| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * |
| * Copyright (C) 2016 ARM Limited |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/atomic.h> |
| #include <linux/completion.h> |
| #include <linux/cpu.h> |
| #include <linux/cpuidle.h> |
| #include <linux/cpu_pm.h> |
| #include <linux/kernel.h> |
| #include <linux/kthread.h> |
| #include <uapi/linux/sched/types.h> |
| #include <linux/module.h> |
| #include <linux/preempt.h> |
| #include <linux/psci.h> |
| #include <linux/slab.h> |
| #include <linux/tick.h> |
| #include <linux/topology.h> |
| |
| #include <asm/cpuidle.h> |
| |
| #include <uapi/linux/psci.h> |
| |
| #define NUM_SUSPEND_CYCLE (10) |
| |
| static unsigned int nb_available_cpus; |
| static int tos_resident_cpu = -1; |
| |
| static atomic_t nb_active_threads; |
| static struct completion suspend_threads_started = |
| COMPLETION_INITIALIZER(suspend_threads_started); |
| static struct completion suspend_threads_done = |
| COMPLETION_INITIALIZER(suspend_threads_done); |
| |
| /* |
| * We assume that PSCI operations are used if they are available. This is not |
| * necessarily true on arm64, since the decision is based on the |
| * "enable-method" property of each CPU in the DT, but given that there is no |
| * arch-specific way to check this, we assume that the DT is sensible. |
| */ |
| static int psci_ops_check(void) |
| { |
| int migrate_type = -1; |
| int cpu; |
| |
| if (!(psci_ops.cpu_off && psci_ops.cpu_on && psci_ops.cpu_suspend)) { |
| pr_warn("Missing PSCI operations, aborting tests\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (psci_ops.migrate_info_type) |
| migrate_type = psci_ops.migrate_info_type(); |
| |
| if (migrate_type == PSCI_0_2_TOS_UP_MIGRATE || |
| migrate_type == PSCI_0_2_TOS_UP_NO_MIGRATE) { |
| /* There is a UP Trusted OS, find on which core it resides. */ |
| for_each_online_cpu(cpu) |
| if (psci_tos_resident_on(cpu)) { |
| tos_resident_cpu = cpu; |
| break; |
| } |
| if (tos_resident_cpu == -1) |
| pr_warn("UP Trusted OS resides on no online CPU\n"); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * offlined_cpus is a temporary array but passing it as an argument avoids |
| * multiple allocations. |
| */ |
| static unsigned int down_and_up_cpus(const struct cpumask *cpus, |
| struct cpumask *offlined_cpus) |
| { |
| int cpu; |
| int err = 0; |
| |
| cpumask_clear(offlined_cpus); |
| |
| /* Try to power down all CPUs in the mask. */ |
| for_each_cpu(cpu, cpus) { |
| int ret = remove_cpu(cpu); |
| |
| /* |
| * cpu_down() checks the number of online CPUs before the TOS |
| * resident CPU. |
| */ |
| if (cpumask_weight(offlined_cpus) + 1 == nb_available_cpus) { |
| if (ret != -EBUSY) { |
| pr_err("Unexpected return code %d while trying " |
| "to power down last online CPU %d\n", |
| ret, cpu); |
| ++err; |
| } |
| } else if (cpu == tos_resident_cpu) { |
| if (ret != -EPERM) { |
| pr_err("Unexpected return code %d while trying " |
| "to power down TOS resident CPU %d\n", |
| ret, cpu); |
| ++err; |
| } |
| } else if (ret != 0) { |
| pr_err("Error occurred (%d) while trying " |
| "to power down CPU %d\n", ret, cpu); |
| ++err; |
| } |
| |
| if (ret == 0) |
| cpumask_set_cpu(cpu, offlined_cpus); |
| } |
| |
| /* Try to power up all the CPUs that have been offlined. */ |
| for_each_cpu(cpu, offlined_cpus) { |
| int ret = add_cpu(cpu); |
| |
| if (ret != 0) { |
| pr_err("Error occurred (%d) while trying " |
| "to power up CPU %d\n", ret, cpu); |
| ++err; |
| } else { |
| cpumask_clear_cpu(cpu, offlined_cpus); |
| } |
| } |
| |
| /* |
| * Something went bad at some point and some CPUs could not be turned |
| * back on. |
| */ |
| WARN_ON(!cpumask_empty(offlined_cpus) || |
| num_online_cpus() != nb_available_cpus); |
| |
| return err; |
| } |
| |
| static void free_cpu_groups(int num, cpumask_var_t **pcpu_groups) |
| { |
| int i; |
| cpumask_var_t *cpu_groups = *pcpu_groups; |
| |
| for (i = 0; i < num; ++i) |
| free_cpumask_var(cpu_groups[i]); |
| kfree(cpu_groups); |
| } |
| |
| static int alloc_init_cpu_groups(cpumask_var_t **pcpu_groups) |
| { |
| int num_groups = 0; |
| cpumask_var_t tmp, *cpu_groups; |
| |
| if (!alloc_cpumask_var(&tmp, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| cpu_groups = kcalloc(nb_available_cpus, sizeof(cpu_groups), |
| GFP_KERNEL); |
| if (!cpu_groups) { |
| free_cpumask_var(tmp); |
| return -ENOMEM; |
| } |
| |
| cpumask_copy(tmp, cpu_online_mask); |
| |
| while (!cpumask_empty(tmp)) { |
| const struct cpumask *cpu_group = |
| topology_core_cpumask(cpumask_any(tmp)); |
| |
| if (!alloc_cpumask_var(&cpu_groups[num_groups], GFP_KERNEL)) { |
| free_cpumask_var(tmp); |
| free_cpu_groups(num_groups, &cpu_groups); |
| return -ENOMEM; |
| } |
| cpumask_copy(cpu_groups[num_groups++], cpu_group); |
| cpumask_andnot(tmp, tmp, cpu_group); |
| } |
| |
| free_cpumask_var(tmp); |
| *pcpu_groups = cpu_groups; |
| |
| return num_groups; |
| } |
| |
| static int hotplug_tests(void) |
| { |
| int i, nb_cpu_group, err = -ENOMEM; |
| cpumask_var_t offlined_cpus, *cpu_groups; |
| char *page_buf; |
| |
| if (!alloc_cpumask_var(&offlined_cpus, GFP_KERNEL)) |
| return err; |
| |
| nb_cpu_group = alloc_init_cpu_groups(&cpu_groups); |
| if (nb_cpu_group < 0) |
| goto out_free_cpus; |
| page_buf = (char *)__get_free_page(GFP_KERNEL); |
| if (!page_buf) |
| goto out_free_cpu_groups; |
| |
| /* |
| * Of course the last CPU cannot be powered down and cpu_down() should |
| * refuse doing that. |
| */ |
| pr_info("Trying to turn off and on again all CPUs\n"); |
| err = down_and_up_cpus(cpu_online_mask, offlined_cpus); |
| |
| /* |
| * Take down CPUs by cpu group this time. When the last CPU is turned |
| * off, the cpu group itself should shut down. |
| */ |
| for (i = 0; i < nb_cpu_group; ++i) { |
| ssize_t len = cpumap_print_to_pagebuf(true, page_buf, |
| cpu_groups[i]); |
| /* Remove trailing newline. */ |
| page_buf[len - 1] = '\0'; |
| pr_info("Trying to turn off and on again group %d (CPUs %s)\n", |
| i, page_buf); |
| err += down_and_up_cpus(cpu_groups[i], offlined_cpus); |
| } |
| |
| free_page((unsigned long)page_buf); |
| out_free_cpu_groups: |
| free_cpu_groups(nb_cpu_group, &cpu_groups); |
| out_free_cpus: |
| free_cpumask_var(offlined_cpus); |
| return err; |
| } |
| |
| static void dummy_callback(struct timer_list *unused) {} |
| |
| static int suspend_cpu(struct cpuidle_device *dev, |
| struct cpuidle_driver *drv, int index) |
| { |
| struct cpuidle_state *state = &drv->states[index]; |
| bool broadcast = state->flags & CPUIDLE_FLAG_TIMER_STOP; |
| int ret; |
| |
| arch_cpu_idle_enter(); |
| |
| if (broadcast) { |
| /* |
| * The local timer will be shut down, we need to enter tick |
| * broadcast. |
| */ |
| ret = tick_broadcast_enter(); |
| if (ret) { |
| /* |
| * In the absence of hardware broadcast mechanism, |
| * this CPU might be used to broadcast wakeups, which |
| * may be why entering tick broadcast has failed. |
| * There is little the kernel can do to work around |
| * that, so enter WFI instead (idle state 0). |
| */ |
| cpu_do_idle(); |
| ret = 0; |
| goto out_arch_exit; |
| } |
| } |
| |
| ret = state->enter(dev, drv, index); |
| |
| if (broadcast) |
| tick_broadcast_exit(); |
| |
| out_arch_exit: |
| arch_cpu_idle_exit(); |
| |
| return ret; |
| } |
| |
| static int suspend_test_thread(void *arg) |
| { |
| int cpu = (long)arg; |
| int i, nb_suspend = 0, nb_shallow_sleep = 0, nb_err = 0; |
| struct sched_param sched_priority = { .sched_priority = MAX_RT_PRIO-1 }; |
| struct cpuidle_device *dev; |
| struct cpuidle_driver *drv; |
| /* No need for an actual callback, we just want to wake up the CPU. */ |
| struct timer_list wakeup_timer; |
| |
| /* Wait for the main thread to give the start signal. */ |
| wait_for_completion(&suspend_threads_started); |
| |
| /* Set maximum priority to preempt all other threads on this CPU. */ |
| if (sched_setscheduler_nocheck(current, SCHED_FIFO, &sched_priority)) |
| pr_warn("Failed to set suspend thread scheduler on CPU %d\n", |
| cpu); |
| |
| dev = this_cpu_read(cpuidle_devices); |
| drv = cpuidle_get_cpu_driver(dev); |
| |
| pr_info("CPU %d entering suspend cycles, states 1 through %d\n", |
| cpu, drv->state_count - 1); |
| |
| timer_setup_on_stack(&wakeup_timer, dummy_callback, 0); |
| for (i = 0; i < NUM_SUSPEND_CYCLE; ++i) { |
| int index; |
| /* |
| * Test all possible states, except 0 (which is usually WFI and |
| * doesn't use PSCI). |
| */ |
| for (index = 1; index < drv->state_count; ++index) { |
| int ret; |
| struct cpuidle_state *state = &drv->states[index]; |
| |
| /* |
| * Set the timer to wake this CPU up in some time (which |
| * should be largely sufficient for entering suspend). |
| * If the local tick is disabled when entering suspend, |
| * suspend_cpu() takes care of switching to a broadcast |
| * tick, so the timer will still wake us up. |
| */ |
| mod_timer(&wakeup_timer, jiffies + |
| usecs_to_jiffies(state->target_residency)); |
| |
| /* IRQs must be disabled during suspend operations. */ |
| local_irq_disable(); |
| |
| ret = suspend_cpu(dev, drv, index); |
| |
| /* |
| * We have woken up. Re-enable IRQs to handle any |
| * pending interrupt, do not wait until the end of the |
| * loop. |
| */ |
| local_irq_enable(); |
| |
| if (ret == index) { |
| ++nb_suspend; |
| } else if (ret >= 0) { |
| /* We did not enter the expected state. */ |
| ++nb_shallow_sleep; |
| } else { |
| pr_err("Failed to suspend CPU %d: error %d " |
| "(requested state %d, cycle %d)\n", |
| cpu, ret, index, i); |
| ++nb_err; |
| } |
| } |
| } |
| |
| /* |
| * Disable the timer to make sure that the timer will not trigger |
| * later. |
| */ |
| del_timer(&wakeup_timer); |
| destroy_timer_on_stack(&wakeup_timer); |
| |
| if (atomic_dec_return_relaxed(&nb_active_threads) == 0) |
| complete(&suspend_threads_done); |
| |
| /* Give up on RT scheduling and wait for termination. */ |
| sched_priority.sched_priority = 0; |
| if (sched_setscheduler_nocheck(current, SCHED_NORMAL, &sched_priority)) |
| pr_warn("Failed to set suspend thread scheduler on CPU %d\n", |
| cpu); |
| for (;;) { |
| /* Needs to be set first to avoid missing a wakeup. */ |
| set_current_state(TASK_INTERRUPTIBLE); |
| if (kthread_should_park()) |
| break; |
| schedule(); |
| } |
| |
| pr_info("CPU %d suspend test results: success %d, shallow states %d, errors %d\n", |
| cpu, nb_suspend, nb_shallow_sleep, nb_err); |
| |
| kthread_parkme(); |
| |
| return nb_err; |
| } |
| |
| static int suspend_tests(void) |
| { |
| int i, cpu, err = 0; |
| struct task_struct **threads; |
| int nb_threads = 0; |
| |
| threads = kmalloc_array(nb_available_cpus, sizeof(*threads), |
| GFP_KERNEL); |
| if (!threads) |
| return -ENOMEM; |
| |
| /* |
| * Stop cpuidle to prevent the idle tasks from entering a deep sleep |
| * mode, as it might interfere with the suspend threads on other CPUs. |
| * This does not prevent the suspend threads from using cpuidle (only |
| * the idle tasks check this status). Take the idle lock so that |
| * the cpuidle driver and device look-up can be carried out safely. |
| */ |
| cpuidle_pause_and_lock(); |
| |
| for_each_online_cpu(cpu) { |
| struct task_struct *thread; |
| /* Check that cpuidle is available on that CPU. */ |
| struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu); |
| struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); |
| |
| if (!dev || !drv) { |
| pr_warn("cpuidle not available on CPU %d, ignoring\n", |
| cpu); |
| continue; |
| } |
| |
| thread = kthread_create_on_cpu(suspend_test_thread, |
| (void *)(long)cpu, cpu, |
| "psci_suspend_test"); |
| if (IS_ERR(thread)) |
| pr_err("Failed to create kthread on CPU %d\n", cpu); |
| else |
| threads[nb_threads++] = thread; |
| } |
| |
| if (nb_threads < 1) { |
| err = -ENODEV; |
| goto out; |
| } |
| |
| atomic_set(&nb_active_threads, nb_threads); |
| |
| /* |
| * Wake up the suspend threads. To avoid the main thread being preempted |
| * before all the threads have been unparked, the suspend threads will |
| * wait for the completion of suspend_threads_started. |
| */ |
| for (i = 0; i < nb_threads; ++i) |
| wake_up_process(threads[i]); |
| complete_all(&suspend_threads_started); |
| |
| wait_for_completion(&suspend_threads_done); |
| |
| |
| /* Stop and destroy all threads, get return status. */ |
| for (i = 0; i < nb_threads; ++i) { |
| err += kthread_park(threads[i]); |
| err += kthread_stop(threads[i]); |
| } |
| out: |
| cpuidle_resume_and_unlock(); |
| kfree(threads); |
| return err; |
| } |
| |
| static int __init psci_checker(void) |
| { |
| int ret; |
| |
| /* |
| * Since we're in an initcall, we assume that all the CPUs that all |
| * CPUs that can be onlined have been onlined. |
| * |
| * The tests assume that hotplug is enabled but nobody else is using it, |
| * otherwise the results will be unpredictable. However, since there |
| * is no userspace yet in initcalls, that should be fine, as long as |
| * no torture test is running at the same time (see Kconfig). |
| */ |
| nb_available_cpus = num_online_cpus(); |
| |
| /* Check PSCI operations are set up and working. */ |
| ret = psci_ops_check(); |
| if (ret) |
| return ret; |
| |
| pr_info("PSCI checker started using %u CPUs\n", nb_available_cpus); |
| |
| pr_info("Starting hotplug tests\n"); |
| ret = hotplug_tests(); |
| if (ret == 0) |
| pr_info("Hotplug tests passed OK\n"); |
| else if (ret > 0) |
| pr_err("%d error(s) encountered in hotplug tests\n", ret); |
| else { |
| pr_err("Out of memory\n"); |
| return ret; |
| } |
| |
| pr_info("Starting suspend tests (%d cycles per state)\n", |
| NUM_SUSPEND_CYCLE); |
| ret = suspend_tests(); |
| if (ret == 0) |
| pr_info("Suspend tests passed OK\n"); |
| else if (ret > 0) |
| pr_err("%d error(s) encountered in suspend tests\n", ret); |
| else { |
| switch (ret) { |
| case -ENOMEM: |
| pr_err("Out of memory\n"); |
| break; |
| case -ENODEV: |
| pr_warn("Could not start suspend tests on any CPU\n"); |
| break; |
| } |
| } |
| |
| pr_info("PSCI checker completed\n"); |
| return ret < 0 ? ret : 0; |
| } |
| late_initcall(psci_checker); |