nents,
unsigned int *meta_sg_offset)
{
struct mlx5_ib_mr *mr = to_mmr(ibmr);
struct mlx5_ib_mr *pi_mr = NULL;
int n;
WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
mr->ndescs = 0;
mr->data_length = 0;
mr->data_iova = 0;
mr->meta_ndescs = 0;
mr->pi_iova = 0;
/*
* As a performance optimization, if possible, there is no need to
* perform UMR operation to register the data/metadata buffers.
* First try to map the sg lists to PA descriptors with local_dma_lkey.
* Fallback to UMR only in case of a failure.
*/
n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
data_sg_offset, meta_sg, meta_sg_nents,
meta_sg_offset);
if (n == data_sg_nents + meta_sg_nents)
goto out;
/*
* As a performance optimization, if possible, there is no need to map
* the sg lists to KLM descriptors. First try to map the sg lists to MTT
* descriptors and fallback to KLM only in case of a failure.
* It's more efficient for the HW to work with MTT descriptors
* (especially in high load).
* Use KLM (indirect access) only if it's mandatory.
*/
pi_mr = mr->mtt_mr;
n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
data_sg_offset, meta_sg, meta_sg_nents,
meta_sg_offset);
if (n == data_sg_nents + meta_sg_nents)
goto out;
pi_mr = mr->klm_mr;
n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
data_sg_offset, meta_sg, meta_sg_nents,
meta_sg_offset);
if (unlikely(n != data_sg_nents + meta_sg_nents))
return -ENOMEM;
out:
/* This is zero-based memory region */
ibmr->iova = 0;
mr->pi_mr = pi_mr;
if (pi_mr)
ibmr->sig_attrs->meta_length = pi_mr->meta_length;
else
ibmr->sig_attrs->meta_length = mr->meta_length;
return 0;
}
int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
unsigned int *sg_offset)
{
struct mlx5_ib_mr *mr = to_mmr(ibmr);
int n;
mr->ndescs = 0;
ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
mr->desc_size * mr->max_descs,
DMA_TO_DEVICE);
if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
NULL);
else
n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
mlx5_set_page);
ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
mr->desc_size * mr->max_descs,
DMA_TO_DEVICE);
return n;
}