| #ifndef _ASM_POWERPC_PGTABLE_PPC32_H |
| #define _ASM_POWERPC_PGTABLE_PPC32_H |
| |
| #include <asm-generic/4level-fixup.h> |
| |
| #ifndef __ASSEMBLY__ |
| #include <linux/sched.h> |
| #include <linux/threads.h> |
| #include <asm/processor.h> /* For TASK_SIZE */ |
| #include <asm/mmu.h> |
| #include <asm/page.h> |
| #include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */ |
| struct mm_struct; |
| |
| extern unsigned long va_to_phys(unsigned long address); |
| extern pte_t *va_to_pte(unsigned long address); |
| extern unsigned long ioremap_bot, ioremap_base; |
| #endif /* __ASSEMBLY__ */ |
| |
| /* |
| * The PowerPC MMU uses a hash table containing PTEs, together with |
| * a set of 16 segment registers (on 32-bit implementations), to define |
| * the virtual to physical address mapping. |
| * |
| * We use the hash table as an extended TLB, i.e. a cache of currently |
| * active mappings. We maintain a two-level page table tree, much |
| * like that used by the i386, for the sake of the Linux memory |
| * management code. Low-level assembler code in hashtable.S |
| * (procedure hash_page) is responsible for extracting ptes from the |
| * tree and putting them into the hash table when necessary, and |
| * updating the accessed and modified bits in the page table tree. |
| */ |
| |
| /* |
| * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk. |
| * We also use the two level tables, but we can put the real bits in them |
| * needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0, |
| * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has |
| * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit |
| * based upon user/super access. The TLB does not have accessed nor write |
| * protect. We assume that if the TLB get loaded with an entry it is |
| * accessed, and overload the changed bit for write protect. We use |
| * two bits in the software pte that are supposed to be set to zero in |
| * the TLB entry (24 and 25) for these indicators. Although the level 1 |
| * descriptor contains the guarded and writethrough/copyback bits, we can |
| * set these at the page level since they get copied from the Mx_TWC |
| * register when the TLB entry is loaded. We will use bit 27 for guard, since |
| * that is where it exists in the MD_TWC, and bit 26 for writethrough. |
| * These will get masked from the level 2 descriptor at TLB load time, and |
| * copied to the MD_TWC before it gets loaded. |
| * Large page sizes added. We currently support two sizes, 4K and 8M. |
| * This also allows a TLB hander optimization because we can directly |
| * load the PMD into MD_TWC. The 8M pages are only used for kernel |
| * mapping of well known areas. The PMD (PGD) entries contain control |
| * flags in addition to the address, so care must be taken that the |
| * software no longer assumes these are only pointers. |
| */ |
| |
| /* |
| * At present, all PowerPC 400-class processors share a similar TLB |
| * architecture. The instruction and data sides share a unified, |
| * 64-entry, fully-associative TLB which is maintained totally under |
| * software control. In addition, the instruction side has a |
| * hardware-managed, 4-entry, fully-associative TLB which serves as a |
| * first level to the shared TLB. These two TLBs are known as the UTLB |
| * and ITLB, respectively (see "mmu.h" for definitions). |
| */ |
| |
| /* |
| * The normal case is that PTEs are 32-bits and we have a 1-page |
| * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus |
| * |
| * For any >32-bit physical address platform, we can use the following |
| * two level page table layout where the pgdir is 8KB and the MS 13 bits |
| * are an index to the second level table. The combined pgdir/pmd first |
| * level has 2048 entries and the second level has 512 64-bit PTE entries. |
| * -Matt |
| */ |
| /* PMD_SHIFT determines the size of the area mapped by the PTE pages */ |
| #define PMD_SHIFT (PAGE_SHIFT + PTE_SHIFT) |
| #define PMD_SIZE (1UL << PMD_SHIFT) |
| #define PMD_MASK (~(PMD_SIZE-1)) |
| |
| /* PGDIR_SHIFT determines what a top-level page table entry can map */ |
| #define PGDIR_SHIFT PMD_SHIFT |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| /* |
| * entries per page directory level: our page-table tree is two-level, so |
| * we don't really have any PMD directory. |
| */ |
| #define PTRS_PER_PTE (1 << PTE_SHIFT) |
| #define PTRS_PER_PMD 1 |
| #define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT)) |
| |
| #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) |
| #define FIRST_USER_ADDRESS 0 |
| |
| #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) |
| #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) |
| |
| #define pte_ERROR(e) \ |
| printk("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \ |
| (unsigned long long)pte_val(e)) |
| #define pmd_ERROR(e) \ |
| printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) |
| #define pgd_ERROR(e) \ |
| printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) |
| |
| /* |
| * Just any arbitrary offset to the start of the vmalloc VM area: the |
| * current 64MB value just means that there will be a 64MB "hole" after the |
| * physical memory until the kernel virtual memory starts. That means that |
| * any out-of-bounds memory accesses will hopefully be caught. |
| * The vmalloc() routines leaves a hole of 4kB between each vmalloced |
| * area for the same reason. ;) |
| * |
| * We no longer map larger than phys RAM with the BATs so we don't have |
| * to worry about the VMALLOC_OFFSET causing problems. We do have to worry |
| * about clashes between our early calls to ioremap() that start growing down |
| * from ioremap_base being run into the VM area allocations (growing upwards |
| * from VMALLOC_START). For this reason we have ioremap_bot to check when |
| * we actually run into our mappings setup in the early boot with the VM |
| * system. This really does become a problem for machines with good amounts |
| * of RAM. -- Cort |
| */ |
| #define VMALLOC_OFFSET (0x1000000) /* 16M */ |
| #ifdef PPC_PIN_SIZE |
| #define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) |
| #else |
| #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) |
| #endif |
| #define VMALLOC_END ioremap_bot |
| |
| /* |
| * Bits in a linux-style PTE. These match the bits in the |
| * (hardware-defined) PowerPC PTE as closely as possible. |
| */ |
| |
| #if defined(CONFIG_40x) |
| |
| /* There are several potential gotchas here. The 40x hardware TLBLO |
| field looks like this: |
| |
| 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
| RPN..................... 0 0 EX WR ZSEL....... W I M G |
| |
| Where possible we make the Linux PTE bits match up with this |
| |
| - bits 20 and 21 must be cleared, because we use 4k pages (40x can |
| support down to 1k pages), this is done in the TLBMiss exception |
| handler. |
| - We use only zones 0 (for kernel pages) and 1 (for user pages) |
| of the 16 available. Bit 24-26 of the TLB are cleared in the TLB |
| miss handler. Bit 27 is PAGE_USER, thus selecting the correct |
| zone. |
| - PRESENT *must* be in the bottom two bits because swap cache |
| entries use the top 30 bits. Because 40x doesn't support SMP |
| anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30 |
| is cleared in the TLB miss handler before the TLB entry is loaded. |
| - All other bits of the PTE are loaded into TLBLO without |
| modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for |
| software PTE bits. We actually use use bits 21, 24, 25, and |
| 30 respectively for the software bits: ACCESSED, DIRTY, RW, and |
| PRESENT. |
| */ |
| |
| /* Definitions for 40x embedded chips. */ |
| #define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */ |
| #define _PAGE_FILE 0x001 /* when !present: nonlinear file mapping */ |
| #define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */ |
| #define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */ |
| #define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */ |
| #define _PAGE_USER 0x010 /* matches one of the zone permission bits */ |
| #define _PAGE_RW 0x040 /* software: Writes permitted */ |
| #define _PAGE_DIRTY 0x080 /* software: dirty page */ |
| #define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */ |
| #define _PAGE_HWEXEC 0x200 /* hardware: EX permission */ |
| #define _PAGE_ACCESSED 0x400 /* software: R: page referenced */ |
| |
| #define _PMD_PRESENT 0x400 /* PMD points to page of PTEs */ |
| #define _PMD_BAD 0x802 |
| #define _PMD_SIZE 0x0e0 /* size field, != 0 for large-page PMD entry */ |
| #define _PMD_SIZE_4M 0x0c0 |
| #define _PMD_SIZE_16M 0x0e0 |
| #define PMD_PAGE_SIZE(pmdval) (1024 << (((pmdval) & _PMD_SIZE) >> 4)) |
| |
| #elif defined(CONFIG_44x) |
| /* |
| * Definitions for PPC440 |
| * |
| * Because of the 3 word TLB entries to support 36-bit addressing, |
| * the attribute are difficult to map in such a fashion that they |
| * are easily loaded during exception processing. I decided to |
| * organize the entry so the ERPN is the only portion in the |
| * upper word of the PTE and the attribute bits below are packed |
| * in as sensibly as they can be in the area below a 4KB page size |
| * oriented RPN. This at least makes it easy to load the RPN and |
| * ERPN fields in the TLB. -Matt |
| * |
| * Note that these bits preclude future use of a page size |
| * less than 4KB. |
| * |
| * |
| * PPC 440 core has following TLB attribute fields; |
| * |
| * TLB1: |
| * 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
| * RPN................................. - - - - - - ERPN....... |
| * |
| * TLB2: |
| * 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
| * - - - - - - U0 U1 U2 U3 W I M G E - UX UW UR SX SW SR |
| * |
| * There are some constrains and options, to decide mapping software bits |
| * into TLB entry. |
| * |
| * - PRESENT *must* be in the bottom three bits because swap cache |
| * entries use the top 29 bits for TLB2. |
| * |
| * - FILE *must* be in the bottom three bits because swap cache |
| * entries use the top 29 bits for TLB2. |
| * |
| * - CACHE COHERENT bit (M) has no effect on PPC440 core, because it |
| * doesn't support SMP. So we can use this as software bit, like |
| * DIRTY. |
| * |
| * With the PPC 44x Linux implementation, the 0-11th LSBs of the PTE are used |
| * for memory protection related functions (see PTE structure in |
| * include/asm-ppc/mmu.h). The _PAGE_XXX definitions in this file map to the |
| * above bits. Note that the bit values are CPU specific, not architecture |
| * specific. |
| * |
| * The kernel PTE entry holds an arch-dependent swp_entry structure under |
| * certain situations. In other words, in such situations some portion of |
| * the PTE bits are used as a swp_entry. In the PPC implementation, the |
| * 3-24th LSB are shared with swp_entry, however the 0-2nd three LSB still |
| * hold protection values. That means the three protection bits are |
| * reserved for both PTE and SWAP entry at the most significant three |
| * LSBs. |
| * |
| * There are three protection bits available for SWAP entry: |
| * _PAGE_PRESENT |
| * _PAGE_FILE |
| * _PAGE_HASHPTE (if HW has) |
| * |
| * So those three bits have to be inside of 0-2nd LSB of PTE. |
| * |
| */ |
| |
| #define _PAGE_PRESENT 0x00000001 /* S: PTE valid */ |
| #define _PAGE_RW 0x00000002 /* S: Write permission */ |
| #define _PAGE_FILE 0x00000004 /* S: nonlinear file mapping */ |
| #define _PAGE_ACCESSED 0x00000008 /* S: Page referenced */ |
| #define _PAGE_HWWRITE 0x00000010 /* H: Dirty & RW */ |
| #define _PAGE_HWEXEC 0x00000020 /* H: Execute permission */ |
| #define _PAGE_USER 0x00000040 /* S: User page */ |
| #define _PAGE_ENDIAN 0x00000080 /* H: E bit */ |
| #define _PAGE_GUARDED 0x00000100 /* H: G bit */ |
| #define _PAGE_DIRTY 0x00000200 /* S: Page dirty */ |
| #define _PAGE_NO_CACHE 0x00000400 /* H: I bit */ |
| #define _PAGE_WRITETHRU 0x00000800 /* H: W bit */ |
| |
| /* TODO: Add large page lowmem mapping support */ |
| #define _PMD_PRESENT 0 |
| #define _PMD_PRESENT_MASK (PAGE_MASK) |
| #define _PMD_BAD (~PAGE_MASK) |
| |
| /* ERPN in a PTE never gets cleared, ignore it */ |
| #define _PTE_NONE_MASK 0xffffffff00000000ULL |
| |
| #elif defined(CONFIG_FSL_BOOKE) |
| /* |
| MMU Assist Register 3: |
| |
| 32 33 34 35 36 ... 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
| RPN...................... 0 0 U0 U1 U2 U3 UX SX UW SW UR SR |
| |
| - PRESENT *must* be in the bottom three bits because swap cache |
| entries use the top 29 bits. |
| |
| - FILE *must* be in the bottom three bits because swap cache |
| entries use the top 29 bits. |
| */ |
| |
| /* Definitions for FSL Book-E Cores */ |
| #define _PAGE_PRESENT 0x00001 /* S: PTE contains a translation */ |
| #define _PAGE_USER 0x00002 /* S: User page (maps to UR) */ |
| #define _PAGE_FILE 0x00002 /* S: when !present: nonlinear file mapping */ |
| #define _PAGE_ACCESSED 0x00004 /* S: Page referenced */ |
| #define _PAGE_HWWRITE 0x00008 /* H: Dirty & RW, set in exception */ |
| #define _PAGE_RW 0x00010 /* S: Write permission */ |
| #define _PAGE_HWEXEC 0x00020 /* H: UX permission */ |
| |
| #define _PAGE_ENDIAN 0x00040 /* H: E bit */ |
| #define _PAGE_GUARDED 0x00080 /* H: G bit */ |
| #define _PAGE_COHERENT 0x00100 /* H: M bit */ |
| #define _PAGE_NO_CACHE 0x00200 /* H: I bit */ |
| #define _PAGE_WRITETHRU 0x00400 /* H: W bit */ |
| |
| #ifdef CONFIG_PTE_64BIT |
| #define _PAGE_DIRTY 0x08000 /* S: Page dirty */ |
| |
| /* ERPN in a PTE never gets cleared, ignore it */ |
| #define _PTE_NONE_MASK 0xffffffffffff0000ULL |
| #else |
| #define _PAGE_DIRTY 0x00800 /* S: Page dirty */ |
| #endif |
| |
| #define _PMD_PRESENT 0 |
| #define _PMD_PRESENT_MASK (PAGE_MASK) |
| #define _PMD_BAD (~PAGE_MASK) |
| |
| #elif defined(CONFIG_8xx) |
| /* Definitions for 8xx embedded chips. */ |
| #define _PAGE_PRESENT 0x0001 /* Page is valid */ |
| #define _PAGE_FILE 0x0002 /* when !present: nonlinear file mapping */ |
| #define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */ |
| #define _PAGE_SHARED 0x0004 /* No ASID (context) compare */ |
| |
| /* These five software bits must be masked out when the entry is loaded |
| * into the TLB. |
| */ |
| #define _PAGE_EXEC 0x0008 /* software: i-cache coherency required */ |
| #define _PAGE_GUARDED 0x0010 /* software: guarded access */ |
| #define _PAGE_DIRTY 0x0020 /* software: page changed */ |
| #define _PAGE_RW 0x0040 /* software: user write access allowed */ |
| #define _PAGE_ACCESSED 0x0080 /* software: page referenced */ |
| |
| /* Setting any bits in the nibble with the follow two controls will |
| * require a TLB exception handler change. It is assumed unused bits |
| * are always zero. |
| */ |
| #define _PAGE_HWWRITE 0x0100 /* h/w write enable: never set in Linux PTE */ |
| #define _PAGE_USER 0x0800 /* One of the PP bits, the other is USER&~RW */ |
| |
| #define _PMD_PRESENT 0x0001 |
| #define _PMD_BAD 0x0ff0 |
| #define _PMD_PAGE_MASK 0x000c |
| #define _PMD_PAGE_8M 0x000c |
| |
| /* |
| * The 8xx TLB miss handler allegedly sets _PAGE_ACCESSED in the PTE |
| * for an address even if _PAGE_PRESENT is not set, as a performance |
| * optimization. This is a bug if you ever want to use swap unless |
| * _PAGE_ACCESSED is 2, which it isn't, or unless you have 8xx-specific |
| * definitions for __swp_entry etc. below, which would be gross. |
| * -- paulus |
| */ |
| #define _PTE_NONE_MASK _PAGE_ACCESSED |
| |
| #else /* CONFIG_6xx */ |
| /* Definitions for 60x, 740/750, etc. */ |
| #define _PAGE_PRESENT 0x001 /* software: pte contains a translation */ |
| #define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */ |
| #define _PAGE_FILE 0x004 /* when !present: nonlinear file mapping */ |
| #define _PAGE_USER 0x004 /* usermode access allowed */ |
| #define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */ |
| #define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */ |
| #define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */ |
| #define _PAGE_WRITETHRU 0x040 /* W: cache write-through */ |
| #define _PAGE_DIRTY 0x080 /* C: page changed */ |
| #define _PAGE_ACCESSED 0x100 /* R: page referenced */ |
| #define _PAGE_EXEC 0x200 /* software: i-cache coherency required */ |
| #define _PAGE_RW 0x400 /* software: user write access allowed */ |
| |
| #define _PTE_NONE_MASK _PAGE_HASHPTE |
| |
| #define _PMD_PRESENT 0 |
| #define _PMD_PRESENT_MASK (PAGE_MASK) |
| #define _PMD_BAD (~PAGE_MASK) |
| #endif |
| |
| /* |
| * Some bits are only used on some cpu families... |
| */ |
| #ifndef _PAGE_HASHPTE |
| #define _PAGE_HASHPTE 0 |
| #endif |
| #ifndef _PTE_NONE_MASK |
| #define _PTE_NONE_MASK 0 |
| #endif |
| #ifndef _PAGE_SHARED |
| #define _PAGE_SHARED 0 |
| #endif |
| #ifndef _PAGE_HWWRITE |
| #define _PAGE_HWWRITE 0 |
| #endif |
| #ifndef _PAGE_HWEXEC |
| #define _PAGE_HWEXEC 0 |
| #endif |
| #ifndef _PAGE_EXEC |
| #define _PAGE_EXEC 0 |
| #endif |
| #ifndef _PMD_PRESENT_MASK |
| #define _PMD_PRESENT_MASK _PMD_PRESENT |
| #endif |
| #ifndef _PMD_SIZE |
| #define _PMD_SIZE 0 |
| #define PMD_PAGE_SIZE(pmd) bad_call_to_PMD_PAGE_SIZE() |
| #endif |
| |
| #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) |
| |
| /* |
| * Note: the _PAGE_COHERENT bit automatically gets set in the hardware |
| * PTE if CONFIG_SMP is defined (hash_page does this); there is no need |
| * to have it in the Linux PTE, and in fact the bit could be reused for |
| * another purpose. -- paulus. |
| */ |
| |
| #ifdef CONFIG_44x |
| #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_GUARDED) |
| #else |
| #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) |
| #endif |
| #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE) |
| #define _PAGE_KERNEL (_PAGE_BASE | _PAGE_SHARED | _PAGE_WRENABLE) |
| |
| #ifdef CONFIG_PPC_STD_MMU |
| /* On standard PPC MMU, no user access implies kernel read/write access, |
| * so to write-protect kernel memory we must turn on user access */ |
| #define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED | _PAGE_USER) |
| #else |
| #define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED) |
| #endif |
| |
| #define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED) |
| #define _PAGE_RAM (_PAGE_KERNEL | _PAGE_HWEXEC) |
| |
| #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) |
| /* We want the debuggers to be able to set breakpoints anywhere, so |
| * don't write protect the kernel text */ |
| #define _PAGE_RAM_TEXT _PAGE_RAM |
| #else |
| #define _PAGE_RAM_TEXT (_PAGE_KERNEL_RO | _PAGE_HWEXEC) |
| #endif |
| |
| #define PAGE_NONE __pgprot(_PAGE_BASE) |
| #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) |
| #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) |
| #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) |
| #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) |
| #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) |
| #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) |
| |
| #define PAGE_KERNEL __pgprot(_PAGE_RAM) |
| #define PAGE_KERNEL_NOCACHE __pgprot(_PAGE_IO) |
| |
| /* |
| * The PowerPC can only do execute protection on a segment (256MB) basis, |
| * not on a page basis. So we consider execute permission the same as read. |
| * Also, write permissions imply read permissions. |
| * This is the closest we can get.. |
| */ |
| #define __P000 PAGE_NONE |
| #define __P001 PAGE_READONLY_X |
| #define __P010 PAGE_COPY |
| #define __P011 PAGE_COPY_X |
| #define __P100 PAGE_READONLY |
| #define __P101 PAGE_READONLY_X |
| #define __P110 PAGE_COPY |
| #define __P111 PAGE_COPY_X |
| |
| #define __S000 PAGE_NONE |
| #define __S001 PAGE_READONLY_X |
| #define __S010 PAGE_SHARED |
| #define __S011 PAGE_SHARED_X |
| #define __S100 PAGE_READONLY |
| #define __S101 PAGE_READONLY_X |
| #define __S110 PAGE_SHARED |
| #define __S111 PAGE_SHARED_X |
| |
| #ifndef __ASSEMBLY__ |
| /* Make sure we get a link error if PMD_PAGE_SIZE is ever called on a |
| * kernel without large page PMD support */ |
| extern unsigned long bad_call_to_PMD_PAGE_SIZE(void); |
| |
| /* |
| * Conversions between PTE values and page frame numbers. |
| */ |
| |
| /* in some case we want to additionaly adjust where the pfn is in the pte to |
| * allow room for more flags */ |
| #if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT) |
| #define PFN_SHIFT_OFFSET (PAGE_SHIFT + 8) |
| #else |
| #define PFN_SHIFT_OFFSET (PAGE_SHIFT) |
| #endif |
| |
| #define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET) |
| #define pte_page(x) pfn_to_page(pte_pfn(x)) |
| |
| #define pfn_pte(pfn, prot) __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) |\ |
| pgprot_val(prot)) |
| #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) |
| |
| /* |
| * ZERO_PAGE is a global shared page that is always zero: used |
| * for zero-mapped memory areas etc.. |
| */ |
| extern unsigned long empty_zero_page[1024]; |
| #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| #define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0) |
| #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) |
| #define pte_clear(mm,addr,ptep) do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0) |
| |
| #define pmd_none(pmd) (!pmd_val(pmd)) |
| #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) |
| #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) |
| #define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0) |
| |
| #ifndef __ASSEMBLY__ |
| /* |
| * The "pgd_xxx()" functions here are trivial for a folded two-level |
| * setup: the pgd is never bad, and a pmd always exists (as it's folded |
| * into the pgd entry) |
| */ |
| static inline int pgd_none(pgd_t pgd) { return 0; } |
| static inline int pgd_bad(pgd_t pgd) { return 0; } |
| static inline int pgd_present(pgd_t pgd) { return 1; } |
| #define pgd_clear(xp) do { } while (0) |
| |
| #define pgd_page_vaddr(pgd) \ |
| ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK)) |
| |
| /* |
| * The following only work if pte_present() is true. |
| * Undefined behaviour if not.. |
| */ |
| static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } |
| static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } |
| static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } |
| static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } |
| static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } |
| static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } |
| |
| static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } |
| static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } |
| |
| static inline pte_t pte_rdprotect(pte_t pte) { |
| pte_val(pte) &= ~_PAGE_USER; return pte; } |
| static inline pte_t pte_wrprotect(pte_t pte) { |
| pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } |
| static inline pte_t pte_exprotect(pte_t pte) { |
| pte_val(pte) &= ~_PAGE_EXEC; return pte; } |
| static inline pte_t pte_mkclean(pte_t pte) { |
| pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } |
| static inline pte_t pte_mkold(pte_t pte) { |
| pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } |
| |
| static inline pte_t pte_mkread(pte_t pte) { |
| pte_val(pte) |= _PAGE_USER; return pte; } |
| static inline pte_t pte_mkexec(pte_t pte) { |
| pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } |
| static inline pte_t pte_mkwrite(pte_t pte) { |
| pte_val(pte) |= _PAGE_RW; return pte; } |
| static inline pte_t pte_mkdirty(pte_t pte) { |
| pte_val(pte) |= _PAGE_DIRTY; return pte; } |
| static inline pte_t pte_mkyoung(pte_t pte) { |
| pte_val(pte) |= _PAGE_ACCESSED; return pte; } |
| |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); |
| return pte; |
| } |
| |
| /* |
| * When flushing the tlb entry for a page, we also need to flush the hash |
| * table entry. flush_hash_pages is assembler (for speed) in hashtable.S. |
| */ |
| extern int flush_hash_pages(unsigned context, unsigned long va, |
| unsigned long pmdval, int count); |
| |
| /* Add an HPTE to the hash table */ |
| extern void add_hash_page(unsigned context, unsigned long va, |
| unsigned long pmdval); |
| |
| /* |
| * Atomic PTE updates. |
| * |
| * pte_update clears and sets bit atomically, and returns |
| * the old pte value. In the 64-bit PTE case we lock around the |
| * low PTE word since we expect ALL flag bits to be there |
| */ |
| #ifndef CONFIG_PTE_64BIT |
| static inline unsigned long pte_update(pte_t *p, unsigned long clr, |
| unsigned long set) |
| { |
| unsigned long old, tmp; |
| |
| __asm__ __volatile__("\ |
| 1: lwarx %0,0,%3\n\ |
| andc %1,%0,%4\n\ |
| or %1,%1,%5\n" |
| PPC405_ERR77(0,%3) |
| " stwcx. %1,0,%3\n\ |
| bne- 1b" |
| : "=&r" (old), "=&r" (tmp), "=m" (*p) |
| : "r" (p), "r" (clr), "r" (set), "m" (*p) |
| : "cc" ); |
| return old; |
| } |
| #else |
| static inline unsigned long long pte_update(pte_t *p, unsigned long clr, |
| unsigned long set) |
| { |
| unsigned long long old; |
| unsigned long tmp; |
| |
| __asm__ __volatile__("\ |
| 1: lwarx %L0,0,%4\n\ |
| lwzx %0,0,%3\n\ |
| andc %1,%L0,%5\n\ |
| or %1,%1,%6\n" |
| PPC405_ERR77(0,%3) |
| " stwcx. %1,0,%4\n\ |
| bne- 1b" |
| : "=&r" (old), "=&r" (tmp), "=m" (*p) |
| : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p) |
| : "cc" ); |
| return old; |
| } |
| #endif |
| |
| /* |
| * set_pte stores a linux PTE into the linux page table. |
| * On machines which use an MMU hash table we avoid changing the |
| * _PAGE_HASHPTE bit. |
| */ |
| static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte) |
| { |
| #if _PAGE_HASHPTE != 0 |
| pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte) & ~_PAGE_HASHPTE); |
| #else |
| *ptep = pte; |
| #endif |
| } |
| |
| /* |
| * 2.6 calles this without flushing the TLB entry, this is wrong |
| * for our hash-based implementation, we fix that up here |
| */ |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep) |
| { |
| unsigned long old; |
| old = pte_update(ptep, _PAGE_ACCESSED, 0); |
| #if _PAGE_HASHPTE != 0 |
| if (old & _PAGE_HASHPTE) { |
| unsigned long ptephys = __pa(ptep) & PAGE_MASK; |
| flush_hash_pages(context, addr, ptephys, 1); |
| } |
| #endif |
| return (old & _PAGE_ACCESSED) != 0; |
| } |
| #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ |
| __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep) |
| |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY |
| static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, |
| unsigned long addr, pte_t *ptep) |
| { |
| return (pte_update(ptep, (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0; |
| } |
| |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); |
| } |
| |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0); |
| } |
| |
| #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
| static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty) |
| { |
| unsigned long bits = pte_val(entry) & |
| (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW); |
| pte_update(ptep, 0, bits); |
| } |
| |
| #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ |
| do { \ |
| __ptep_set_access_flags(__ptep, __entry, __dirty); \ |
| flush_tlb_page_nohash(__vma, __address); \ |
| } while(0) |
| |
| /* |
| * Macro to mark a page protection value as "uncacheable". |
| */ |
| #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED)) |
| |
| struct file; |
| extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, |
| unsigned long size, pgprot_t vma_prot); |
| #define __HAVE_PHYS_MEM_ACCESS_PROT |
| |
| #define __HAVE_ARCH_PTE_SAME |
| #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) |
| |
| /* |
| * Note that on Book E processors, the pmd contains the kernel virtual |
| * (lowmem) address of the pte page. The physical address is less useful |
| * because everything runs with translation enabled (even the TLB miss |
| * handler). On everything else the pmd contains the physical address |
| * of the pte page. -- paulus |
| */ |
| #ifndef CONFIG_BOOKE |
| #define pmd_page_vaddr(pmd) \ |
| ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) |
| #define pmd_page(pmd) \ |
| (mem_map + (pmd_val(pmd) >> PAGE_SHIFT)) |
| #else |
| #define pmd_page_vaddr(pmd) \ |
| ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) |
| #define pmd_page(pmd) \ |
| (mem_map + (__pa(pmd_val(pmd)) >> PAGE_SHIFT)) |
| #endif |
| |
| /* to find an entry in a kernel page-table-directory */ |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| |
| /* to find an entry in a page-table-directory */ |
| #define pgd_index(address) ((address) >> PGDIR_SHIFT) |
| #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) |
| |
| /* Find an entry in the second-level page table.. */ |
| static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) |
| { |
| return (pmd_t *) dir; |
| } |
| |
| /* Find an entry in the third-level page table.. */ |
| #define pte_index(address) \ |
| (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| #define pte_offset_kernel(dir, addr) \ |
| ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr)) |
| #define pte_offset_map(dir, addr) \ |
| ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr)) |
| #define pte_offset_map_nested(dir, addr) \ |
| ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr)) |
| |
| #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) |
| #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1) |
| |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; |
| |
| extern void paging_init(void); |
| |
| /* |
| * Encode and decode a swap entry. |
| * Note that the bits we use in a PTE for representing a swap entry |
| * must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the |
| *_PAGE_HASHPTE bit (if used). -- paulus |
| */ |
| #define __swp_type(entry) ((entry).val & 0x1f) |
| #define __swp_offset(entry) ((entry).val >> 5) |
| #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) }) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) |
| |
| /* Encode and decode a nonlinear file mapping entry */ |
| #define PTE_FILE_MAX_BITS 29 |
| #define pte_to_pgoff(pte) (pte_val(pte) >> 3) |
| #define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE }) |
| |
| /* CONFIG_APUS */ |
| /* For virtual address to physical address conversion */ |
| extern void cache_clear(__u32 addr, int length); |
| extern void cache_push(__u32 addr, int length); |
| extern int mm_end_of_chunk (unsigned long addr, int len); |
| extern unsigned long iopa(unsigned long addr); |
| extern unsigned long mm_ptov(unsigned long addr) __attribute_const__; |
| |
| /* Values for nocacheflag and cmode */ |
| /* These are not used by the APUS kernel_map, but prevents |
| compilation errors. */ |
| #define KERNELMAP_FULL_CACHING 0 |
| #define KERNELMAP_NOCACHE_SER 1 |
| #define KERNELMAP_NOCACHE_NONSER 2 |
| #define KERNELMAP_NO_COPYBACK 3 |
| |
| /* |
| * Map some physical address range into the kernel address space. |
| */ |
| extern unsigned long kernel_map(unsigned long paddr, unsigned long size, |
| int nocacheflag, unsigned long *memavailp ); |
| |
| /* |
| * Set cache mode of (kernel space) address range. |
| */ |
| extern void kernel_set_cachemode (unsigned long address, unsigned long size, |
| unsigned int cmode); |
| |
| /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ |
| #define kern_addr_valid(addr) (1) |
| |
| #ifdef CONFIG_PHYS_64BIT |
| extern int remap_pfn_range(struct vm_area_struct *vma, unsigned long from, |
| unsigned long paddr, unsigned long size, pgprot_t prot); |
| |
| static inline int io_remap_pfn_range(struct vm_area_struct *vma, |
| unsigned long vaddr, |
| unsigned long pfn, |
| unsigned long size, |
| pgprot_t prot) |
| { |
| phys_addr_t paddr64 = fixup_bigphys_addr(pfn << PAGE_SHIFT, size); |
| return remap_pfn_range(vma, vaddr, paddr64 >> PAGE_SHIFT, size, prot); |
| } |
| #else |
| #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ |
| remap_pfn_range(vma, vaddr, pfn, size, prot) |
| #endif |
| |
| /* |
| * No page table caches to initialise |
| */ |
| #define pgtable_cache_init() do { } while (0) |
| |
| extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep, |
| pmd_t **pmdp); |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* _ASM_POWERPC_PGTABLE_PPC32_H */ |