| /* |
| Madge Horizon ATM Adapter driver. |
| Copyright (C) 1995-1999 Madge Networks Ltd. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| |
| The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian |
| system and in the file COPYING in the Linux kernel source. |
| */ |
| |
| /* |
| IMPORTANT NOTE: Madge Networks no longer makes the adapters |
| supported by this driver and makes no commitment to maintain it. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/pci.h> |
| #include <linux/errno.h> |
| #include <linux/atm.h> |
| #include <linux/atmdev.h> |
| #include <linux/sonet.h> |
| #include <linux/skbuff.h> |
| #include <linux/time.h> |
| #include <linux/delay.h> |
| #include <linux/uio.h> |
| #include <linux/init.h> |
| #include <linux/ioport.h> |
| #include <linux/wait.h> |
| |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/atomic.h> |
| #include <asm/uaccess.h> |
| #include <asm/string.h> |
| #include <asm/byteorder.h> |
| |
| #include "horizon.h" |
| |
| #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>" |
| #define description_string "Madge ATM Horizon [Ultra] driver" |
| #define version_string "1.2.1" |
| |
| static inline void __init show_version (void) { |
| printk ("%s version %s\n", description_string, version_string); |
| } |
| |
| /* |
| |
| CREDITS |
| |
| Driver and documentation by: |
| |
| Chris Aston Madge Networks |
| Giuliano Procida Madge Networks |
| Simon Benham Madge Networks |
| Simon Johnson Madge Networks |
| Various Others Madge Networks |
| |
| Some inspiration taken from other drivers by: |
| |
| Alexandru Cucos UTBv |
| Kari Mettinen University of Helsinki |
| Werner Almesberger EPFL LRC |
| |
| Theory of Operation |
| |
| I Hardware, detection, initialisation and shutdown. |
| |
| 1. Supported Hardware |
| |
| This driver should handle all variants of the PCI Madge ATM adapters |
| with the Horizon chipset. These are all PCI cards supporting PIO, BM |
| DMA and a form of MMIO (registers only, not internal RAM). |
| |
| The driver is only known to work with SONET and UTP Horizon Ultra |
| cards at 155Mb/s. However, code is in place to deal with both the |
| original Horizon and 25Mb/s operation. |
| |
| There are two revisions of the Horizon ASIC: the original and the |
| Ultra. Details of hardware bugs are in section III. |
| |
| The ASIC version can be distinguished by chip markings but is NOT |
| indicated by the PCI revision (all adapters seem to have PCI rev 1). |
| |
| I believe that: |
| |
| Horizon => Collage 25 PCI Adapter (UTP and STP) |
| Horizon Ultra => Collage 155 PCI Client (UTP or SONET) |
| Ambassador x => Collage 155 PCI Server (completely different) |
| |
| Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to |
| have a Madge B154 plus glue logic serializer. I have also found a |
| really ancient version of this with slightly different glue. It |
| comes with the revision 0 (140-025-01) ASIC. |
| |
| Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink |
| output (UTP) or an HP HFBR 5205 output (SONET). It has either |
| Madge's SAMBA framer or a SUNI-lite device (early versions). It |
| comes with the revision 1 (140-027-01) ASIC. |
| |
| 2. Detection |
| |
| All Horizon-based cards present with the same PCI Vendor and Device |
| IDs. The standard Linux 2.2 PCI API is used to locate any cards and |
| to enable bus-mastering (with appropriate latency). |
| |
| ATM_LAYER_STATUS in the control register distinguishes between the |
| two possible physical layers (25 and 155). It is not clear whether |
| the 155 cards can also operate at 25Mbps. We rely on the fact that a |
| card operates at 155 if and only if it has the newer Horizon Ultra |
| ASIC. |
| |
| For 155 cards the two possible framers are probed for and then set |
| up for loop-timing. |
| |
| 3. Initialisation |
| |
| The card is reset and then put into a known state. The physical |
| layer is configured for normal operation at the appropriate speed; |
| in the case of the 155 cards, the framer is initialised with |
| line-based timing; the internal RAM is zeroed and the allocation of |
| buffers for RX and TX is made; the Burnt In Address is read and |
| copied to the ATM ESI; various policy settings for RX (VPI bits, |
| unknown VCs, oam cells) are made. Ideally all policy items should be |
| configurable at module load (if not actually on-demand), however, |
| only the vpi vs vci bit allocation can be specified at insmod. |
| |
| 4. Shutdown |
| |
| This is in response to module_cleaup. No VCs are in use and the card |
| should be idle; it is reset. |
| |
| II Driver software (as it should be) |
| |
| 0. Traffic Parameters |
| |
| The traffic classes (not an enumeration) are currently: ATM_NONE (no |
| traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS |
| (compatible with everything). Together with (perhaps only some of) |
| the following items they make up the traffic specification. |
| |
| struct atm_trafprm { |
| unsigned char traffic_class; traffic class (ATM_UBR, ...) |
| int max_pcr; maximum PCR in cells per second |
| int pcr; desired PCR in cells per second |
| int min_pcr; minimum PCR in cells per second |
| int max_cdv; maximum CDV in microseconds |
| int max_sdu; maximum SDU in bytes |
| }; |
| |
| Note that these denote bandwidth available not bandwidth used; the |
| possibilities according to ATMF are: |
| |
| Real Time (cdv and max CDT given) |
| |
| CBR(pcr) pcr bandwidth always available |
| rtVBR(pcr,scr,mbs) scr bandwidth always available, upto pcr at mbs too |
| |
| Non Real Time |
| |
| nrtVBR(pcr,scr,mbs) scr bandwidth always available, upto pcr at mbs too |
| UBR() |
| ABR(mcr,pcr) mcr bandwidth always available, upto pcr (depending) too |
| |
| mbs is max burst size (bucket) |
| pcr and scr have associated cdvt values |
| mcr is like scr but has no cdtv |
| cdtv may differ at each hop |
| |
| Some of the above items are qos items (as opposed to traffic |
| parameters). We have nothing to do with qos. All except ABR can have |
| their traffic parameters converted to GCRA parameters. The GCRA may |
| be implemented as a (real-number) leaky bucket. The GCRA can be used |
| in complicated ways by switches and in simpler ways by end-stations. |
| It can be used both to filter incoming cells and shape out-going |
| cells. |
| |
| ATM Linux actually supports: |
| |
| ATM_NONE() (no traffic in this direction) |
| ATM_UBR(max_frame_size) |
| ATM_CBR(max/min_pcr, max_cdv, max_frame_size) |
| |
| 0 or ATM_MAX_PCR are used to indicate maximum available PCR |
| |
| A traffic specification consists of the AAL type and separate |
| traffic specifications for either direction. In ATM Linux it is: |
| |
| struct atm_qos { |
| struct atm_trafprm txtp; |
| struct atm_trafprm rxtp; |
| unsigned char aal; |
| }; |
| |
| AAL types are: |
| |
| ATM_NO_AAL AAL not specified |
| ATM_AAL0 "raw" ATM cells |
| ATM_AAL1 AAL1 (CBR) |
| ATM_AAL2 AAL2 (VBR) |
| ATM_AAL34 AAL3/4 (data) |
| ATM_AAL5 AAL5 (data) |
| ATM_SAAL signaling AAL |
| |
| The Horizon has support for AAL frame types: 0, 3/4 and 5. However, |
| it does not implement AAL 3/4 SAR and it has a different notion of |
| "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are |
| supported by this driver. |
| |
| The Horizon has limited support for ABR (including UBR), VBR and |
| CBR. Each TX channel has a bucket (containing up to 31 cell units) |
| and two timers (PCR and SCR) associated with it that can be used to |
| govern cell emissions and host notification (in the case of ABR this |
| is presumably so that RM cells may be emitted at appropriate times). |
| The timers may either be disabled or may be set to any of 240 values |
| (determined by the clock crystal, a fixed (?) per-device divider, a |
| configurable divider and a configurable timer preload value). |
| |
| At the moment only UBR and CBR are supported by the driver. VBR will |
| be supported as soon as ATM for Linux supports it. ABR support is |
| very unlikely as RM cell handling is completely up to the driver. |
| |
| 1. TX (TX channel setup and TX transfer) |
| |
| The TX half of the driver owns the TX Horizon registers. The TX |
| component in the IRQ handler is the BM completion handler. This can |
| only be entered when tx_busy is true (enforced by hardware). The |
| other TX component can only be entered when tx_busy is false |
| (enforced by driver). So TX is single-threaded. |
| |
| Apart from a minor optimisation to not re-select the last channel, |
| the TX send component works as follows: |
| |
| Atomic test and set tx_busy until we succeed; we should implement |
| some sort of timeout so that tx_busy will never be stuck at true. |
| |
| If no TX channel is set up for this VC we wait for an idle one (if |
| necessary) and set it up. |
| |
| At this point we have a TX channel ready for use. We wait for enough |
| buffers to become available then start a TX transmit (set the TX |
| descriptor, schedule transfer, exit). |
| |
| The IRQ component handles TX completion (stats, free buffer, tx_busy |
| unset, exit). We also re-schedule further transfers for the same |
| frame if needed. |
| |
| TX setup in more detail: |
| |
| TX open is a nop, the relevant information is held in the hrz_vcc |
| (vcc->dev_data) structure and is "cached" on the card. |
| |
| TX close gets the TX lock and clears the channel from the "cache". |
| |
| 2. RX (Data Available and RX transfer) |
| |
| The RX half of the driver owns the RX registers. There are two RX |
| components in the IRQ handler: the data available handler deals with |
| fresh data that has arrived on the card, the BM completion handler |
| is very similar to the TX completion handler. The data available |
| handler grabs the rx_lock and it is only released once the data has |
| been discarded or completely transferred to the host. The BM |
| completion handler only runs when the lock is held; the data |
| available handler is locked out over the same period. |
| |
| Data available on the card triggers an interrupt. If the data is not |
| suitable for our existing RX channels or we cannot allocate a buffer |
| it is flushed. Otherwise an RX receive is scheduled. Multiple RX |
| transfers may be scheduled for the same frame. |
| |
| RX setup in more detail: |
| |
| RX open... |
| RX close... |
| |
| III Hardware Bugs |
| |
| 0. Byte vs Word addressing of adapter RAM. |
| |
| A design feature; see the .h file (especially the memory map). |
| |
| 1. Bus Master Data Transfers (original Horizon only, fixed in Ultra) |
| |
| The host must not start a transmit direction transfer at a |
| non-four-byte boundary in host memory. Instead the host should |
| perform a byte, or a two byte, or one byte followed by two byte |
| transfer in order to start the rest of the transfer on a four byte |
| boundary. RX is OK. |
| |
| Simultaneous transmit and receive direction bus master transfers are |
| not allowed. |
| |
| The simplest solution to these two is to always do PIO (never DMA) |
| in the TX direction on the original Horizon. More complicated |
| solutions are likely to hurt my brain. |
| |
| 2. Loss of buffer on close VC |
| |
| When a VC is being closed, the buffer associated with it is not |
| returned to the pool. The host must store the reference to this |
| buffer and when opening a new VC then give it to that new VC. |
| |
| The host intervention currently consists of stacking such a buffer |
| pointer at VC close and checking the stack at VC open. |
| |
| 3. Failure to close a VC |
| |
| If a VC is currently receiving a frame then closing the VC may fail |
| and the frame continues to be received. |
| |
| The solution is to make sure any received frames are flushed when |
| ready. This is currently done just before the solution to 2. |
| |
| 4. PCI bus (original Horizon only, fixed in Ultra) |
| |
| Reading from the data port prior to initialisation will hang the PCI |
| bus. Just don't do that then! We don't. |
| |
| IV To Do List |
| |
| . Timer code may be broken. |
| |
| . Allow users to specify buffer allocation split for TX and RX. |
| |
| . Deal once and for all with buggy VC close. |
| |
| . Handle interrupted and/or non-blocking operations. |
| |
| . Change some macros to functions and move from .h to .c. |
| |
| . Try to limit the number of TX frames each VC may have queued, in |
| order to reduce the chances of TX buffer exhaustion. |
| |
| . Implement VBR (bucket and timers not understood) and ABR (need to |
| do RM cells manually); also no Linux support for either. |
| |
| . Implement QoS changes on open VCs (involves extracting parts of VC open |
| and close into separate functions and using them to make changes). |
| |
| */ |
| |
| /********** globals **********/ |
| |
| static void do_housekeeping (unsigned long arg); |
| |
| static unsigned short debug = 0; |
| static unsigned short vpi_bits = 0; |
| static int max_tx_size = 9000; |
| static int max_rx_size = 9000; |
| static unsigned char pci_lat = 0; |
| |
| /********** access functions **********/ |
| |
| /* Read / Write Horizon registers */ |
| static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) { |
| outl (cpu_to_le32 (data), dev->iobase + reg); |
| } |
| |
| static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) { |
| return le32_to_cpu (inl (dev->iobase + reg)); |
| } |
| |
| static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) { |
| outw (cpu_to_le16 (data), dev->iobase + reg); |
| } |
| |
| static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) { |
| return le16_to_cpu (inw (dev->iobase + reg)); |
| } |
| |
| static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) { |
| outsb (dev->iobase + reg, addr, len); |
| } |
| |
| static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) { |
| insb (dev->iobase + reg, addr, len); |
| } |
| |
| /* Read / Write to a given address in Horizon buffer memory. |
| Interrupts must be disabled between the address register and data |
| port accesses as these must form an atomic operation. */ |
| static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) { |
| // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr); |
| wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW)); |
| wr_regl (dev, MEMORY_PORT_OFF, data); |
| } |
| |
| static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) { |
| // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr); |
| wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW)); |
| return rd_regl (dev, MEMORY_PORT_OFF); |
| } |
| |
| static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) { |
| wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000); |
| wr_regl (dev, MEMORY_PORT_OFF, data); |
| } |
| |
| static inline u32 rd_framer (const hrz_dev * dev, u32 addr) { |
| wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000); |
| return rd_regl (dev, MEMORY_PORT_OFF); |
| } |
| |
| /********** specialised access functions **********/ |
| |
| /* RX */ |
| |
| static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) { |
| wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel); |
| return; |
| } |
| |
| static inline void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) { |
| while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL) |
| ; |
| return; |
| } |
| |
| static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) { |
| wr_regw (dev, RX_CHANNEL_PORT_OFF, channel); |
| return; |
| } |
| |
| static inline void WAIT_UPDATE_COMPLETE (hrz_dev * dev) { |
| while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS) |
| ; |
| return; |
| } |
| |
| /* TX */ |
| |
| static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) { |
| wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel); |
| return; |
| } |
| |
| /* Update or query one configuration parameter of a particular channel. */ |
| |
| static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) { |
| wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF, |
| chan * TX_CHANNEL_CONFIG_MULT | mode); |
| wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value); |
| return; |
| } |
| |
| static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) { |
| wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF, |
| chan * TX_CHANNEL_CONFIG_MULT | mode); |
| return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF); |
| } |
| |
| /********** dump functions **********/ |
| |
| static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) { |
| #ifdef DEBUG_HORIZON |
| unsigned int i; |
| unsigned char * data = skb->data; |
| PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc); |
| for (i=0; i<skb->len && i < 256;i++) |
| PRINTDM (DBG_DATA, "%02x ", data[i]); |
| PRINTDE (DBG_DATA,""); |
| #else |
| (void) prefix; |
| (void) vc; |
| (void) skb; |
| #endif |
| return; |
| } |
| |
| static inline void dump_regs (hrz_dev * dev) { |
| #ifdef DEBUG_HORIZON |
| PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG)); |
| PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF)); |
| PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF)); |
| PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF)); |
| PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF)); |
| PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF)); |
| #else |
| (void) dev; |
| #endif |
| return; |
| } |
| |
| static inline void dump_framer (hrz_dev * dev) { |
| #ifdef DEBUG_HORIZON |
| unsigned int i; |
| PRINTDB (DBG_REGS, "framer registers:"); |
| for (i = 0; i < 0x10; ++i) |
| PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i)); |
| PRINTDE (DBG_REGS,""); |
| #else |
| (void) dev; |
| #endif |
| return; |
| } |
| |
| /********** VPI/VCI <-> (RX) channel conversions **********/ |
| |
| /* RX channels are 10 bit integers, these fns are quite paranoid */ |
| |
| static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) { |
| unsigned short vci_bits = 10 - vpi_bits; |
| if ((channel & RX_CHANNEL_MASK) == channel) { |
| *vci = channel & ((~0)<<vci_bits); |
| *vpi = channel >> vci_bits; |
| return channel ? 0 : -EINVAL; |
| } |
| return -EINVAL; |
| } |
| |
| static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) { |
| unsigned short vci_bits = 10 - vpi_bits; |
| if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) { |
| *channel = vpi<<vci_bits | vci; |
| return *channel ? 0 : -EINVAL; |
| } |
| return -EINVAL; |
| } |
| |
| /********** decode RX queue entries **********/ |
| |
| static inline u16 rx_q_entry_to_length (u32 x) { |
| return x & RX_Q_ENTRY_LENGTH_MASK; |
| } |
| |
| static inline u16 rx_q_entry_to_rx_channel (u32 x) { |
| return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK; |
| } |
| |
| /* Cell Transmit Rate Values |
| * |
| * the cell transmit rate (cells per sec) can be set to a variety of |
| * different values by specifying two parameters: a timer preload from |
| * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of |
| * an exponent from 0 to 14; the special value 15 disables the timer). |
| * |
| * cellrate = baserate / (preload * 2^divider) |
| * |
| * The maximum cell rate that can be specified is therefore just the |
| * base rate. Halving the preload is equivalent to adding 1 to the |
| * divider and so values 1 to 8 of the preload are redundant except |
| * in the case of a maximal divider (14). |
| * |
| * Given a desired cell rate, an algorithm to determine the preload |
| * and divider is: |
| * |
| * a) x = baserate / cellrate, want p * 2^d = x (as far as possible) |
| * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done |
| * if x <= 16 then set p = x, d = 0 (high rates), done |
| * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to |
| * know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until |
| * we find the range (n will be between 1 and 14), set d = n |
| * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n |
| * |
| * The algorithm used below is a minor variant of the above. |
| * |
| * The base rate is derived from the oscillator frequency (Hz) using a |
| * fixed divider: |
| * |
| * baserate = freq / 32 in the case of some Unknown Card |
| * baserate = freq / 8 in the case of the Horizon 25 |
| * baserate = freq / 8 in the case of the Horizon Ultra 155 |
| * |
| * The Horizon cards have oscillators and base rates as follows: |
| * |
| * Card Oscillator Base Rate |
| * Unknown Card 33 MHz 1.03125 MHz (33 MHz = PCI freq) |
| * Horizon 25 32 MHz 4 MHz |
| * Horizon Ultra 155 40 MHz 5 MHz |
| * |
| * The following defines give the base rates in Hz. These were |
| * previously a factor of 100 larger, no doubt someone was using |
| * cps*100. |
| */ |
| |
| #define BR_UKN 1031250l |
| #define BR_HRZ 4000000l |
| #define BR_ULT 5000000l |
| |
| // d is an exponent |
| #define CR_MIND 0 |
| #define CR_MAXD 14 |
| |
| // p ranges from 1 to a power of 2 |
| #define CR_MAXPEXP 4 |
| |
| static int make_rate (const hrz_dev * dev, u32 c, rounding r, |
| u16 * bits, unsigned int * actual) |
| { |
| // note: rounding the rate down means rounding 'p' up |
| const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ; |
| |
| u32 div = CR_MIND; |
| u32 pre; |
| |
| // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in |
| // the tests below. We could think harder about exact possibilities |
| // of failure... |
| |
| unsigned long br_man = br; |
| unsigned int br_exp = 0; |
| |
| PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c, |
| r == round_up ? "up" : r == round_down ? "down" : "nearest"); |
| |
| // avoid div by zero |
| if (!c) { |
| PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!"); |
| return -EINVAL; |
| } |
| |
| while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) { |
| br_man = br_man >> 1; |
| ++br_exp; |
| } |
| // (br >>br_exp) <<br_exp == br and |
| // br_exp <= CR_MAXPEXP+CR_MIND |
| |
| if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) { |
| // Equivalent to: B <= (c << (MAXPEXP+MIND)) |
| // take care of rounding |
| switch (r) { |
| case round_down: |
| pre = (br+(c<<div)-1)/(c<<div); |
| // but p must be non-zero |
| if (!pre) |
| pre = 1; |
| break; |
| case round_nearest: |
| pre = (br+(c<<div)/2)/(c<<div); |
| // but p must be non-zero |
| if (!pre) |
| pre = 1; |
| break; |
| default: /* round_up */ |
| pre = br/(c<<div); |
| // but p must be non-zero |
| if (!pre) |
| return -EINVAL; |
| } |
| PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div); |
| goto got_it; |
| } |
| |
| // at this point we have |
| // d == MIND and (c << (MAXPEXP+MIND)) < B |
| while (div < CR_MAXD) { |
| div++; |
| if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) { |
| // Equivalent to: B <= (c << (MAXPEXP+d)) |
| // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d) |
| // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP |
| // MAXP/2 < B/c2^d <= MAXP |
| // take care of rounding |
| switch (r) { |
| case round_down: |
| pre = (br+(c<<div)-1)/(c<<div); |
| break; |
| case round_nearest: |
| pre = (br+(c<<div)/2)/(c<<div); |
| break; |
| default: /* round_up */ |
| pre = br/(c<<div); |
| } |
| PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div); |
| goto got_it; |
| } |
| } |
| // at this point we have |
| // d == MAXD and (c << (MAXPEXP+MAXD)) < B |
| // but we cannot go any higher |
| // take care of rounding |
| if (r == round_down) |
| return -EINVAL; |
| pre = 1 << CR_MAXPEXP; |
| PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div); |
| got_it: |
| // paranoia |
| if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) { |
| PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u", |
| div, pre); |
| return -EINVAL; |
| } else { |
| if (bits) |
| *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1); |
| if (actual) { |
| *actual = (br + (pre<<div) - 1) / (pre<<div); |
| PRINTD (DBG_QOS, "actual rate: %u", *actual); |
| } |
| return 0; |
| } |
| } |
| |
| static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol, |
| u16 * bit_pattern, unsigned int * actual) { |
| unsigned int my_actual; |
| |
| PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u", |
| c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol); |
| |
| if (!actual) |
| // actual rate is not returned |
| actual = &my_actual; |
| |
| if (make_rate (dev, c, round_nearest, bit_pattern, actual)) |
| // should never happen as round_nearest always succeeds |
| return -1; |
| |
| if (c - tol <= *actual && *actual <= c + tol) |
| // within tolerance |
| return 0; |
| else |
| // intolerant, try rounding instead |
| return make_rate (dev, c, r, bit_pattern, actual); |
| } |
| |
| /********** Listen on a VC **********/ |
| |
| static int hrz_open_rx (hrz_dev * dev, u16 channel) { |
| // is there any guarantee that we don't get two simulataneous |
| // identical calls of this function from different processes? yes |
| // rate_lock |
| unsigned long flags; |
| u32 channel_type; // u16? |
| |
| u16 buf_ptr = RX_CHANNEL_IDLE; |
| |
| rx_ch_desc * rx_desc = &memmap->rx_descs[channel]; |
| |
| PRINTD (DBG_FLOW, "hrz_open_rx %x", channel); |
| |
| spin_lock_irqsave (&dev->mem_lock, flags); |
| channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK; |
| spin_unlock_irqrestore (&dev->mem_lock, flags); |
| |
| // very serious error, should never occur |
| if (channel_type != RX_CHANNEL_DISABLED) { |
| PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open"); |
| return -EBUSY; // clean up? |
| } |
| |
| // Give back spare buffer |
| if (dev->noof_spare_buffers) { |
| buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers]; |
| PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr); |
| // should never occur |
| if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) { |
| // but easy to recover from |
| PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE"); |
| buf_ptr = RX_CHANNEL_IDLE; |
| } |
| } else { |
| PRINTD (DBG_VCC, "using IDLE buffer pointer"); |
| } |
| |
| // Channel is currently disabled so change its status to idle |
| |
| // do we really need to save the flags again? |
| spin_lock_irqsave (&dev->mem_lock, flags); |
| |
| wr_mem (dev, &rx_desc->wr_buf_type, |
| buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME); |
| if (buf_ptr != RX_CHANNEL_IDLE) |
| wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr); |
| |
| spin_unlock_irqrestore (&dev->mem_lock, flags); |
| |
| // rxer->rate = make_rate (qos->peak_cells); |
| |
| PRINTD (DBG_FLOW, "hrz_open_rx ok"); |
| |
| return 0; |
| } |
| |
| #if 0 |
| /********** change vc rate for a given vc **********/ |
| |
| static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) { |
| rxer->rate = make_rate (qos->peak_cells); |
| } |
| #endif |
| |
| /********** free an skb (as per ATM device driver documentation) **********/ |
| |
| static inline void hrz_kfree_skb (struct sk_buff * skb) { |
| if (ATM_SKB(skb)->vcc->pop) { |
| ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb); |
| } else { |
| dev_kfree_skb_any (skb); |
| } |
| } |
| |
| /********** cancel listen on a VC **********/ |
| |
| static void hrz_close_rx (hrz_dev * dev, u16 vc) { |
| unsigned long flags; |
| |
| u32 value; |
| |
| u32 r1, r2; |
| |
| rx_ch_desc * rx_desc = &memmap->rx_descs[vc]; |
| |
| int was_idle = 0; |
| |
| spin_lock_irqsave (&dev->mem_lock, flags); |
| value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK; |
| spin_unlock_irqrestore (&dev->mem_lock, flags); |
| |
| if (value == RX_CHANNEL_DISABLED) { |
| // I suppose this could happen once we deal with _NONE traffic properly |
| PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc); |
| return; |
| } |
| if (value == RX_CHANNEL_IDLE) |
| was_idle = 1; |
| |
| spin_lock_irqsave (&dev->mem_lock, flags); |
| |
| for (;;) { |
| wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED); |
| |
| if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED) |
| break; |
| |
| was_idle = 0; |
| } |
| |
| if (was_idle) { |
| spin_unlock_irqrestore (&dev->mem_lock, flags); |
| return; |
| } |
| |
| WAIT_FLUSH_RX_COMPLETE(dev); |
| |
| // XXX Is this all really necessary? We can rely on the rx_data_av |
| // handler to discard frames that remain queued for delivery. If the |
| // worry is that immediately reopening the channel (perhaps by a |
| // different process) may cause some data to be mis-delivered then |
| // there may still be a simpler solution (such as busy-waiting on |
| // rx_busy once the channel is disabled or before a new one is |
| // opened - does this leave any holes?). Arguably setting up and |
| // tearing down the TX and RX halves of each virtual circuit could |
| // most safely be done within ?x_busy protected regions. |
| |
| // OK, current changes are that Simon's marker is disabled and we DO |
| // look for NULL rxer elsewhere. The code here seems flush frames |
| // and then remember the last dead cell belonging to the channel |
| // just disabled - the cell gets relinked at the next vc_open. |
| // However, when all VCs are closed or only a few opened there are a |
| // handful of buffers that are unusable. |
| |
| // Does anyone feel like documenting spare_buffers properly? |
| // Does anyone feel like fixing this in a nicer way? |
| |
| // Flush any data which is left in the channel |
| for (;;) { |
| // Change the rx channel port to something different to the RX |
| // channel we are trying to close to force Horizon to flush the rx |
| // channel read and write pointers. |
| |
| u16 other = vc^(RX_CHANS/2); |
| |
| SELECT_RX_CHANNEL (dev, other); |
| WAIT_UPDATE_COMPLETE (dev); |
| |
| r1 = rd_mem (dev, &rx_desc->rd_buf_type); |
| |
| // Select this RX channel. Flush doesn't seem to work unless we |
| // select an RX channel before hand |
| |
| SELECT_RX_CHANNEL (dev, vc); |
| WAIT_UPDATE_COMPLETE (dev); |
| |
| // Attempt to flush a frame on this RX channel |
| |
| FLUSH_RX_CHANNEL (dev, vc); |
| WAIT_FLUSH_RX_COMPLETE (dev); |
| |
| // Force Horizon to flush rx channel read and write pointers as before |
| |
| SELECT_RX_CHANNEL (dev, other); |
| WAIT_UPDATE_COMPLETE (dev); |
| |
| r2 = rd_mem (dev, &rx_desc->rd_buf_type); |
| |
| PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2); |
| |
| if (r1 == r2) { |
| dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1; |
| break; |
| } |
| } |
| |
| #if 0 |
| { |
| rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)]; |
| rx_q_entry * rd_ptr = dev->rx_q_entry; |
| |
| PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr); |
| |
| while (rd_ptr != wr_ptr) { |
| u32 x = rd_mem (dev, (HDW *) rd_ptr); |
| |
| if (vc == rx_q_entry_to_rx_channel (x)) { |
| x |= SIMONS_DODGEY_MARKER; |
| |
| PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey"); |
| |
| wr_mem (dev, (HDW *) rd_ptr, x); |
| } |
| |
| if (rd_ptr == dev->rx_q_wrap) |
| rd_ptr = dev->rx_q_reset; |
| else |
| rd_ptr++; |
| } |
| } |
| #endif |
| |
| spin_unlock_irqrestore (&dev->mem_lock, flags); |
| |
| return; |
| } |
| |
| /********** schedule RX transfers **********/ |
| |
| // Note on tail recursion: a GCC developer said that it is not likely |
| // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you |
| // are sure it does as you may otherwise overflow the kernel stack. |
| |
| // giving this fn a return value would help GCC, alledgedly |
| |
| static void rx_schedule (hrz_dev * dev, int irq) { |
| unsigned int rx_bytes; |
| |
| int pio_instead = 0; |
| #ifndef TAILRECURSIONWORKS |
| pio_instead = 1; |
| while (pio_instead) { |
| #endif |
| // bytes waiting for RX transfer |
| rx_bytes = dev->rx_bytes; |
| |
| #if 0 |
| spin_count = 0; |
| while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) { |
| PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!"); |
| if (++spin_count > 10) { |
| PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion"); |
| wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); |
| clear_bit (rx_busy, &dev->flags); |
| hrz_kfree_skb (dev->rx_skb); |
| return; |
| } |
| } |
| #endif |
| |
| // this code follows the TX code but (at the moment) there is only |
| // one region - the skb itself. I don't know if this will change, |
| // but it doesn't hurt to have the code here, disabled. |
| |
| if (rx_bytes) { |
| // start next transfer within same region |
| if (rx_bytes <= MAX_PIO_COUNT) { |
| PRINTD (DBG_RX|DBG_BUS, "(pio)"); |
| pio_instead = 1; |
| } |
| if (rx_bytes <= MAX_TRANSFER_COUNT) { |
| PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)"); |
| dev->rx_bytes = 0; |
| } else { |
| PRINTD (DBG_RX|DBG_BUS, "(continuing multi)"); |
| dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT; |
| rx_bytes = MAX_TRANSFER_COUNT; |
| } |
| } else { |
| // rx_bytes == 0 -- we're between regions |
| // regions remaining to transfer |
| #if 0 |
| unsigned int rx_regions = dev->rx_regions; |
| #else |
| unsigned int rx_regions = 0; |
| #endif |
| |
| if (rx_regions) { |
| #if 0 |
| // start a new region |
| dev->rx_addr = dev->rx_iovec->iov_base; |
| rx_bytes = dev->rx_iovec->iov_len; |
| ++dev->rx_iovec; |
| dev->rx_regions = rx_regions - 1; |
| |
| if (rx_bytes <= MAX_PIO_COUNT) { |
| PRINTD (DBG_RX|DBG_BUS, "(pio)"); |
| pio_instead = 1; |
| } |
| if (rx_bytes <= MAX_TRANSFER_COUNT) { |
| PRINTD (DBG_RX|DBG_BUS, "(full region)"); |
| dev->rx_bytes = 0; |
| } else { |
| PRINTD (DBG_RX|DBG_BUS, "(start multi region)"); |
| dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT; |
| rx_bytes = MAX_TRANSFER_COUNT; |
| } |
| #endif |
| } else { |
| // rx_regions == 0 |
| // that's all folks - end of frame |
| struct sk_buff * skb = dev->rx_skb; |
| // dev->rx_iovec = 0; |
| |
| FLUSH_RX_CHANNEL (dev, dev->rx_channel); |
| |
| dump_skb ("<<<", dev->rx_channel, skb); |
| |
| PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len); |
| |
| { |
| struct atm_vcc * vcc = ATM_SKB(skb)->vcc; |
| // VC layer stats |
| atomic_inc(&vcc->stats->rx); |
| __net_timestamp(skb); |
| // end of our responsability |
| vcc->push (vcc, skb); |
| } |
| } |
| } |
| |
| // note: writing RX_COUNT clears any interrupt condition |
| if (rx_bytes) { |
| if (pio_instead) { |
| if (irq) |
| wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); |
| rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes); |
| } else { |
| wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr)); |
| wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes); |
| } |
| dev->rx_addr += rx_bytes; |
| } else { |
| if (irq) |
| wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); |
| // allow another RX thread to start |
| YELLOW_LED_ON(dev); |
| clear_bit (rx_busy, &dev->flags); |
| PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev); |
| } |
| |
| #ifdef TAILRECURSIONWORKS |
| // and we all bless optimised tail calls |
| if (pio_instead) |
| return rx_schedule (dev, 0); |
| return; |
| #else |
| // grrrrrrr! |
| irq = 0; |
| } |
| return; |
| #endif |
| } |
| |
| /********** handle RX bus master complete events **********/ |
| |
| static inline void rx_bus_master_complete_handler (hrz_dev * dev) { |
| if (test_bit (rx_busy, &dev->flags)) { |
| rx_schedule (dev, 1); |
| } else { |
| PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion"); |
| // clear interrupt condition on adapter |
| wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); |
| } |
| return; |
| } |
| |
| /********** (queue to) become the next TX thread **********/ |
| |
| static inline int tx_hold (hrz_dev * dev) { |
| PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags); |
| wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags))); |
| PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags); |
| if (signal_pending (current)) |
| return -1; |
| PRINTD (DBG_TX, "set tx_busy for dev %p", dev); |
| return 0; |
| } |
| |
| /********** allow another TX thread to start **********/ |
| |
| static inline void tx_release (hrz_dev * dev) { |
| clear_bit (tx_busy, &dev->flags); |
| PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev); |
| wake_up_interruptible (&dev->tx_queue); |
| } |
| |
| /********** schedule TX transfers **********/ |
| |
| static void tx_schedule (hrz_dev * const dev, int irq) { |
| unsigned int tx_bytes; |
| |
| int append_desc = 0; |
| |
| int pio_instead = 0; |
| #ifndef TAILRECURSIONWORKS |
| pio_instead = 1; |
| while (pio_instead) { |
| #endif |
| // bytes in current region waiting for TX transfer |
| tx_bytes = dev->tx_bytes; |
| |
| #if 0 |
| spin_count = 0; |
| while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) { |
| PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!"); |
| if (++spin_count > 10) { |
| PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion"); |
| wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); |
| tx_release (dev); |
| hrz_kfree_skb (dev->tx_skb); |
| return; |
| } |
| } |
| #endif |
| |
| if (tx_bytes) { |
| // start next transfer within same region |
| if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) { |
| PRINTD (DBG_TX|DBG_BUS, "(pio)"); |
| pio_instead = 1; |
| } |
| if (tx_bytes <= MAX_TRANSFER_COUNT) { |
| PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)"); |
| if (!dev->tx_iovec) { |
| // end of last region |
| append_desc = 1; |
| } |
| dev->tx_bytes = 0; |
| } else { |
| PRINTD (DBG_TX|DBG_BUS, "(continuing multi)"); |
| dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT; |
| tx_bytes = MAX_TRANSFER_COUNT; |
| } |
| } else { |
| // tx_bytes == 0 -- we're between regions |
| // regions remaining to transfer |
| unsigned int tx_regions = dev->tx_regions; |
| |
| if (tx_regions) { |
| // start a new region |
| dev->tx_addr = dev->tx_iovec->iov_base; |
| tx_bytes = dev->tx_iovec->iov_len; |
| ++dev->tx_iovec; |
| dev->tx_regions = tx_regions - 1; |
| |
| if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) { |
| PRINTD (DBG_TX|DBG_BUS, "(pio)"); |
| pio_instead = 1; |
| } |
| if (tx_bytes <= MAX_TRANSFER_COUNT) { |
| PRINTD (DBG_TX|DBG_BUS, "(full region)"); |
| dev->tx_bytes = 0; |
| } else { |
| PRINTD (DBG_TX|DBG_BUS, "(start multi region)"); |
| dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT; |
| tx_bytes = MAX_TRANSFER_COUNT; |
| } |
| } else { |
| // tx_regions == 0 |
| // that's all folks - end of frame |
| struct sk_buff * skb = dev->tx_skb; |
| dev->tx_iovec = NULL; |
| |
| // VC layer stats |
| atomic_inc(&ATM_SKB(skb)->vcc->stats->tx); |
| |
| // free the skb |
| hrz_kfree_skb (skb); |
| } |
| } |
| |
| // note: writing TX_COUNT clears any interrupt condition |
| if (tx_bytes) { |
| if (pio_instead) { |
| if (irq) |
| wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); |
| wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes); |
| if (append_desc) |
| wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len)); |
| } else { |
| wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr)); |
| if (append_desc) |
| wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len)); |
| wr_regl (dev, MASTER_TX_COUNT_REG_OFF, |
| append_desc |
| ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC |
| : tx_bytes); |
| } |
| dev->tx_addr += tx_bytes; |
| } else { |
| if (irq) |
| wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); |
| YELLOW_LED_ON(dev); |
| tx_release (dev); |
| } |
| |
| #ifdef TAILRECURSIONWORKS |
| // and we all bless optimised tail calls |
| if (pio_instead) |
| return tx_schedule (dev, 0); |
| return; |
| #else |
| // grrrrrrr! |
| irq = 0; |
| } |
| return; |
| #endif |
| } |
| |
| /********** handle TX bus master complete events **********/ |
| |
| static inline void tx_bus_master_complete_handler (hrz_dev * dev) { |
| if (test_bit (tx_busy, &dev->flags)) { |
| tx_schedule (dev, 1); |
| } else { |
| PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion"); |
| // clear interrupt condition on adapter |
| wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); |
| } |
| return; |
| } |
| |
| /********** move RX Q pointer to next item in circular buffer **********/ |
| |
| // called only from IRQ sub-handler |
| static inline u32 rx_queue_entry_next (hrz_dev * dev) { |
| u32 rx_queue_entry; |
| spin_lock (&dev->mem_lock); |
| rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry); |
| if (dev->rx_q_entry == dev->rx_q_wrap) |
| dev->rx_q_entry = dev->rx_q_reset; |
| else |
| dev->rx_q_entry++; |
| wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset); |
| spin_unlock (&dev->mem_lock); |
| return rx_queue_entry; |
| } |
| |
| /********** handle RX disabled by device **********/ |
| |
| static inline void rx_disabled_handler (hrz_dev * dev) { |
| wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE); |
| // count me please |
| PRINTK (KERN_WARNING, "RX was disabled!"); |
| } |
| |
| /********** handle RX data received by device **********/ |
| |
| // called from IRQ handler |
| static inline void rx_data_av_handler (hrz_dev * dev) { |
| u32 rx_queue_entry; |
| u32 rx_queue_entry_flags; |
| u16 rx_len; |
| u16 rx_channel; |
| |
| PRINTD (DBG_FLOW, "hrz_data_av_handler"); |
| |
| // try to grab rx lock (not possible during RX bus mastering) |
| if (test_and_set_bit (rx_busy, &dev->flags)) { |
| PRINTD (DBG_RX, "locked out of rx lock"); |
| return; |
| } |
| PRINTD (DBG_RX, "set rx_busy for dev %p", dev); |
| // lock is cleared if we fail now, o/w after bus master completion |
| |
| YELLOW_LED_OFF(dev); |
| |
| rx_queue_entry = rx_queue_entry_next (dev); |
| |
| rx_len = rx_q_entry_to_length (rx_queue_entry); |
| rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry); |
| |
| WAIT_FLUSH_RX_COMPLETE (dev); |
| |
| SELECT_RX_CHANNEL (dev, rx_channel); |
| |
| PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry); |
| rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER); |
| |
| if (!rx_len) { |
| // (at least) bus-mastering breaks if we try to handle a |
| // zero-length frame, besides AAL5 does not support them |
| PRINTK (KERN_ERR, "zero-length frame!"); |
| rx_queue_entry_flags &= ~RX_COMPLETE_FRAME; |
| } |
| |
| if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) { |
| PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!"); |
| } |
| if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) { |
| struct atm_vcc * atm_vcc; |
| |
| PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len); |
| |
| atm_vcc = dev->rxer[rx_channel]; |
| // if no vcc is assigned to this channel, we should drop the frame |
| // (is this what SIMONS etc. was trying to achieve?) |
| |
| if (atm_vcc) { |
| |
| if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { |
| |
| if (rx_len <= atm_vcc->qos.rxtp.max_sdu) { |
| |
| struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC); |
| if (skb) { |
| // remember this so we can push it later |
| dev->rx_skb = skb; |
| // remember this so we can flush it later |
| dev->rx_channel = rx_channel; |
| |
| // prepare socket buffer |
| skb_put (skb, rx_len); |
| ATM_SKB(skb)->vcc = atm_vcc; |
| |
| // simple transfer |
| // dev->rx_regions = 0; |
| // dev->rx_iovec = 0; |
| dev->rx_bytes = rx_len; |
| dev->rx_addr = skb->data; |
| PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)", |
| skb->data, rx_len); |
| |
| // do the business |
| rx_schedule (dev, 0); |
| return; |
| |
| } else { |
| PRINTD (DBG_SKB|DBG_WARN, "failed to get skb"); |
| } |
| |
| } else { |
| PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel); |
| // do we count this? |
| } |
| |
| } else { |
| PRINTK (KERN_WARNING, "dropped over-size frame"); |
| // do we count this? |
| } |
| |
| } else { |
| PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)"); |
| // do we count this? |
| } |
| |
| } else { |
| // Wait update complete ? SPONG |
| } |
| |
| // RX was aborted |
| YELLOW_LED_ON(dev); |
| |
| FLUSH_RX_CHANNEL (dev,rx_channel); |
| clear_bit (rx_busy, &dev->flags); |
| |
| return; |
| } |
| |
| /********** interrupt handler **********/ |
| |
| static irqreturn_t interrupt_handler(int irq, void *dev_id, |
| struct pt_regs *pt_regs) { |
| hrz_dev * dev = (hrz_dev *) dev_id; |
| u32 int_source; |
| unsigned int irq_ok; |
| (void) pt_regs; |
| |
| PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id); |
| |
| if (!dev_id) { |
| PRINTD (DBG_IRQ|DBG_ERR, "irq with NULL dev_id: %d", irq); |
| return IRQ_NONE; |
| } |
| if (irq != dev->irq) { |
| PRINTD (DBG_IRQ|DBG_ERR, "irq mismatch: %d", irq); |
| return IRQ_NONE; |
| } |
| |
| // definitely for us |
| irq_ok = 0; |
| while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF) |
| & INTERESTING_INTERRUPTS)) { |
| // In the interests of fairness, the (inline) handlers below are |
| // called in sequence and without immediate return to the head of |
| // the while loop. This is only of issue for slow hosts (or when |
| // debugging messages are on). Really slow hosts may find a fast |
| // sender keeps them permanently in the IRQ handler. :( |
| |
| // (only an issue for slow hosts) RX completion goes before |
| // rx_data_av as the former implies rx_busy and so the latter |
| // would just abort. If it reschedules another transfer |
| // (continuing the same frame) then it will not clear rx_busy. |
| |
| // (only an issue for slow hosts) TX completion goes before RX |
| // data available as it is a much shorter routine - there is the |
| // chance that any further transfers it schedules will be complete |
| // by the time of the return to the head of the while loop |
| |
| if (int_source & RX_BUS_MASTER_COMPLETE) { |
| ++irq_ok; |
| PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted"); |
| rx_bus_master_complete_handler (dev); |
| } |
| if (int_source & TX_BUS_MASTER_COMPLETE) { |
| ++irq_ok; |
| PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted"); |
| tx_bus_master_complete_handler (dev); |
| } |
| if (int_source & RX_DATA_AV) { |
| ++irq_ok; |
| PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted"); |
| rx_data_av_handler (dev); |
| } |
| } |
| if (irq_ok) { |
| PRINTD (DBG_IRQ, "work done: %u", irq_ok); |
| } else { |
| PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source); |
| } |
| |
| PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id); |
| if (irq_ok) |
| return IRQ_HANDLED; |
| return IRQ_NONE; |
| } |
| |
| /********** housekeeping **********/ |
| |
| static void do_housekeeping (unsigned long arg) { |
| // just stats at the moment |
| hrz_dev * dev = (hrz_dev *) arg; |
| |
| // collect device-specific (not driver/atm-linux) stats here |
| dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF); |
| dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF); |
| dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF); |
| dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF); |
| |
| mod_timer (&dev->housekeeping, jiffies + HZ/10); |
| |
| return; |
| } |
| |
| /********** find an idle channel for TX and set it up **********/ |
| |
| // called with tx_busy set |
| static inline short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) { |
| unsigned short idle_channels; |
| short tx_channel = -1; |
| unsigned int spin_count; |
| PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev); |
| |
| // better would be to fail immediately, the caller can then decide whether |
| // to wait or drop (depending on whether this is UBR etc.) |
| spin_count = 0; |
| while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) { |
| PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel"); |
| // delay a bit here |
| if (++spin_count > 100) { |
| PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel"); |
| return -EBUSY; |
| } |
| } |
| |
| // got an idle channel |
| { |
| // tx_idle ensures we look for idle channels in RR order |
| int chan = dev->tx_idle; |
| |
| int keep_going = 1; |
| while (keep_going) { |
| if (idle_channels & (1<<chan)) { |
| tx_channel = chan; |
| keep_going = 0; |
| } |
| ++chan; |
| if (chan == TX_CHANS) |
| chan = 0; |
| } |
| |
| dev->tx_idle = chan; |
| } |
| |
| // set up the channel we found |
| { |
| // Initialise the cell header in the transmit channel descriptor |
| // a.k.a. prepare the channel and remember that we have done so. |
| |
| tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel]; |
| u32 rd_ptr; |
| u32 wr_ptr; |
| u16 channel = vcc->channel; |
| |
| unsigned long flags; |
| spin_lock_irqsave (&dev->mem_lock, flags); |
| |
| // Update the transmit channel record. |
| dev->tx_channel_record[tx_channel] = channel; |
| |
| // xBR channel |
| update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS, |
| vcc->tx_xbr_bits); |
| |
| // Update the PCR counter preload value etc. |
| update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS, |
| vcc->tx_pcr_bits); |
| |
| #if 0 |
| if (vcc->tx_xbr_bits == VBR_RATE_TYPE) { |
| // SCR timer |
| update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS, |
| vcc->tx_scr_bits); |
| |
| // Bucket size... |
| update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS, |
| vcc->tx_bucket_bits); |
| |
| // ... and fullness |
| update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS, |
| vcc->tx_bucket_bits); |
| } |
| #endif |
| |
| // Initialise the read and write buffer pointers |
| rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK; |
| wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK; |
| |
| // idle TX channels should have identical pointers |
| if (rd_ptr != wr_ptr) { |
| PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!"); |
| // spin_unlock... return -E... |
| // I wonder if gcc would get rid of one of the pointer aliases |
| } |
| PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.", |
| rd_ptr, wr_ptr); |
| |
| switch (vcc->aal) { |
| case aal0: |
| PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0"); |
| rd_ptr |= CHANNEL_TYPE_RAW_CELLS; |
| wr_ptr |= CHANNEL_TYPE_RAW_CELLS; |
| break; |
| case aal34: |
| PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34"); |
| rd_ptr |= CHANNEL_TYPE_AAL3_4; |
| wr_ptr |= CHANNEL_TYPE_AAL3_4; |
| break; |
| case aal5: |
| rd_ptr |= CHANNEL_TYPE_AAL5; |
| wr_ptr |= CHANNEL_TYPE_AAL5; |
| // Initialise the CRC |
| wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC); |
| break; |
| } |
| |
| wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr); |
| wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr); |
| |
| // Write the Cell Header |
| // Payload Type, CLP and GFC would go here if non-zero |
| wr_mem (dev, &tx_desc->cell_header, channel); |
| |
| spin_unlock_irqrestore (&dev->mem_lock, flags); |
| } |
| |
| return tx_channel; |
| } |
| |
| /********** send a frame **********/ |
| |
| static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) { |
| unsigned int spin_count; |
| int free_buffers; |
| hrz_dev * dev = HRZ_DEV(atm_vcc->dev); |
| hrz_vcc * vcc = HRZ_VCC(atm_vcc); |
| u16 channel = vcc->channel; |
| |
| u32 buffers_required; |
| |
| /* signed for error return */ |
| short tx_channel; |
| |
| PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u", |
| channel, skb->data, skb->len); |
| |
| dump_skb (">>>", channel, skb); |
| |
| if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) { |
| PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel); |
| hrz_kfree_skb (skb); |
| return -EIO; |
| } |
| |
| // don't understand this |
| ATM_SKB(skb)->vcc = atm_vcc; |
| |
| if (skb->len > atm_vcc->qos.txtp.max_sdu) { |
| PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping..."); |
| hrz_kfree_skb (skb); |
| return -EIO; |
| } |
| |
| if (!channel) { |
| PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel"); |
| hrz_kfree_skb (skb); |
| return -EIO; |
| } |
| |
| #if 0 |
| { |
| // where would be a better place for this? housekeeping? |
| u16 status; |
| pci_read_config_word (dev->pci_dev, PCI_STATUS, &status); |
| if (status & PCI_STATUS_REC_MASTER_ABORT) { |
| PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)"); |
| status &= ~PCI_STATUS_REC_MASTER_ABORT; |
| pci_write_config_word (dev->pci_dev, PCI_STATUS, status); |
| if (test_bit (tx_busy, &dev->flags)) { |
| hrz_kfree_skb (dev->tx_skb); |
| tx_release (dev); |
| } |
| } |
| } |
| #endif |
| |
| #ifdef DEBUG_HORIZON |
| /* wey-hey! */ |
| if (channel == 1023) { |
| unsigned int i; |
| unsigned short d = 0; |
| char * s = skb->data; |
| if (*s++ == 'D') { |
| for (i = 0; i < 4; ++i) { |
| d = (d<<4) | ((*s <= '9') ? (*s - '0') : (*s - 'a' + 10)); |
| ++s; |
| } |
| PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d); |
| } |
| } |
| #endif |
| |
| // wait until TX is free and grab lock |
| if (tx_hold (dev)) { |
| hrz_kfree_skb (skb); |
| return -ERESTARTSYS; |
| } |
| |
| // Wait for enough space to be available in transmit buffer memory. |
| |
| // should be number of cells needed + 2 (according to hardware docs) |
| // = ((framelen+8)+47) / 48 + 2 |
| // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX |
| buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3; |
| |
| // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry) |
| spin_count = 0; |
| while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) { |
| PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d", |
| free_buffers, buffers_required); |
| // what is the appropriate delay? implement a timeout? (depending on line speed?) |
| // mdelay (1); |
| // what happens if we kill (current_pid, SIGKILL) ? |
| schedule(); |
| if (++spin_count > 1000) { |
| PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d", |
| free_buffers, buffers_required); |
| tx_release (dev); |
| hrz_kfree_skb (skb); |
| return -ERESTARTSYS; |
| } |
| } |
| |
| // Select a channel to transmit the frame on. |
| if (channel == dev->last_vc) { |
| PRINTD (DBG_TX, "last vc hack: hit"); |
| tx_channel = dev->tx_last; |
| } else { |
| PRINTD (DBG_TX, "last vc hack: miss"); |
| // Are we currently transmitting this VC on one of the channels? |
| for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel) |
| if (dev->tx_channel_record[tx_channel] == channel) { |
| PRINTD (DBG_TX, "vc already on channel: hit"); |
| break; |
| } |
| if (tx_channel == TX_CHANS) { |
| PRINTD (DBG_TX, "vc already on channel: miss"); |
| // Find and set up an idle channel. |
| tx_channel = setup_idle_tx_channel (dev, vcc); |
| if (tx_channel < 0) { |
| PRINTD (DBG_TX|DBG_ERR, "failed to get channel"); |
| tx_release (dev); |
| return tx_channel; |
| } |
| } |
| |
| PRINTD (DBG_TX, "got channel"); |
| SELECT_TX_CHANNEL(dev, tx_channel); |
| |
| dev->last_vc = channel; |
| dev->tx_last = tx_channel; |
| } |
| |
| PRINTD (DBG_TX, "using channel %u", tx_channel); |
| |
| YELLOW_LED_OFF(dev); |
| |
| // TX start transfer |
| |
| { |
| unsigned int tx_len = skb->len; |
| unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags; |
| // remember this so we can free it later |
| dev->tx_skb = skb; |
| |
| if (tx_iovcnt) { |
| // scatter gather transfer |
| dev->tx_regions = tx_iovcnt; |
| dev->tx_iovec = NULL; /* @@@ needs rewritten */ |
| dev->tx_bytes = 0; |
| PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)", |
| skb->data, tx_len); |
| tx_release (dev); |
| hrz_kfree_skb (skb); |
| return -EIO; |
| } else { |
| // simple transfer |
| dev->tx_regions = 0; |
| dev->tx_iovec = NULL; |
| dev->tx_bytes = tx_len; |
| dev->tx_addr = skb->data; |
| PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)", |
| skb->data, tx_len); |
| } |
| |
| // and do the business |
| tx_schedule (dev, 0); |
| |
| } |
| |
| return 0; |
| } |
| |
| /********** reset a card **********/ |
| |
| static void hrz_reset (const hrz_dev * dev) { |
| u32 control_0_reg = rd_regl (dev, CONTROL_0_REG); |
| |
| // why not set RESET_HORIZON to one and wait for the card to |
| // reassert that bit as zero? Like so: |
| control_0_reg = control_0_reg & RESET_HORIZON; |
| wr_regl (dev, CONTROL_0_REG, control_0_reg); |
| while (control_0_reg & RESET_HORIZON) |
| control_0_reg = rd_regl (dev, CONTROL_0_REG); |
| |
| // old reset code retained: |
| wr_regl (dev, CONTROL_0_REG, control_0_reg | |
| RESET_ATM | RESET_RX | RESET_TX | RESET_HOST); |
| // just guessing here |
| udelay (1000); |
| |
| wr_regl (dev, CONTROL_0_REG, control_0_reg); |
| } |
| |
| /********** read the burnt in address **********/ |
| |
| static inline void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl) |
| { |
| wr_regl (dev, CONTROL_0_REG, ctrl); |
| udelay (5); |
| } |
| |
| static inline void CLOCK_IT (const hrz_dev *dev, u32 ctrl) |
| { |
| // DI must be valid around rising SK edge |
| WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK); |
| WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK); |
| } |
| |
| static u16 __init read_bia (const hrz_dev * dev, u16 addr) |
| { |
| u32 ctrl = rd_regl (dev, CONTROL_0_REG); |
| |
| const unsigned int addr_bits = 6; |
| const unsigned int data_bits = 16; |
| |
| unsigned int i; |
| |
| u16 res; |
| |
| ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI); |
| WRITE_IT_WAIT(dev, ctrl); |
| |
| // wake Serial EEPROM and send 110 (READ) command |
| ctrl |= (SEEPROM_CS | SEEPROM_DI); |
| CLOCK_IT(dev, ctrl); |
| |
| ctrl |= SEEPROM_DI; |
| CLOCK_IT(dev, ctrl); |
| |
| ctrl &= ~SEEPROM_DI; |
| CLOCK_IT(dev, ctrl); |
| |
| for (i=0; i<addr_bits; i++) { |
| if (addr & (1 << (addr_bits-1))) |
| ctrl |= SEEPROM_DI; |
| else |
| ctrl &= ~SEEPROM_DI; |
| |
| CLOCK_IT(dev, ctrl); |
| |
| addr = addr << 1; |
| } |
| |
| // we could check that we have DO = 0 here |
| ctrl &= ~SEEPROM_DI; |
| |
| res = 0; |
| for (i=0;i<data_bits;i++) { |
| res = res >> 1; |
| |
| CLOCK_IT(dev, ctrl); |
| |
| if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO) |
| res |= (1 << (data_bits-1)); |
| } |
| |
| ctrl &= ~(SEEPROM_SK | SEEPROM_CS); |
| WRITE_IT_WAIT(dev, ctrl); |
| |
| return res; |
| } |
| |
| /********** initialise a card **********/ |
| |
| static int __init hrz_init (hrz_dev * dev) { |
| int onefivefive; |
| |
| u16 chan; |
| |
| int buff_count; |
| |
| HDW * mem; |
| |
| cell_buf * tx_desc; |
| cell_buf * rx_desc; |
| |
| u32 ctrl; |
| |
| ctrl = rd_regl (dev, CONTROL_0_REG); |
| PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl); |
| onefivefive = ctrl & ATM_LAYER_STATUS; |
| |
| if (onefivefive) |
| printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)"); |
| else |
| printk (DEV_LABEL ": Horizon (at 25 MBps)"); |
| |
| printk (":"); |
| // Reset the card to get everything in a known state |
| |
| printk (" reset"); |
| hrz_reset (dev); |
| |
| // Clear all the buffer memory |
| |
| printk (" clearing memory"); |
| |
| for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem) |
| wr_mem (dev, mem, 0); |
| |
| printk (" tx channels"); |
| |
| // All transmit eight channels are set up as AAL5 ABR channels with |
| // a 16us cell spacing. Why? |
| |
| // Channel 0 gets the free buffer at 100h, channel 1 gets the free |
| // buffer at 110h etc. |
| |
| for (chan = 0; chan < TX_CHANS; ++chan) { |
| tx_ch_desc * tx_desc = &memmap->tx_descs[chan]; |
| cell_buf * buf = &memmap->inittxbufs[chan]; |
| |
| // initialise the read and write buffer pointers |
| wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf)); |
| wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf)); |
| |
| // set the status of the initial buffers to empty |
| wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY); |
| } |
| |
| // Use space bufn3 at the moment for tx buffers |
| |
| printk (" tx buffers"); |
| |
| tx_desc = memmap->bufn3; |
| |
| wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY); |
| |
| for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) { |
| wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY); |
| tx_desc++; |
| } |
| |
| wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY); |
| |
| // Initialise the transmit free buffer count |
| wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE); |
| |
| printk (" rx channels"); |
| |
| // Initialise all of the receive channels to be AAL5 disabled with |
| // an interrupt threshold of 0 |
| |
| for (chan = 0; chan < RX_CHANS; ++chan) { |
| rx_ch_desc * rx_desc = &memmap->rx_descs[chan]; |
| |
| wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED); |
| } |
| |
| printk (" rx buffers"); |
| |
| // Use space bufn4 at the moment for rx buffers |
| |
| rx_desc = memmap->bufn4; |
| |
| wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY); |
| |
| for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) { |
| wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY); |
| |
| rx_desc++; |
| } |
| |
| wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY); |
| |
| // Initialise the receive free buffer count |
| wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE); |
| |
| // Initialize Horizons registers |
| |
| // TX config |
| wr_regw (dev, TX_CONFIG_OFF, |
| ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE); |
| |
| // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0. |
| wr_regw (dev, RX_CONFIG_OFF, |
| DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits); |
| |
| // RX line config |
| wr_regw (dev, RX_LINE_CONFIG_OFF, |
| LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4); |
| |
| // Set the max AAL5 cell count to be just enough to contain the |
| // largest AAL5 frame that the user wants to receive |
| wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF, |
| (max_rx_size + ATM_AAL5_TRAILER + ATM_CELL_PAYLOAD - 1) / ATM_CELL_PAYLOAD); |
| |
| // Enable receive |
| wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE); |
| |
| printk (" control"); |
| |
| // Drive the OE of the LEDs then turn the green LED on |
| ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED; |
| wr_regl (dev, CONTROL_0_REG, ctrl); |
| |
| // Test for a 155-capable card |
| |
| if (onefivefive) { |
| // Select 155 mode... make this a choice (or: how do we detect |
| // external line speed and switch?) |
| ctrl |= ATM_LAYER_SELECT; |
| wr_regl (dev, CONTROL_0_REG, ctrl); |
| |
| // test SUNI-lite vs SAMBA |
| |
| // Register 0x00 in the SUNI will have some of bits 3-7 set, and |
| // they will always be zero for the SAMBA. Ha! Bloody hardware |
| // engineers. It'll never work. |
| |
| if (rd_framer (dev, 0) & 0x00f0) { |
| // SUNI |
| printk (" SUNI"); |
| |
| // Reset, just in case |
| wr_framer (dev, 0x00, 0x0080); |
| wr_framer (dev, 0x00, 0x0000); |
| |
| // Configure transmit FIFO |
| wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002); |
| |
| // Set line timed mode |
| wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001); |
| } else { |
| // SAMBA |
| printk (" SAMBA"); |
| |
| // Reset, just in case |
| wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001); |
| wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001); |
| |
| // Turn off diagnostic loopback and enable line-timed mode |
| wr_framer (dev, 0, 0x0002); |
| |
| // Turn on transmit outputs |
| wr_framer (dev, 2, 0x0B80); |
| } |
| } else { |
| // Select 25 mode |
| ctrl &= ~ATM_LAYER_SELECT; |
| |
| // Madge B154 setup |
| // none required? |
| } |
| |
| printk (" LEDs"); |
| |
| GREEN_LED_ON(dev); |
| YELLOW_LED_ON(dev); |
| |
| printk (" ESI="); |
| |
| { |
| u16 b = 0; |
| int i; |
| u8 * esi = dev->atm_dev->esi; |
| |
| // in the card I have, EEPROM |
| // addresses 0, 1, 2 contain 0 |
| // addresess 5, 6 etc. contain ffff |
| // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order) |
| // the read_bia routine gets the BIA in Ethernet bit order |
| |
| for (i=0; i < ESI_LEN; ++i) { |
| if (i % 2 == 0) |
| b = read_bia (dev, i/2 + 2); |
| else |
| b = b >> 8; |
| esi[i] = b & 0xFF; |
| printk ("%02x", esi[i]); |
| } |
| } |
| |
| // Enable RX_Q and ?X_COMPLETE interrupts only |
| wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS); |
| printk (" IRQ on"); |
| |
| printk (".\n"); |
| |
| return onefivefive; |
| } |
| |
| /********** check max_sdu **********/ |
| |
| static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) { |
| PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu"); |
| |
| switch (aal) { |
| case aal0: |
| if (!(tp->max_sdu)) { |
| PRINTD (DBG_QOS, "defaulting max_sdu"); |
| tp->max_sdu = ATM_AAL0_SDU; |
| } else if (tp->max_sdu != ATM_AAL0_SDU) { |
| PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu"); |
| return -EINVAL; |
| } |
| break; |
| case aal34: |
| if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) { |
| PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default"); |
| tp->max_sdu = ATM_MAX_AAL34_PDU; |
| } |
| break; |
| case aal5: |
| if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) { |
| PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default"); |
| tp->max_sdu = max_frame_size; |
| } |
| break; |
| } |
| return 0; |
| } |
| |
| /********** check pcr **********/ |
| |
| // something like this should be part of ATM Linux |
| static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) { |
| // we are assuming non-UBR, and non-special values of pcr |
| if (tp->min_pcr == ATM_MAX_PCR) |
| PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR"); |
| else if (tp->min_pcr < 0) |
| PRINTD (DBG_QOS, "luser gave negative min_pcr"); |
| else if (tp->min_pcr && tp->min_pcr > pcr) |
| PRINTD (DBG_QOS, "pcr less than min_pcr"); |
| else |
| // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1) |
| // easier to #define ATM_MAX_PCR 0 and have all rates unsigned? |
| // [this would get rid of next two conditionals] |
| if ((0) && tp->max_pcr == ATM_MAX_PCR) |
| PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR"); |
| else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0) |
| PRINTD (DBG_QOS, "luser gave negative max_pcr"); |
| else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr) |
| PRINTD (DBG_QOS, "pcr greater than max_pcr"); |
| else { |
| // each limit unspecified or not violated |
| PRINTD (DBG_QOS, "xBR(pcr) OK"); |
| return 0; |
| } |
| PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d", |
| pcr, tp->min_pcr, tp->pcr, tp->max_pcr); |
| return -EINVAL; |
| } |
| |
| /********** open VC **********/ |
| |
| static int hrz_open (struct atm_vcc *atm_vcc) |
| { |
| int error; |
| u16 channel; |
| |
| struct atm_qos * qos; |
| struct atm_trafprm * txtp; |
| struct atm_trafprm * rxtp; |
| |
| hrz_dev * dev = HRZ_DEV(atm_vcc->dev); |
| hrz_vcc vcc; |
| hrz_vcc * vccp; // allocated late |
| short vpi = atm_vcc->vpi; |
| int vci = atm_vcc->vci; |
| PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci); |
| |
| #ifdef ATM_VPI_UNSPEC |
| // UNSPEC is deprecated, remove this code eventually |
| if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) { |
| PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)"); |
| return -EINVAL; |
| } |
| #endif |
| |
| error = vpivci_to_channel (&channel, vpi, vci); |
| if (error) { |
| PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci); |
| return error; |
| } |
| |
| vcc.channel = channel; |
| // max speed for the moment |
| vcc.tx_rate = 0x0; |
| |
| qos = &atm_vcc->qos; |
| |
| // check AAL and remember it |
| switch (qos->aal) { |
| case ATM_AAL0: |
| // we would if it were 48 bytes and not 52! |
| PRINTD (DBG_QOS|DBG_VCC, "AAL0"); |
| vcc.aal = aal0; |
| break; |
| case ATM_AAL34: |
| // we would if I knew how do the SAR! |
| PRINTD (DBG_QOS|DBG_VCC, "AAL3/4"); |
| vcc.aal = aal34; |
| break; |
| case ATM_AAL5: |
| PRINTD (DBG_QOS|DBG_VCC, "AAL5"); |
| vcc.aal = aal5; |
| break; |
| default: |
| PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!"); |
| return -EINVAL; |
| break; |
| } |
| |
| // TX traffic parameters |
| |
| // there are two, interrelated problems here: 1. the reservation of |
| // PCR is not a binary choice, we are given bounds and/or a |
| // desirable value; 2. the device is only capable of certain values, |
| // most of which are not integers. It is almost certainly acceptable |
| // to be off by a maximum of 1 to 10 cps. |
| |
| // Pragmatic choice: always store an integral PCR as that which has |
| // been allocated, even if we allocate a little (or a lot) less, |
| // after rounding. The actual allocation depends on what we can |
| // manage with our rate selection algorithm. The rate selection |
| // algorithm is given an integral PCR and a tolerance and told |
| // whether it should round the value up or down if the tolerance is |
| // exceeded; it returns: a) the actual rate selected (rounded up to |
| // the nearest integer), b) a bit pattern to feed to the timer |
| // register, and c) a failure value if no applicable rate exists. |
| |
| // Part of the job is done by atm_pcr_goal which gives us a PCR |
| // specification which says: EITHER grab the maximum available PCR |
| // (and perhaps a lower bound which we musn't pass), OR grab this |
| // amount, rounding down if you have to (and perhaps a lower bound |
| // which we musn't pass) OR grab this amount, rounding up if you |
| // have to (and perhaps an upper bound which we musn't pass). If any |
| // bounds ARE passed we fail. Note that rounding is only rounding to |
| // match device limitations, we do not round down to satisfy |
| // bandwidth availability even if this would not violate any given |
| // lower bound. |
| |
| // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s |
| // (say) so this is not even a binary fixpoint cell rate (but this |
| // device can do it). To avoid this sort of hassle we use a |
| // tolerance parameter (currently fixed at 10 cps). |
| |
| PRINTD (DBG_QOS, "TX:"); |
| |
| txtp = &qos->txtp; |
| |
| // set up defaults for no traffic |
| vcc.tx_rate = 0; |
| // who knows what would actually happen if you try and send on this? |
| vcc.tx_xbr_bits = IDLE_RATE_TYPE; |
| vcc.tx_pcr_bits = CLOCK_DISABLE; |
| #if 0 |
| vcc.tx_scr_bits = CLOCK_DISABLE; |
| vcc.tx_bucket_bits = 0; |
| #endif |
| |
| if (txtp->traffic_class != ATM_NONE) { |
| error = check_max_sdu (vcc.aal, txtp, max_tx_size); |
| if (error) { |
| PRINTD (DBG_QOS, "TX max_sdu check failed"); |
| return error; |
| } |
| |
| switch (txtp->traffic_class) { |
| case ATM_UBR: { |
| // we take "the PCR" as a rate-cap |
| // not reserved |
| vcc.tx_rate = 0; |
| make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL); |
| vcc.tx_xbr_bits = ABR_RATE_TYPE; |
| break; |
| } |
| #if 0 |
| case ATM_ABR: { |
| // reserve min, allow up to max |
| vcc.tx_rate = 0; // ? |
| make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0); |
| vcc.tx_xbr_bits = ABR_RATE_TYPE; |
| break; |
| } |
| #endif |
| case ATM_CBR: { |
| int pcr = atm_pcr_goal (txtp); |
| rounding r; |
| if (!pcr) { |
| // down vs. up, remaining bandwidth vs. unlimited bandwidth!! |
| // should really have: once someone gets unlimited bandwidth |
| // that no more non-UBR channels can be opened until the |
| // unlimited one closes?? For the moment, round_down means |
| // greedy people actually get something and not nothing |
| r = round_down; |
| // slight race (no locking) here so we may get -EAGAIN |
| // later; the greedy bastards would deserve it :) |
| PRINTD (DBG_QOS, "snatching all remaining TX bandwidth"); |
| pcr = dev->tx_avail; |
| } else if (pcr < 0) { |
| r = round_down; |
| pcr = -pcr; |
| } else { |
| r = round_up; |
| } |
| error = make_rate_with_tolerance (dev, pcr, r, 10, |
| &vcc.tx_pcr_bits, &vcc.tx_rate); |
| if (error) { |
| PRINTD (DBG_QOS, "could not make rate from TX PCR"); |
| return error; |
| } |
| // not really clear what further checking is needed |
| error = atm_pcr_check (txtp, vcc.tx_rate); |
| if (error) { |
| PRINTD (DBG_QOS, "TX PCR failed consistency check"); |
| return error; |
| } |
| vcc.tx_xbr_bits = CBR_RATE_TYPE; |
| break; |
| } |
| #if 0 |
| case ATM_VBR: { |
| int pcr = atm_pcr_goal (txtp); |
| // int scr = atm_scr_goal (txtp); |
| int scr = pcr/2; // just for fun |
| unsigned int mbs = 60; // just for fun |
| rounding pr; |
| rounding sr; |
| unsigned int bucket; |
| if (!pcr) { |
| pr = round_nearest; |
| pcr = 1<<30; |
| } else if (pcr < 0) { |
| pr = round_down; |
| pcr = -pcr; |
| } else { |
| pr = round_up; |
| } |
| error = make_rate_with_tolerance (dev, pcr, pr, 10, |
| &vcc.tx_pcr_bits, 0); |
| if (!scr) { |
| // see comments for PCR with CBR above |
| sr = round_down; |
| // slight race (no locking) here so we may get -EAGAIN |
| // later; the greedy bastards would deserve it :) |
| PRINTD (DBG_QOS, "snatching all remaining TX bandwidth"); |
| scr = dev->tx_avail; |
| } else if (scr < 0) { |
| sr = round_down; |
| scr = -scr; |
| } else { |
| sr = round_up; |
| } |
| error = make_rate_with_tolerance (dev, scr, sr, 10, |
| &vcc.tx_scr_bits, &vcc.tx_rate); |
| if (error) { |
| PRINTD (DBG_QOS, "could not make rate from TX SCR"); |
| return error; |
| } |
| // not really clear what further checking is needed |
| // error = atm_scr_check (txtp, vcc.tx_rate); |
| if (error) { |
| PRINTD (DBG_QOS, "TX SCR failed consistency check"); |
| return error; |
| } |
| // bucket calculations (from a piece of paper...) cell bucket |
| // capacity must be largest integer smaller than m(p-s)/p + 1 |
| // where m = max burst size, p = pcr, s = scr |
| bucket = mbs*(pcr-scr)/pcr; |
| if (bucket*pcr != mbs*(pcr-scr)) |
| bucket += 1; |
| if (bucket > BUCKET_MAX_SIZE) { |
| PRINTD (DBG_QOS, "shrinking bucket from %u to %u", |
| bucket, BUCKET_MAX_SIZE); |
| bucket = BUCKET_MAX_SIZE; |
| } |
| vcc.tx_xbr_bits = VBR_RATE_TYPE; |
| vcc.tx_bucket_bits = bucket; |
| break; |
| } |
| #endif |
| default: { |
| PRINTD (DBG_QOS, "unsupported TX traffic class"); |
| return -EINVAL; |
| break; |
| } |
| } |
| } |
| |
| // RX traffic parameters |
| |
| PRINTD (DBG_QOS, "RX:"); |
| |
| rxtp = &qos->rxtp; |
| |
| // set up defaults for no traffic |
| vcc.rx_rate = 0; |
| |
| if (rxtp->traffic_class != ATM_NONE) { |
| error = check_max_sdu (vcc.aal, rxtp, max_rx_size); |
| if (error) { |
| PRINTD (DBG_QOS, "RX max_sdu check failed"); |
| return error; |
| } |
| switch (rxtp->traffic_class) { |
| case ATM_UBR: { |
| // not reserved |
| break; |
| } |
| #if 0 |
| case ATM_ABR: { |
| // reserve min |
| vcc.rx_rate = 0; // ? |
| break; |
| } |
| #endif |
| case ATM_CBR: { |
| int pcr = atm_pcr_goal (rxtp); |
| if (!pcr) { |
| // slight race (no locking) here so we may get -EAGAIN |
| // later; the greedy bastards would deserve it :) |
| PRINTD (DBG_QOS, "snatching all remaining RX bandwidth"); |
| pcr = dev->rx_avail; |
| } else if (pcr < 0) { |
| pcr = -pcr; |
| } |
| vcc.rx_rate = pcr; |
| // not really clear what further checking is needed |
| error = atm_pcr_check (rxtp, vcc.rx_rate); |
| if (error) { |
| PRINTD (DBG_QOS, "RX PCR failed consistency check"); |
| return error; |
| } |
| break; |
| } |
| #if 0 |
| case ATM_VBR: { |
| // int scr = atm_scr_goal (rxtp); |
| int scr = 1<<16; // just for fun |
| if (!scr) { |
| // slight race (no locking) here so we may get -EAGAIN |
| // later; the greedy bastards would deserve it :) |
| PRINTD (DBG_QOS, "snatching all remaining RX bandwidth"); |
| scr = dev->rx_avail; |
| } else if (scr < 0) { |
| scr = -scr; |
| } |
| vcc.rx_rate = scr; |
| // not really clear what further checking is needed |
| // error = atm_scr_check (rxtp, vcc.rx_rate); |
| if (error) { |
| PRINTD (DBG_QOS, "RX SCR failed consistency check"); |
| return error; |
| } |
| break; |
| } |
| #endif |
| default: { |
| PRINTD (DBG_QOS, "unsupported RX traffic class"); |
| return -EINVAL; |
| break; |
| } |
| } |
| } |
| |
| |
| // late abort useful for diagnostics |
| if (vcc.aal != aal5) { |
| PRINTD (DBG_QOS, "AAL not supported"); |
| return -EINVAL; |
| } |
| |
| // get space for our vcc stuff and copy parameters into it |
| vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL); |
| if (!vccp) { |
| PRINTK (KERN_ERR, "out of memory!"); |
| return -ENOMEM; |
| } |
| *vccp = vcc; |
| |
| // clear error and grab cell rate resource lock |
| error = 0; |
| spin_lock (&dev->rate_lock); |
| |
| if (vcc.tx_rate > dev->tx_avail) { |
| PRINTD (DBG_QOS, "not enough TX PCR left"); |
| error = -EAGAIN; |
| } |
| |
| if (vcc.rx_rate > dev->rx_avail) { |
| PRINTD (DBG_QOS, "not enough RX PCR left"); |
| error = -EAGAIN; |
| } |
| |
| if (!error) { |
| // really consume cell rates |
| dev->tx_avail -= vcc.tx_rate; |
| dev->rx_avail -= vcc.rx_rate; |
| PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR", |
| vcc.tx_rate, vcc.rx_rate); |
| } |
| |
| // release lock and exit on error |
| spin_unlock (&dev->rate_lock); |
| if (error) { |
| PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources"); |
| kfree (vccp); |
| return error; |
| } |
| |
| // this is "immediately before allocating the connection identifier |
| // in hardware" - so long as the next call does not fail :) |
| set_bit(ATM_VF_ADDR,&atm_vcc->flags); |
| |
| // any errors here are very serious and should never occur |
| |
| if (rxtp->traffic_class != ATM_NONE) { |
| if (dev->rxer[channel]) { |
| PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX"); |
| error = -EBUSY; |
| } |
| if (!error) |
| error = hrz_open_rx (dev, channel); |
| if (error) { |
| kfree (vccp); |
| return error; |
| } |
| // this link allows RX frames through |
| dev->rxer[channel] = atm_vcc; |
| } |
| |
| // success, set elements of atm_vcc |
| atm_vcc->dev_data = (void *) vccp; |
| |
| // indicate readiness |
| set_bit(ATM_VF_READY,&atm_vcc->flags); |
| |
| return 0; |
| } |
| |
| /********** close VC **********/ |
| |
| static void hrz_close (struct atm_vcc * atm_vcc) { |
| hrz_dev * dev = HRZ_DEV(atm_vcc->dev); |
| hrz_vcc * vcc = HRZ_VCC(atm_vcc); |
| u16 channel = vcc->channel; |
| PRINTD (DBG_VCC|DBG_FLOW, "hrz_close"); |
| |
| // indicate unreadiness |
| clear_bit(ATM_VF_READY,&atm_vcc->flags); |
| |
| if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) { |
| unsigned int i; |
| |
| // let any TX on this channel that has started complete |
| // no restart, just keep trying |
| while (tx_hold (dev)) |
| ; |
| // remove record of any tx_channel having been setup for this channel |
| for (i = 0; i < TX_CHANS; ++i) |
| if (dev->tx_channel_record[i] == channel) { |
| dev->tx_channel_record[i] = -1; |
| break; |
| } |
| if (dev->last_vc == channel) |
| dev->tx_last = -1; |
| tx_release (dev); |
| } |
| |
| if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { |
| // disable RXing - it tries quite hard |
| hrz_close_rx (dev, channel); |
| // forget the vcc - no more skbs will be pushed |
| if (atm_vcc != dev->rxer[channel]) |
| PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p", |
| "arghhh! we're going to die!", |
| atm_vcc, dev->rxer[channel]); |
| dev->rxer[channel] = NULL; |
| } |
| |
| // atomically release our rate reservation |
| spin_lock (&dev->rate_lock); |
| PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR", |
| vcc->tx_rate, vcc->rx_rate); |
| dev->tx_avail += vcc->tx_rate; |
| dev->rx_avail += vcc->rx_rate; |
| spin_unlock (&dev->rate_lock); |
| |
| // free our structure |
| kfree (vcc); |
| // say the VPI/VCI is free again |
| clear_bit(ATM_VF_ADDR,&atm_vcc->flags); |
| } |
| |
| #if 0 |
| static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname, |
| void *optval, int optlen) { |
| hrz_dev * dev = HRZ_DEV(atm_vcc->dev); |
| PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt"); |
| switch (level) { |
| case SOL_SOCKET: |
| switch (optname) { |
| // case SO_BCTXOPT: |
| // break; |
| // case SO_BCRXOPT: |
| // break; |
| default: |
| return -ENOPROTOOPT; |
| break; |
| }; |
| break; |
| } |
| return -EINVAL; |
| } |
| |
| static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname, |
| void *optval, int optlen) { |
| hrz_dev * dev = HRZ_DEV(atm_vcc->dev); |
| PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt"); |
| switch (level) { |
| case SOL_SOCKET: |
| switch (optname) { |
| // case SO_BCTXOPT: |
| // break; |
| // case SO_BCRXOPT: |
| // break; |
| default: |
| return -ENOPROTOOPT; |
| break; |
| }; |
| break; |
| } |
| return -EINVAL; |
| } |
| #endif |
| |
| #if 0 |
| static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) { |
| hrz_dev * dev = HRZ_DEV(atm_dev); |
| PRINTD (DBG_FLOW, "hrz_ioctl"); |
| return -1; |
| } |
| |
| unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) { |
| hrz_dev * dev = HRZ_DEV(atm_dev); |
| PRINTD (DBG_FLOW, "hrz_phy_get"); |
| return 0; |
| } |
| |
| static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value, |
| unsigned long addr) { |
| hrz_dev * dev = HRZ_DEV(atm_dev); |
| PRINTD (DBG_FLOW, "hrz_phy_put"); |
| } |
| |
| static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) { |
| hrz_dev * dev = HRZ_DEV(vcc->dev); |
| PRINTD (DBG_FLOW, "hrz_change_qos"); |
| return -1; |
| } |
| #endif |
| |
| /********** proc file contents **********/ |
| |
| static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) { |
| hrz_dev * dev = HRZ_DEV(atm_dev); |
| int left = *pos; |
| PRINTD (DBG_FLOW, "hrz_proc_read"); |
| |
| /* more diagnostics here? */ |
| |
| #if 0 |
| if (!left--) { |
| unsigned int count = sprintf (page, "vbr buckets:"); |
| unsigned int i; |
| for (i = 0; i < TX_CHANS; ++i) |
| count += sprintf (page, " %u/%u", |
| query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS), |
| query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS)); |
| count += sprintf (page+count, ".\n"); |
| return count; |
| } |
| #endif |
| |
| if (!left--) |
| return sprintf (page, |
| "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n", |
| dev->tx_cell_count, dev->rx_cell_count, |
| dev->hec_error_count, dev->unassigned_cell_count); |
| |
| if (!left--) |
| return sprintf (page, |
| "free cell buffers: TX %hu, RX %hu+%hu.\n", |
| rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF), |
| rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF), |
| dev->noof_spare_buffers); |
| |
| if (!left--) |
| return sprintf (page, |
| "cps remaining: TX %u, RX %u\n", |
| dev->tx_avail, dev->rx_avail); |
| |
| return 0; |
| } |
| |
| static const struct atmdev_ops hrz_ops = { |
| .open = hrz_open, |
| .close = hrz_close, |
| .send = hrz_send, |
| .proc_read = hrz_proc_read, |
| .owner = THIS_MODULE, |
| }; |
| |
| static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent) |
| { |
| hrz_dev * dev; |
| int err = 0; |
| |
| // adapter slot free, read resources from PCI configuration space |
| u32 iobase = pci_resource_start (pci_dev, 0); |
| u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1)); |
| unsigned int irq; |
| unsigned char lat; |
| |
| PRINTD (DBG_FLOW, "hrz_probe"); |
| |
| if (pci_enable_device(pci_dev)) |
| return -EINVAL; |
| |
| /* XXX DEV_LABEL is a guess */ |
| if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) { |
| return -EINVAL; |
| goto out_disable; |
| } |
| |
| dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL); |
| if (!dev) { |
| // perhaps we should be nice: deregister all adapters and abort? |
| PRINTD(DBG_ERR, "out of memory"); |
| err = -ENOMEM; |
| goto out_release; |
| } |
| |
| pci_set_drvdata(pci_dev, dev); |
| |
| // grab IRQ and install handler - move this someplace more sensible |
| irq = pci_dev->irq; |
| if (request_irq(irq, |
| interrupt_handler, |
| IRQF_SHARED, /* irqflags guess */ |
| DEV_LABEL, /* name guess */ |
| dev)) { |
| PRINTD(DBG_WARN, "request IRQ failed!"); |
| err = -EINVAL; |
| goto out_free; |
| } |
| |
| PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p", |
| iobase, irq, membase); |
| |
| dev->atm_dev = atm_dev_register(DEV_LABEL, &hrz_ops, -1, NULL); |
| if (!(dev->atm_dev)) { |
| PRINTD(DBG_ERR, "failed to register Madge ATM adapter"); |
| err = -EINVAL; |
| goto out_free_irq; |
| } |
| |
| PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p", |
| dev->atm_dev->number, dev, dev->atm_dev); |
| dev->atm_dev->dev_data = (void *) dev; |
| dev->pci_dev = pci_dev; |
| |
| // enable bus master accesses |
| pci_set_master(pci_dev); |
| |
| // frobnicate latency (upwards, usually) |
| pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat); |
| if (pci_lat) { |
| PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu", |
| "changing", lat, pci_lat); |
| pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat); |
| } else if (lat < MIN_PCI_LATENCY) { |
| PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu", |
| "increasing", lat, MIN_PCI_LATENCY); |
| pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY); |
| } |
| |
| dev->iobase = iobase; |
| dev->irq = irq; |
| dev->membase = membase; |
| |
| dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0]; |
| dev->rx_q_wrap = &memmap->rx_q_entries[RX_CHANS-1]; |
| |
| // these next three are performance hacks |
| dev->last_vc = -1; |
| dev->tx_last = -1; |
| dev->tx_idle = 0; |
| |
| dev->tx_regions = 0; |
| dev->tx_bytes = 0; |
| dev->tx_skb = NULL; |
| dev->tx_iovec = NULL; |
| |
| dev->tx_cell_count = 0; |
| dev->rx_cell_count = 0; |
| dev->hec_error_count = 0; |
| dev->unassigned_cell_count = 0; |
| |
| dev->noof_spare_buffers = 0; |
| |
| { |
| unsigned int i; |
| for (i = 0; i < TX_CHANS; ++i) |
| dev->tx_channel_record[i] = -1; |
| } |
| |
| dev->flags = 0; |
| |
| // Allocate cell rates and remember ASIC version |
| // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53 |
| // Copper: (WRONG) we want 6 into the above, close to 25Mb/s |
| // Copper: (plagarise!) 25600000/8/270*260/53 - n/53 |
| |
| if (hrz_init(dev)) { |
| // to be really pedantic, this should be ATM_OC3c_PCR |
| dev->tx_avail = ATM_OC3_PCR; |
| dev->rx_avail = ATM_OC3_PCR; |
| set_bit(ultra, &dev->flags); // NOT "|= ultra" ! |
| } else { |
| dev->tx_avail = ((25600000/8)*26)/(27*53); |
| dev->rx_avail = ((25600000/8)*26)/(27*53); |
| PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering."); |
| } |
| |
| // rate changes spinlock |
| spin_lock_init(&dev->rate_lock); |
| |
| // on-board memory access spinlock; we want atomic reads and |
| // writes to adapter memory (handles IRQ and SMP) |
| spin_lock_init(&dev->mem_lock); |
| |
| init_waitqueue_head(&dev->tx_queue); |
| |
| // vpi in 0..4, vci in 6..10 |
| dev->atm_dev->ci_range.vpi_bits = vpi_bits; |
| dev->atm_dev->ci_range.vci_bits = 10-vpi_bits; |
| |
| init_timer(&dev->housekeeping); |
| dev->housekeeping.function = do_housekeeping; |
| dev->housekeeping.data = (unsigned long) dev; |
| mod_timer(&dev->housekeeping, jiffies); |
| |
| out: |
| return err; |
| |
| out_free_irq: |
| free_irq(dev->irq, dev); |
| out_free: |
| kfree(dev); |
| out_release: |
| release_region(iobase, HRZ_IO_EXTENT); |
| out_disable: |
| pci_disable_device(pci_dev); |
| goto out; |
| } |
| |
| static void __devexit hrz_remove_one(struct pci_dev *pci_dev) |
| { |
| hrz_dev *dev; |
| |
| dev = pci_get_drvdata(pci_dev); |
| |
| PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev); |
| del_timer_sync(&dev->housekeeping); |
| hrz_reset(dev); |
| atm_dev_deregister(dev->atm_dev); |
| free_irq(dev->irq, dev); |
| release_region(dev->iobase, HRZ_IO_EXTENT); |
| kfree(dev); |
| |
| pci_disable_device(pci_dev); |
| } |
| |
| static void __init hrz_check_args (void) { |
| #ifdef DEBUG_HORIZON |
| PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK); |
| #else |
| if (debug) |
| PRINTK (KERN_NOTICE, "no debug support in this image"); |
| #endif |
| |
| if (vpi_bits > HRZ_MAX_VPI) |
| PRINTK (KERN_ERR, "vpi_bits has been limited to %hu", |
| vpi_bits = HRZ_MAX_VPI); |
| |
| if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT) |
| PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu", |
| max_tx_size = TX_AAL5_LIMIT); |
| |
| if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT) |
| PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu", |
| max_rx_size = RX_AAL5_LIMIT); |
| |
| return; |
| } |
| |
| MODULE_AUTHOR(maintainer_string); |
| MODULE_DESCRIPTION(description_string); |
| MODULE_LICENSE("GPL"); |
| module_param(debug, ushort, 0644); |
| module_param(vpi_bits, ushort, 0); |
| module_param(max_tx_size, int, 0); |
| module_param(max_rx_size, int, 0); |
| module_param(pci_lat, byte, 0); |
| MODULE_PARM_DESC(debug, "debug bitmap, see .h file"); |
| MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs"); |
| MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames"); |
| MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames"); |
| MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles"); |
| |
| static struct pci_device_id hrz_pci_tbl[] = { |
| { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID, |
| 0, 0, 0 }, |
| { 0, } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, hrz_pci_tbl); |
| |
| static struct pci_driver hrz_driver = { |
| .name = "horizon", |
| .probe = hrz_probe, |
| .remove = __devexit_p(hrz_remove_one), |
| .id_table = hrz_pci_tbl, |
| }; |
| |
| /********** module entry **********/ |
| |
| static int __init hrz_module_init (void) { |
| // sanity check - cast is needed since printk does not support %Zu |
| if (sizeof(struct MEMMAP) != 128*1024/4) { |
| PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).", |
| (unsigned long) sizeof(struct MEMMAP)); |
| return -ENOMEM; |
| } |
| |
| show_version(); |
| |
| // check arguments |
| hrz_check_args(); |
| |
| // get the juice |
| return pci_register_driver(&hrz_driver); |
| } |
| |
| /********** module exit **********/ |
| |
| static void __exit hrz_module_exit (void) { |
| PRINTD (DBG_FLOW, "cleanup_module"); |
| |
| return pci_unregister_driver(&hrz_driver); |
| } |
| |
| module_init(hrz_module_init); |
| module_exit(hrz_module_exit); |