| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright (c) International Business Machines Corp., 2006 |
| * |
| * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner |
| */ |
| |
| /* |
| * UBI wear-leveling sub-system. |
| * |
| * This sub-system is responsible for wear-leveling. It works in terms of |
| * physical eraseblocks and erase counters and knows nothing about logical |
| * eraseblocks, volumes, etc. From this sub-system's perspective all physical |
| * eraseblocks are of two types - used and free. Used physical eraseblocks are |
| * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical |
| * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. |
| * |
| * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter |
| * header. The rest of the physical eraseblock contains only %0xFF bytes. |
| * |
| * When physical eraseblocks are returned to the WL sub-system by means of the |
| * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is |
| * done asynchronously in context of the per-UBI device background thread, |
| * which is also managed by the WL sub-system. |
| * |
| * The wear-leveling is ensured by means of moving the contents of used |
| * physical eraseblocks with low erase counter to free physical eraseblocks |
| * with high erase counter. |
| * |
| * If the WL sub-system fails to erase a physical eraseblock, it marks it as |
| * bad. |
| * |
| * This sub-system is also responsible for scrubbing. If a bit-flip is detected |
| * in a physical eraseblock, it has to be moved. Technically this is the same |
| * as moving it for wear-leveling reasons. |
| * |
| * As it was said, for the UBI sub-system all physical eraseblocks are either |
| * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while |
| * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub |
| * RB-trees, as well as (temporarily) in the @wl->pq queue. |
| * |
| * When the WL sub-system returns a physical eraseblock, the physical |
| * eraseblock is protected from being moved for some "time". For this reason, |
| * the physical eraseblock is not directly moved from the @wl->free tree to the |
| * @wl->used tree. There is a protection queue in between where this |
| * physical eraseblock is temporarily stored (@wl->pq). |
| * |
| * All this protection stuff is needed because: |
| * o we don't want to move physical eraseblocks just after we have given them |
| * to the user; instead, we first want to let users fill them up with data; |
| * |
| * o there is a chance that the user will put the physical eraseblock very |
| * soon, so it makes sense not to move it for some time, but wait. |
| * |
| * Physical eraseblocks stay protected only for limited time. But the "time" is |
| * measured in erase cycles in this case. This is implemented with help of the |
| * protection queue. Eraseblocks are put to the tail of this queue when they |
| * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the |
| * head of the queue on each erase operation (for any eraseblock). So the |
| * length of the queue defines how may (global) erase cycles PEBs are protected. |
| * |
| * To put it differently, each physical eraseblock has 2 main states: free and |
| * used. The former state corresponds to the @wl->free tree. The latter state |
| * is split up on several sub-states: |
| * o the WL movement is allowed (@wl->used tree); |
| * o the WL movement is disallowed (@wl->erroneous) because the PEB is |
| * erroneous - e.g., there was a read error; |
| * o the WL movement is temporarily prohibited (@wl->pq queue); |
| * o scrubbing is needed (@wl->scrub tree). |
| * |
| * Depending on the sub-state, wear-leveling entries of the used physical |
| * eraseblocks may be kept in one of those structures. |
| * |
| * Note, in this implementation, we keep a small in-RAM object for each physical |
| * eraseblock. This is surely not a scalable solution. But it appears to be good |
| * enough for moderately large flashes and it is simple. In future, one may |
| * re-work this sub-system and make it more scalable. |
| * |
| * At the moment this sub-system does not utilize the sequence number, which |
| * was introduced relatively recently. But it would be wise to do this because |
| * the sequence number of a logical eraseblock characterizes how old is it. For |
| * example, when we move a PEB with low erase counter, and we need to pick the |
| * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we |
| * pick target PEB with an average EC if our PEB is not very "old". This is a |
| * room for future re-works of the WL sub-system. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/crc32.h> |
| #include <linux/freezer.h> |
| #include <linux/kthread.h> |
| #include "ubi.h" |
| #include "wl.h" |
| |
| /* Number of physical eraseblocks reserved for wear-leveling purposes */ |
| #define WL_RESERVED_PEBS 1 |
| |
| /* |
| * Maximum difference between two erase counters. If this threshold is |
| * exceeded, the WL sub-system starts moving data from used physical |
| * eraseblocks with low erase counter to free physical eraseblocks with high |
| * erase counter. |
| */ |
| #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD |
| |
| /* |
| * When a physical eraseblock is moved, the WL sub-system has to pick the target |
| * physical eraseblock to move to. The simplest way would be just to pick the |
| * one with the highest erase counter. But in certain workloads this could lead |
| * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a |
| * situation when the picked physical eraseblock is constantly erased after the |
| * data is written to it. So, we have a constant which limits the highest erase |
| * counter of the free physical eraseblock to pick. Namely, the WL sub-system |
| * does not pick eraseblocks with erase counter greater than the lowest erase |
| * counter plus %WL_FREE_MAX_DIFF. |
| */ |
| #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) |
| |
| /* |
| * Maximum number of consecutive background thread failures which is enough to |
| * switch to read-only mode. |
| */ |
| #define WL_MAX_FAILURES 32 |
| |
| static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); |
| static int self_check_in_wl_tree(const struct ubi_device *ubi, |
| struct ubi_wl_entry *e, struct rb_root *root); |
| static int self_check_in_pq(const struct ubi_device *ubi, |
| struct ubi_wl_entry *e); |
| |
| /** |
| * wl_tree_add - add a wear-leveling entry to a WL RB-tree. |
| * @e: the wear-leveling entry to add |
| * @root: the root of the tree |
| * |
| * Note, we use (erase counter, physical eraseblock number) pairs as keys in |
| * the @ubi->used and @ubi->free RB-trees. |
| */ |
| static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) |
| { |
| struct rb_node **p, *parent = NULL; |
| |
| p = &root->rb_node; |
| while (*p) { |
| struct ubi_wl_entry *e1; |
| |
| parent = *p; |
| e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); |
| |
| if (e->ec < e1->ec) |
| p = &(*p)->rb_left; |
| else if (e->ec > e1->ec) |
| p = &(*p)->rb_right; |
| else { |
| ubi_assert(e->pnum != e1->pnum); |
| if (e->pnum < e1->pnum) |
| p = &(*p)->rb_left; |
| else |
| p = &(*p)->rb_right; |
| } |
| } |
| |
| rb_link_node(&e->u.rb, parent, p); |
| rb_insert_color(&e->u.rb, root); |
| } |
| |
| /** |
| * wl_tree_destroy - destroy a wear-leveling entry. |
| * @ubi: UBI device description object |
| * @e: the wear-leveling entry to add |
| * |
| * This function destroys a wear leveling entry and removes |
| * the reference from the lookup table. |
| */ |
| static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) |
| { |
| ubi->lookuptbl[e->pnum] = NULL; |
| kmem_cache_free(ubi_wl_entry_slab, e); |
| } |
| |
| /** |
| * do_work - do one pending work. |
| * @ubi: UBI device description object |
| * |
| * This function returns zero in case of success and a negative error code in |
| * case of failure. |
| */ |
| static int do_work(struct ubi_device *ubi) |
| { |
| int err; |
| struct ubi_work *wrk; |
| |
| cond_resched(); |
| |
| /* |
| * @ubi->work_sem is used to synchronize with the workers. Workers take |
| * it in read mode, so many of them may be doing works at a time. But |
| * the queue flush code has to be sure the whole queue of works is |
| * done, and it takes the mutex in write mode. |
| */ |
| down_read(&ubi->work_sem); |
| spin_lock(&ubi->wl_lock); |
| if (list_empty(&ubi->works)) { |
| spin_unlock(&ubi->wl_lock); |
| up_read(&ubi->work_sem); |
| return 0; |
| } |
| |
| wrk = list_entry(ubi->works.next, struct ubi_work, list); |
| list_del(&wrk->list); |
| ubi->works_count -= 1; |
| ubi_assert(ubi->works_count >= 0); |
| spin_unlock(&ubi->wl_lock); |
| |
| /* |
| * Call the worker function. Do not touch the work structure |
| * after this call as it will have been freed or reused by that |
| * time by the worker function. |
| */ |
| err = wrk->func(ubi, wrk, 0); |
| if (err) |
| ubi_err(ubi, "work failed with error code %d", err); |
| up_read(&ubi->work_sem); |
| |
| return err; |
| } |
| |
| /** |
| * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. |
| * @e: the wear-leveling entry to check |
| * @root: the root of the tree |
| * |
| * This function returns non-zero if @e is in the @root RB-tree and zero if it |
| * is not. |
| */ |
| static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) |
| { |
| struct rb_node *p; |
| |
| p = root->rb_node; |
| while (p) { |
| struct ubi_wl_entry *e1; |
| |
| e1 = rb_entry(p, struct ubi_wl_entry, u.rb); |
| |
| if (e->pnum == e1->pnum) { |
| ubi_assert(e == e1); |
| return 1; |
| } |
| |
| if (e->ec < e1->ec) |
| p = p->rb_left; |
| else if (e->ec > e1->ec) |
| p = p->rb_right; |
| else { |
| ubi_assert(e->pnum != e1->pnum); |
| if (e->pnum < e1->pnum) |
| p = p->rb_left; |
| else |
| p = p->rb_right; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * in_pq - check if a wear-leveling entry is present in the protection queue. |
| * @ubi: UBI device description object |
| * @e: the wear-leveling entry to check |
| * |
| * This function returns non-zero if @e is in the protection queue and zero |
| * if it is not. |
| */ |
| static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e) |
| { |
| struct ubi_wl_entry *p; |
| int i; |
| |
| for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) |
| list_for_each_entry(p, &ubi->pq[i], u.list) |
| if (p == e) |
| return 1; |
| |
| return 0; |
| } |
| |
| /** |
| * prot_queue_add - add physical eraseblock to the protection queue. |
| * @ubi: UBI device description object |
| * @e: the physical eraseblock to add |
| * |
| * This function adds @e to the tail of the protection queue @ubi->pq, where |
| * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be |
| * temporarily protected from the wear-leveling worker. Note, @wl->lock has to |
| * be locked. |
| */ |
| static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) |
| { |
| int pq_tail = ubi->pq_head - 1; |
| |
| if (pq_tail < 0) |
| pq_tail = UBI_PROT_QUEUE_LEN - 1; |
| ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); |
| list_add_tail(&e->u.list, &ubi->pq[pq_tail]); |
| dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); |
| } |
| |
| /** |
| * find_wl_entry - find wear-leveling entry closest to certain erase counter. |
| * @ubi: UBI device description object |
| * @root: the RB-tree where to look for |
| * @diff: maximum possible difference from the smallest erase counter |
| * |
| * This function looks for a wear leveling entry with erase counter closest to |
| * min + @diff, where min is the smallest erase counter. |
| */ |
| static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, |
| struct rb_root *root, int diff) |
| { |
| struct rb_node *p; |
| struct ubi_wl_entry *e; |
| int max; |
| |
| e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); |
| max = e->ec + diff; |
| |
| p = root->rb_node; |
| while (p) { |
| struct ubi_wl_entry *e1; |
| |
| e1 = rb_entry(p, struct ubi_wl_entry, u.rb); |
| if (e1->ec >= max) |
| p = p->rb_left; |
| else { |
| p = p->rb_right; |
| e = e1; |
| } |
| } |
| |
| return e; |
| } |
| |
| /** |
| * find_mean_wl_entry - find wear-leveling entry with medium erase counter. |
| * @ubi: UBI device description object |
| * @root: the RB-tree where to look for |
| * |
| * This function looks for a wear leveling entry with medium erase counter, |
| * but not greater or equivalent than the lowest erase counter plus |
| * %WL_FREE_MAX_DIFF/2. |
| */ |
| static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, |
| struct rb_root *root) |
| { |
| struct ubi_wl_entry *e, *first, *last; |
| |
| first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); |
| last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); |
| |
| if (last->ec - first->ec < WL_FREE_MAX_DIFF) { |
| e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); |
| |
| /* If no fastmap has been written and this WL entry can be used |
| * as anchor PEB, hold it back and return the second best |
| * WL entry such that fastmap can use the anchor PEB later. */ |
| e = may_reserve_for_fm(ubi, e, root); |
| } else |
| e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); |
| |
| return e; |
| } |
| |
| /** |
| * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or |
| * refill_wl_user_pool(). |
| * @ubi: UBI device description object |
| * |
| * This function returns a a wear leveling entry in case of success and |
| * NULL in case of failure. |
| */ |
| static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) |
| { |
| struct ubi_wl_entry *e; |
| |
| e = find_mean_wl_entry(ubi, &ubi->free); |
| if (!e) { |
| ubi_err(ubi, "no free eraseblocks"); |
| return NULL; |
| } |
| |
| self_check_in_wl_tree(ubi, e, &ubi->free); |
| |
| /* |
| * Move the physical eraseblock to the protection queue where it will |
| * be protected from being moved for some time. |
| */ |
| rb_erase(&e->u.rb, &ubi->free); |
| ubi->free_count--; |
| dbg_wl("PEB %d EC %d", e->pnum, e->ec); |
| |
| return e; |
| } |
| |
| /** |
| * prot_queue_del - remove a physical eraseblock from the protection queue. |
| * @ubi: UBI device description object |
| * @pnum: the physical eraseblock to remove |
| * |
| * This function deletes PEB @pnum from the protection queue and returns zero |
| * in case of success and %-ENODEV if the PEB was not found. |
| */ |
| static int prot_queue_del(struct ubi_device *ubi, int pnum) |
| { |
| struct ubi_wl_entry *e; |
| |
| e = ubi->lookuptbl[pnum]; |
| if (!e) |
| return -ENODEV; |
| |
| if (self_check_in_pq(ubi, e)) |
| return -ENODEV; |
| |
| list_del(&e->u.list); |
| dbg_wl("deleted PEB %d from the protection queue", e->pnum); |
| return 0; |
| } |
| |
| /** |
| * sync_erase - synchronously erase a physical eraseblock. |
| * @ubi: UBI device description object |
| * @e: the the physical eraseblock to erase |
| * @torture: if the physical eraseblock has to be tortured |
| * |
| * This function returns zero in case of success and a negative error code in |
| * case of failure. |
| */ |
| static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, |
| int torture) |
| { |
| int err; |
| struct ubi_ec_hdr *ec_hdr; |
| unsigned long long ec = e->ec; |
| |
| dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); |
| |
| err = self_check_ec(ubi, e->pnum, e->ec); |
| if (err) |
| return -EINVAL; |
| |
| ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); |
| if (!ec_hdr) |
| return -ENOMEM; |
| |
| err = ubi_io_sync_erase(ubi, e->pnum, torture); |
| if (err < 0) |
| goto out_free; |
| |
| ec += err; |
| if (ec > UBI_MAX_ERASECOUNTER) { |
| /* |
| * Erase counter overflow. Upgrade UBI and use 64-bit |
| * erase counters internally. |
| */ |
| ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", |
| e->pnum, ec); |
| err = -EINVAL; |
| goto out_free; |
| } |
| |
| dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); |
| |
| ec_hdr->ec = cpu_to_be64(ec); |
| |
| err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); |
| if (err) |
| goto out_free; |
| |
| e->ec = ec; |
| spin_lock(&ubi->wl_lock); |
| if (e->ec > ubi->max_ec) |
| ubi->max_ec = e->ec; |
| spin_unlock(&ubi->wl_lock); |
| |
| out_free: |
| kfree(ec_hdr); |
| return err; |
| } |
| |
| /** |
| * serve_prot_queue - check if it is time to stop protecting PEBs. |
| * @ubi: UBI device description object |
| * |
| * This function is called after each erase operation and removes PEBs from the |
| * tail of the protection queue. These PEBs have been protected for long enough |
| * and should be moved to the used tree. |
| */ |
| static void serve_prot_queue(struct ubi_device *ubi) |
| { |
| struct ubi_wl_entry *e, *tmp; |
| int count; |
| |
| /* |
| * There may be several protected physical eraseblock to remove, |
| * process them all. |
| */ |
| repeat: |
| count = 0; |
| spin_lock(&ubi->wl_lock); |
| list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { |
| dbg_wl("PEB %d EC %d protection over, move to used tree", |
| e->pnum, e->ec); |
| |
| list_del(&e->u.list); |
| wl_tree_add(e, &ubi->used); |
| if (count++ > 32) { |
| /* |
| * Let's be nice and avoid holding the spinlock for |
| * too long. |
| */ |
| spin_unlock(&ubi->wl_lock); |
| cond_resched(); |
| goto repeat; |
| } |
| } |
| |
| ubi->pq_head += 1; |
| if (ubi->pq_head == UBI_PROT_QUEUE_LEN) |
| ubi->pq_head = 0; |
| ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); |
| spin_unlock(&ubi->wl_lock); |
| } |
| |
| /** |
| * __schedule_ubi_work - schedule a work. |
| * @ubi: UBI device description object |
| * @wrk: the work to schedule |
| * |
| * This function adds a work defined by @wrk to the tail of the pending works |
| * list. Can only be used if ubi->work_sem is already held in read mode! |
| */ |
| static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) |
| { |
| spin_lock(&ubi->wl_lock); |
| list_add_tail(&wrk->list, &ubi->works); |
| ubi_assert(ubi->works_count >= 0); |
| ubi->works_count += 1; |
| if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) |
| wake_up_process(ubi->bgt_thread); |
| spin_unlock(&ubi->wl_lock); |
| } |
| |
| /** |
| * schedule_ubi_work - schedule a work. |
| * @ubi: UBI device description object |
| * @wrk: the work to schedule |
| * |
| * This function adds a work defined by @wrk to the tail of the pending works |
| * list. |
| */ |
| static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) |
| { |
| down_read(&ubi->work_sem); |
| __schedule_ubi_work(ubi, wrk); |
| up_read(&ubi->work_sem); |
| } |
| |
| static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, |
| int shutdown); |
| |
| /** |
| * schedule_erase - schedule an erase work. |
| * @ubi: UBI device description object |
| * @e: the WL entry of the physical eraseblock to erase |
| * @vol_id: the volume ID that last used this PEB |
| * @lnum: the last used logical eraseblock number for the PEB |
| * @torture: if the physical eraseblock has to be tortured |
| * |
| * This function returns zero in case of success and a %-ENOMEM in case of |
| * failure. |
| */ |
| static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, |
| int vol_id, int lnum, int torture, bool nested) |
| { |
| struct ubi_work *wl_wrk; |
| |
| ubi_assert(e); |
| |
| dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", |
| e->pnum, e->ec, torture); |
| |
| wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); |
| if (!wl_wrk) |
| return -ENOMEM; |
| |
| wl_wrk->func = &erase_worker; |
| wl_wrk->e = e; |
| wl_wrk->vol_id = vol_id; |
| wl_wrk->lnum = lnum; |
| wl_wrk->torture = torture; |
| |
| if (nested) |
| __schedule_ubi_work(ubi, wl_wrk); |
| else |
| schedule_ubi_work(ubi, wl_wrk); |
| return 0; |
| } |
| |
| static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk); |
| /** |
| * do_sync_erase - run the erase worker synchronously. |
| * @ubi: UBI device description object |
| * @e: the WL entry of the physical eraseblock to erase |
| * @vol_id: the volume ID that last used this PEB |
| * @lnum: the last used logical eraseblock number for the PEB |
| * @torture: if the physical eraseblock has to be tortured |
| * |
| */ |
| static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, |
| int vol_id, int lnum, int torture) |
| { |
| struct ubi_work wl_wrk; |
| |
| dbg_wl("sync erase of PEB %i", e->pnum); |
| |
| wl_wrk.e = e; |
| wl_wrk.vol_id = vol_id; |
| wl_wrk.lnum = lnum; |
| wl_wrk.torture = torture; |
| |
| return __erase_worker(ubi, &wl_wrk); |
| } |
| |
| static int ensure_wear_leveling(struct ubi_device *ubi, int nested); |
| /** |
| * wear_leveling_worker - wear-leveling worker function. |
| * @ubi: UBI device description object |
| * @wrk: the work object |
| * @shutdown: non-zero if the worker has to free memory and exit |
| * because the WL-subsystem is shutting down |
| * |
| * This function copies a more worn out physical eraseblock to a less worn out |
| * one. Returns zero in case of success and a negative error code in case of |
| * failure. |
| */ |
| static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, |
| int shutdown) |
| { |
| int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; |
| int erase = 0, keep = 0, vol_id = -1, lnum = -1; |
| struct ubi_wl_entry *e1, *e2; |
| struct ubi_vid_io_buf *vidb; |
| struct ubi_vid_hdr *vid_hdr; |
| int dst_leb_clean = 0; |
| |
| kfree(wrk); |
| if (shutdown) |
| return 0; |
| |
| vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); |
| if (!vidb) |
| return -ENOMEM; |
| |
| vid_hdr = ubi_get_vid_hdr(vidb); |
| |
| down_read(&ubi->fm_eba_sem); |
| mutex_lock(&ubi->move_mutex); |
| spin_lock(&ubi->wl_lock); |
| ubi_assert(!ubi->move_from && !ubi->move_to); |
| ubi_assert(!ubi->move_to_put); |
| |
| if (!ubi->free.rb_node || |
| (!ubi->used.rb_node && !ubi->scrub.rb_node)) { |
| /* |
| * No free physical eraseblocks? Well, they must be waiting in |
| * the queue to be erased. Cancel movement - it will be |
| * triggered again when a free physical eraseblock appears. |
| * |
| * No used physical eraseblocks? They must be temporarily |
| * protected from being moved. They will be moved to the |
| * @ubi->used tree later and the wear-leveling will be |
| * triggered again. |
| */ |
| dbg_wl("cancel WL, a list is empty: free %d, used %d", |
| !ubi->free.rb_node, !ubi->used.rb_node); |
| goto out_cancel; |
| } |
| |
| #ifdef CONFIG_MTD_UBI_FASTMAP |
| if (ubi->fm_do_produce_anchor) { |
| e1 = find_anchor_wl_entry(&ubi->used); |
| if (!e1) |
| goto out_cancel; |
| e2 = get_peb_for_wl(ubi); |
| if (!e2) |
| goto out_cancel; |
| |
| /* |
| * Anchor move within the anchor area is useless. |
| */ |
| if (e2->pnum < UBI_FM_MAX_START) |
| goto out_cancel; |
| |
| self_check_in_wl_tree(ubi, e1, &ubi->used); |
| rb_erase(&e1->u.rb, &ubi->used); |
| dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); |
| ubi->fm_do_produce_anchor = 0; |
| } else if (!ubi->scrub.rb_node) { |
| #else |
| if (!ubi->scrub.rb_node) { |
| #endif |
| /* |
| * Now pick the least worn-out used physical eraseblock and a |
| * highly worn-out free physical eraseblock. If the erase |
| * counters differ much enough, start wear-leveling. |
| */ |
| e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); |
| e2 = get_peb_for_wl(ubi); |
| if (!e2) |
| goto out_cancel; |
| |
| if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { |
| dbg_wl("no WL needed: min used EC %d, max free EC %d", |
| e1->ec, e2->ec); |
| |
| /* Give the unused PEB back */ |
| wl_tree_add(e2, &ubi->free); |
| ubi->free_count++; |
| goto out_cancel; |
| } |
| self_check_in_wl_tree(ubi, e1, &ubi->used); |
| rb_erase(&e1->u.rb, &ubi->used); |
| dbg_wl("move PEB %d EC %d to PEB %d EC %d", |
| e1->pnum, e1->ec, e2->pnum, e2->ec); |
| } else { |
| /* Perform scrubbing */ |
| scrubbing = 1; |
| e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); |
| e2 = get_peb_for_wl(ubi); |
| if (!e2) |
| goto out_cancel; |
| |
| self_check_in_wl_tree(ubi, e1, &ubi->scrub); |
| rb_erase(&e1->u.rb, &ubi->scrub); |
| dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); |
| } |
| |
| ubi->move_from = e1; |
| ubi->move_to = e2; |
| spin_unlock(&ubi->wl_lock); |
| |
| /* |
| * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. |
| * We so far do not know which logical eraseblock our physical |
| * eraseblock (@e1) belongs to. We have to read the volume identifier |
| * header first. |
| * |
| * Note, we are protected from this PEB being unmapped and erased. The |
| * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB |
| * which is being moved was unmapped. |
| */ |
| |
| err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0); |
| if (err && err != UBI_IO_BITFLIPS) { |
| dst_leb_clean = 1; |
| if (err == UBI_IO_FF) { |
| /* |
| * We are trying to move PEB without a VID header. UBI |
| * always write VID headers shortly after the PEB was |
| * given, so we have a situation when it has not yet |
| * had a chance to write it, because it was preempted. |
| * So add this PEB to the protection queue so far, |
| * because presumably more data will be written there |
| * (including the missing VID header), and then we'll |
| * move it. |
| */ |
| dbg_wl("PEB %d has no VID header", e1->pnum); |
| protect = 1; |
| goto out_not_moved; |
| } else if (err == UBI_IO_FF_BITFLIPS) { |
| /* |
| * The same situation as %UBI_IO_FF, but bit-flips were |
| * detected. It is better to schedule this PEB for |
| * scrubbing. |
| */ |
| dbg_wl("PEB %d has no VID header but has bit-flips", |
| e1->pnum); |
| scrubbing = 1; |
| goto out_not_moved; |
| } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) { |
| /* |
| * While a full scan would detect interrupted erasures |
| * at attach time we can face them here when attached from |
| * Fastmap. |
| */ |
| dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure", |
| e1->pnum); |
| erase = 1; |
| goto out_not_moved; |
| } |
| |
| ubi_err(ubi, "error %d while reading VID header from PEB %d", |
| err, e1->pnum); |
| goto out_error; |
| } |
| |
| vol_id = be32_to_cpu(vid_hdr->vol_id); |
| lnum = be32_to_cpu(vid_hdr->lnum); |
| |
| err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb); |
| if (err) { |
| if (err == MOVE_CANCEL_RACE) { |
| /* |
| * The LEB has not been moved because the volume is |
| * being deleted or the PEB has been put meanwhile. We |
| * should prevent this PEB from being selected for |
| * wear-leveling movement again, so put it to the |
| * protection queue. |
| */ |
| protect = 1; |
| dst_leb_clean = 1; |
| goto out_not_moved; |
| } |
| if (err == MOVE_RETRY) { |
| scrubbing = 1; |
| dst_leb_clean = 1; |
| goto out_not_moved; |
| } |
| if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || |
| err == MOVE_TARGET_RD_ERR) { |
| /* |
| * Target PEB had bit-flips or write error - torture it. |
| */ |
| torture = 1; |
| keep = 1; |
| goto out_not_moved; |
| } |
| |
| if (err == MOVE_SOURCE_RD_ERR) { |
| /* |
| * An error happened while reading the source PEB. Do |
| * not switch to R/O mode in this case, and give the |
| * upper layers a possibility to recover from this, |
| * e.g. by unmapping corresponding LEB. Instead, just |
| * put this PEB to the @ubi->erroneous list to prevent |
| * UBI from trying to move it over and over again. |
| */ |
| if (ubi->erroneous_peb_count > ubi->max_erroneous) { |
| ubi_err(ubi, "too many erroneous eraseblocks (%d)", |
| ubi->erroneous_peb_count); |
| goto out_error; |
| } |
| dst_leb_clean = 1; |
| erroneous = 1; |
| goto out_not_moved; |
| } |
| |
| if (err < 0) |
| goto out_error; |
| |
| ubi_assert(0); |
| } |
| |
| /* The PEB has been successfully moved */ |
| if (scrubbing) |
| ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", |
| e1->pnum, vol_id, lnum, e2->pnum); |
| ubi_free_vid_buf(vidb); |
| |
| spin_lock(&ubi->wl_lock); |
| if (!ubi->move_to_put) { |
| wl_tree_add(e2, &ubi->used); |
| e2 = NULL; |
| } |
| ubi->move_from = ubi->move_to = NULL; |
| ubi->move_to_put = ubi->wl_scheduled = 0; |
| spin_unlock(&ubi->wl_lock); |
| |
| err = do_sync_erase(ubi, e1, vol_id, lnum, 0); |
| if (err) { |
| if (e2) |
| wl_entry_destroy(ubi, e2); |
| goto out_ro; |
| } |
| |
| if (e2) { |
| /* |
| * Well, the target PEB was put meanwhile, schedule it for |
| * erasure. |
| */ |
| dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", |
| e2->pnum, vol_id, lnum); |
| err = do_sync_erase(ubi, e2, vol_id, lnum, 0); |
| if (err) |
| goto out_ro; |
| } |
| |
| dbg_wl("done"); |
| mutex_unlock(&ubi->move_mutex); |
| up_read(&ubi->fm_eba_sem); |
| return 0; |
| |
| /* |
| * For some reasons the LEB was not moved, might be an error, might be |
| * something else. @e1 was not changed, so return it back. @e2 might |
| * have been changed, schedule it for erasure. |
| */ |
| out_not_moved: |
| if (vol_id != -1) |
| dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", |
| e1->pnum, vol_id, lnum, e2->pnum, err); |
| else |
| dbg_wl("cancel moving PEB %d to PEB %d (%d)", |
| e1->pnum, e2->pnum, err); |
| spin_lock(&ubi->wl_lock); |
| if (protect) |
| prot_queue_add(ubi, e1); |
| else if (erroneous) { |
| wl_tree_add(e1, &ubi->erroneous); |
| ubi->erroneous_peb_count += 1; |
| } else if (scrubbing) |
| wl_tree_add(e1, &ubi->scrub); |
| else if (keep) |
| wl_tree_add(e1, &ubi->used); |
| if (dst_leb_clean) { |
| wl_tree_add(e2, &ubi->free); |
| ubi->free_count++; |
| } |
| |
| ubi_assert(!ubi->move_to_put); |
| ubi->move_from = ubi->move_to = NULL; |
| ubi->wl_scheduled = 0; |
| spin_unlock(&ubi->wl_lock); |
| |
| ubi_free_vid_buf(vidb); |
| if (dst_leb_clean) { |
| ensure_wear_leveling(ubi, 1); |
| } else { |
| err = do_sync_erase(ubi, e2, vol_id, lnum, torture); |
| if (err) |
| goto out_ro; |
| } |
| |
| if (erase) { |
| err = do_sync_erase(ubi, e1, vol_id, lnum, 1); |
| if (err) |
| goto out_ro; |
| } |
| |
| mutex_unlock(&ubi->move_mutex); |
| up_read(&ubi->fm_eba_sem); |
| return 0; |
| |
| out_error: |
| if (vol_id != -1) |
| ubi_err(ubi, "error %d while moving PEB %d to PEB %d", |
| err, e1->pnum, e2->pnum); |
| else |
| ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", |
| err, e1->pnum, vol_id, lnum, e2->pnum); |
| spin_lock(&ubi->wl_lock); |
| ubi->move_from = ubi->move_to = NULL; |
| ubi->move_to_put = ubi->wl_scheduled = 0; |
| spin_unlock(&ubi->wl_lock); |
| |
| ubi_free_vid_buf(vidb); |
| wl_entry_destroy(ubi, e1); |
| wl_entry_destroy(ubi, e2); |
| |
| out_ro: |
| ubi_ro_mode(ubi); |
| mutex_unlock(&ubi->move_mutex); |
| up_read(&ubi->fm_eba_sem); |
| ubi_assert(err != 0); |
| return err < 0 ? err : -EIO; |
| |
| out_cancel: |
| ubi->wl_scheduled = 0; |
| spin_unlock(&ubi->wl_lock); |
| mutex_unlock(&ubi->move_mutex); |
| up_read(&ubi->fm_eba_sem); |
| ubi_free_vid_buf(vidb); |
| return 0; |
| } |
| |
| /** |
| * ensure_wear_leveling - schedule wear-leveling if it is needed. |
| * @ubi: UBI device description object |
| * @nested: set to non-zero if this function is called from UBI worker |
| * |
| * This function checks if it is time to start wear-leveling and schedules it |
| * if yes. This function returns zero in case of success and a negative error |
| * code in case of failure. |
| */ |
| static int ensure_wear_leveling(struct ubi_device *ubi, int nested) |
| { |
| int err = 0; |
| struct ubi_wl_entry *e1; |
| struct ubi_wl_entry *e2; |
| struct ubi_work *wrk; |
| |
| spin_lock(&ubi->wl_lock); |
| if (ubi->wl_scheduled) |
| /* Wear-leveling is already in the work queue */ |
| goto out_unlock; |
| |
| /* |
| * If the ubi->scrub tree is not empty, scrubbing is needed, and the |
| * the WL worker has to be scheduled anyway. |
| */ |
| if (!ubi->scrub.rb_node) { |
| if (!ubi->used.rb_node || !ubi->free.rb_node) |
| /* No physical eraseblocks - no deal */ |
| goto out_unlock; |
| |
| /* |
| * We schedule wear-leveling only if the difference between the |
| * lowest erase counter of used physical eraseblocks and a high |
| * erase counter of free physical eraseblocks is greater than |
| * %UBI_WL_THRESHOLD. |
| */ |
| e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); |
| e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); |
| |
| if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) |
| goto out_unlock; |
| dbg_wl("schedule wear-leveling"); |
| } else |
| dbg_wl("schedule scrubbing"); |
| |
| ubi->wl_scheduled = 1; |
| spin_unlock(&ubi->wl_lock); |
| |
| wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); |
| if (!wrk) { |
| err = -ENOMEM; |
| goto out_cancel; |
| } |
| |
| wrk->func = &wear_leveling_worker; |
| if (nested) |
| __schedule_ubi_work(ubi, wrk); |
| else |
| schedule_ubi_work(ubi, wrk); |
| return err; |
| |
| out_cancel: |
| spin_lock(&ubi->wl_lock); |
| ubi->wl_scheduled = 0; |
| out_unlock: |
| spin_unlock(&ubi->wl_lock); |
| return err; |
| } |
| |
| /** |
| * __erase_worker - physical eraseblock erase worker function. |
| * @ubi: UBI device description object |
| * @wl_wrk: the work object |
| * @shutdown: non-zero if the worker has to free memory and exit |
| * because the WL sub-system is shutting down |
| * |
| * This function erases a physical eraseblock and perform torture testing if |
| * needed. It also takes care about marking the physical eraseblock bad if |
| * needed. Returns zero in case of success and a negative error code in case of |
| * failure. |
| */ |
| static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk) |
| { |
| struct ubi_wl_entry *e = wl_wrk->e; |
| int pnum = e->pnum; |
| int vol_id = wl_wrk->vol_id; |
| int lnum = wl_wrk->lnum; |
| int err, available_consumed = 0; |
| |
| dbg_wl("erase PEB %d EC %d LEB %d:%d", |
| pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); |
| |
| err = sync_erase(ubi, e, wl_wrk->torture); |
| if (!err) { |
| spin_lock(&ubi->wl_lock); |
| |
| if (!ubi->fm_anchor && e->pnum < UBI_FM_MAX_START) { |
| ubi->fm_anchor = e; |
| ubi->fm_do_produce_anchor = 0; |
| } else { |
| wl_tree_add(e, &ubi->free); |
| ubi->free_count++; |
| } |
| |
| spin_unlock(&ubi->wl_lock); |
| |
| /* |
| * One more erase operation has happened, take care about |
| * protected physical eraseblocks. |
| */ |
| serve_prot_queue(ubi); |
| |
| /* And take care about wear-leveling */ |
| err = ensure_wear_leveling(ubi, 1); |
| return err; |
| } |
| |
| ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); |
| |
| if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || |
| err == -EBUSY) { |
| int err1; |
| |
| /* Re-schedule the LEB for erasure */ |
| err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false); |
| if (err1) { |
| wl_entry_destroy(ubi, e); |
| err = err1; |
| goto out_ro; |
| } |
| return err; |
| } |
| |
| wl_entry_destroy(ubi, e); |
| if (err != -EIO) |
| /* |
| * If this is not %-EIO, we have no idea what to do. Scheduling |
| * this physical eraseblock for erasure again would cause |
| * errors again and again. Well, lets switch to R/O mode. |
| */ |
| goto out_ro; |
| |
| /* It is %-EIO, the PEB went bad */ |
| |
| if (!ubi->bad_allowed) { |
| ubi_err(ubi, "bad physical eraseblock %d detected", pnum); |
| goto out_ro; |
| } |
| |
| spin_lock(&ubi->volumes_lock); |
| if (ubi->beb_rsvd_pebs == 0) { |
| if (ubi->avail_pebs == 0) { |
| spin_unlock(&ubi->volumes_lock); |
| ubi_err(ubi, "no reserved/available physical eraseblocks"); |
| goto out_ro; |
| } |
| ubi->avail_pebs -= 1; |
| available_consumed = 1; |
| } |
| spin_unlock(&ubi->volumes_lock); |
| |
| ubi_msg(ubi, "mark PEB %d as bad", pnum); |
| err = ubi_io_mark_bad(ubi, pnum); |
| if (err) |
| goto out_ro; |
| |
| spin_lock(&ubi->volumes_lock); |
| if (ubi->beb_rsvd_pebs > 0) { |
| if (available_consumed) { |
| /* |
| * The amount of reserved PEBs increased since we last |
| * checked. |
| */ |
| ubi->avail_pebs += 1; |
| available_consumed = 0; |
| } |
| ubi->beb_rsvd_pebs -= 1; |
| } |
| ubi->bad_peb_count += 1; |
| ubi->good_peb_count -= 1; |
| ubi_calculate_reserved(ubi); |
| if (available_consumed) |
| ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); |
| else if (ubi->beb_rsvd_pebs) |
| ubi_msg(ubi, "%d PEBs left in the reserve", |
| ubi->beb_rsvd_pebs); |
| else |
| ubi_warn(ubi, "last PEB from the reserve was used"); |
| spin_unlock(&ubi->volumes_lock); |
| |
| return err; |
| |
| out_ro: |
| if (available_consumed) { |
| spin_lock(&ubi->volumes_lock); |
| ubi->avail_pebs += 1; |
| spin_unlock(&ubi->volumes_lock); |
| } |
| ubi_ro_mode(ubi); |
| return err; |
| } |
| |
| static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, |
| int shutdown) |
| { |
| int ret; |
| |
| if (shutdown) { |
| struct ubi_wl_entry *e = wl_wrk->e; |
| |
| dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec); |
| kfree(wl_wrk); |
| wl_entry_destroy(ubi, e); |
| return 0; |
| } |
| |
| ret = __erase_worker(ubi, wl_wrk); |
| kfree(wl_wrk); |
| return ret; |
| } |
| |
| /** |
| * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. |
| * @ubi: UBI device description object |
| * @vol_id: the volume ID that last used this PEB |
| * @lnum: the last used logical eraseblock number for the PEB |
| * @pnum: physical eraseblock to return |
| * @torture: if this physical eraseblock has to be tortured |
| * |
| * This function is called to return physical eraseblock @pnum to the pool of |
| * free physical eraseblocks. The @torture flag has to be set if an I/O error |
| * occurred to this @pnum and it has to be tested. This function returns zero |
| * in case of success, and a negative error code in case of failure. |
| */ |
| int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, |
| int pnum, int torture) |
| { |
| int err; |
| struct ubi_wl_entry *e; |
| |
| dbg_wl("PEB %d", pnum); |
| ubi_assert(pnum >= 0); |
| ubi_assert(pnum < ubi->peb_count); |
| |
| down_read(&ubi->fm_protect); |
| |
| retry: |
| spin_lock(&ubi->wl_lock); |
| e = ubi->lookuptbl[pnum]; |
| if (e == ubi->move_from) { |
| /* |
| * User is putting the physical eraseblock which was selected to |
| * be moved. It will be scheduled for erasure in the |
| * wear-leveling worker. |
| */ |
| dbg_wl("PEB %d is being moved, wait", pnum); |
| spin_unlock(&ubi->wl_lock); |
| |
| /* Wait for the WL worker by taking the @ubi->move_mutex */ |
| mutex_lock(&ubi->move_mutex); |
| mutex_unlock(&ubi->move_mutex); |
| goto retry; |
| } else if (e == ubi->move_to) { |
| /* |
| * User is putting the physical eraseblock which was selected |
| * as the target the data is moved to. It may happen if the EBA |
| * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' |
| * but the WL sub-system has not put the PEB to the "used" tree |
| * yet, but it is about to do this. So we just set a flag which |
| * will tell the WL worker that the PEB is not needed anymore |
| * and should be scheduled for erasure. |
| */ |
| dbg_wl("PEB %d is the target of data moving", pnum); |
| ubi_assert(!ubi->move_to_put); |
| ubi->move_to_put = 1; |
| spin_unlock(&ubi->wl_lock); |
| up_read(&ubi->fm_protect); |
| return 0; |
| } else { |
| if (in_wl_tree(e, &ubi->used)) { |
| self_check_in_wl_tree(ubi, e, &ubi->used); |
| rb_erase(&e->u.rb, &ubi->used); |
| } else if (in_wl_tree(e, &ubi->scrub)) { |
| self_check_in_wl_tree(ubi, e, &ubi->scrub); |
| rb_erase(&e->u.rb, &ubi->scrub); |
| } else if (in_wl_tree(e, &ubi->erroneous)) { |
| self_check_in_wl_tree(ubi, e, &ubi->erroneous); |
| rb_erase(&e->u.rb, &ubi->erroneous); |
| ubi->erroneous_peb_count -= 1; |
| ubi_assert(ubi->erroneous_peb_count >= 0); |
| /* Erroneous PEBs should be tortured */ |
| torture = 1; |
| } else { |
| err = prot_queue_del(ubi, e->pnum); |
| if (err) { |
| ubi_err(ubi, "PEB %d not found", pnum); |
| ubi_ro_mode(ubi); |
| spin_unlock(&ubi->wl_lock); |
| up_read(&ubi->fm_protect); |
| return err; |
| } |
| } |
| } |
| spin_unlock(&ubi->wl_lock); |
| |
| err = schedule_erase(ubi, e, vol_id, lnum, torture, false); |
| if (err) { |
| spin_lock(&ubi->wl_lock); |
| wl_tree_add(e, &ubi->used); |
| spin_unlock(&ubi->wl_lock); |
| } |
| |
| up_read(&ubi->fm_protect); |
| return err; |
| } |
| |
| /** |
| * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. |
| * @ubi: UBI device description object |
| * @pnum: the physical eraseblock to schedule |
| * |
| * If a bit-flip in a physical eraseblock is detected, this physical eraseblock |
| * needs scrubbing. This function schedules a physical eraseblock for |
| * scrubbing which is done in background. This function returns zero in case of |
| * success and a negative error code in case of failure. |
| */ |
| int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) |
| { |
| struct ubi_wl_entry *e; |
| |
| ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); |
| |
| retry: |
| spin_lock(&ubi->wl_lock); |
| e = ubi->lookuptbl[pnum]; |
| if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || |
| in_wl_tree(e, &ubi->erroneous)) { |
| spin_unlock(&ubi->wl_lock); |
| return 0; |
| } |
| |
| if (e == ubi->move_to) { |
| /* |
| * This physical eraseblock was used to move data to. The data |
| * was moved but the PEB was not yet inserted to the proper |
| * tree. We should just wait a little and let the WL worker |
| * proceed. |
| */ |
| spin_unlock(&ubi->wl_lock); |
| dbg_wl("the PEB %d is not in proper tree, retry", pnum); |
| yield(); |
| goto retry; |
| } |
| |
| if (in_wl_tree(e, &ubi->used)) { |
| self_check_in_wl_tree(ubi, e, &ubi->used); |
| rb_erase(&e->u.rb, &ubi->used); |
| } else { |
| int err; |
| |
| err = prot_queue_del(ubi, e->pnum); |
| if (err) { |
| ubi_err(ubi, "PEB %d not found", pnum); |
| ubi_ro_mode(ubi); |
| spin_unlock(&ubi->wl_lock); |
| return err; |
| } |
| } |
| |
| wl_tree_add(e, &ubi->scrub); |
| spin_unlock(&ubi->wl_lock); |
| |
| /* |
| * Technically scrubbing is the same as wear-leveling, so it is done |
| * by the WL worker. |
| */ |
| return ensure_wear_leveling(ubi, 0); |
| } |
| |
| /** |
| * ubi_wl_flush - flush all pending works. |
| * @ubi: UBI device description object |
| * @vol_id: the volume id to flush for |
| * @lnum: the logical eraseblock number to flush for |
| * |
| * This function executes all pending works for a particular volume id / |
| * logical eraseblock number pair. If either value is set to %UBI_ALL, then it |
| * acts as a wildcard for all of the corresponding volume numbers or logical |
| * eraseblock numbers. It returns zero in case of success and a negative error |
| * code in case of failure. |
| */ |
| int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) |
| { |
| int err = 0; |
| int found = 1; |
| |
| /* |
| * Erase while the pending works queue is not empty, but not more than |
| * the number of currently pending works. |
| */ |
| dbg_wl("flush pending work for LEB %d:%d (%d pending works)", |
| vol_id, lnum, ubi->works_count); |
| |
| while (found) { |
| struct ubi_work *wrk, *tmp; |
| found = 0; |
| |
| down_read(&ubi->work_sem); |
| spin_lock(&ubi->wl_lock); |
| list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { |
| if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && |
| (lnum == UBI_ALL || wrk->lnum == lnum)) { |
| list_del(&wrk->list); |
| ubi->works_count -= 1; |
| ubi_assert(ubi->works_count >= 0); |
| spin_unlock(&ubi->wl_lock); |
| |
| err = wrk->func(ubi, wrk, 0); |
| if (err) { |
| up_read(&ubi->work_sem); |
| return err; |
| } |
| |
| spin_lock(&ubi->wl_lock); |
| found = 1; |
| break; |
| } |
| } |
| spin_unlock(&ubi->wl_lock); |
| up_read(&ubi->work_sem); |
| } |
| |
| /* |
| * Make sure all the works which have been done in parallel are |
| * finished. |
| */ |
| down_write(&ubi->work_sem); |
| up_write(&ubi->work_sem); |
| |
| return err; |
| } |
| |
| static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e) |
| { |
| if (in_wl_tree(e, &ubi->scrub)) |
| return false; |
| else if (in_wl_tree(e, &ubi->erroneous)) |
| return false; |
| else if (ubi->move_from == e) |
| return false; |
| else if (ubi->move_to == e) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed. |
| * @ubi: UBI device description object |
| * @pnum: the physical eraseblock to schedule |
| * @force: dont't read the block, assume bitflips happened and take action. |
| * |
| * This function reads the given eraseblock and checks if bitflips occured. |
| * In case of bitflips, the eraseblock is scheduled for scrubbing. |
| * If scrubbing is forced with @force, the eraseblock is not read, |
| * but scheduled for scrubbing right away. |
| * |
| * Returns: |
| * %EINVAL, PEB is out of range |
| * %ENOENT, PEB is no longer used by UBI |
| * %EBUSY, PEB cannot be checked now or a check is currently running on it |
| * %EAGAIN, bit flips happened but scrubbing is currently not possible |
| * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing |
| * %0, no bit flips detected |
| */ |
| int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force) |
| { |
| int err = 0; |
| struct ubi_wl_entry *e; |
| |
| if (pnum < 0 || pnum >= ubi->peb_count) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * Pause all parallel work, otherwise it can happen that the |
| * erase worker frees a wl entry under us. |
| */ |
| down_write(&ubi->work_sem); |
| |
| /* |
| * Make sure that the wl entry does not change state while |
| * inspecting it. |
| */ |
| spin_lock(&ubi->wl_lock); |
| e = ubi->lookuptbl[pnum]; |
| if (!e) { |
| spin_unlock(&ubi->wl_lock); |
| err = -ENOENT; |
| goto out_resume; |
| } |
| |
| /* |
| * Does it make sense to check this PEB? |
| */ |
| if (!scrub_possible(ubi, e)) { |
| spin_unlock(&ubi->wl_lock); |
| err = -EBUSY; |
| goto out_resume; |
| } |
| spin_unlock(&ubi->wl_lock); |
| |
| if (!force) { |
| mutex_lock(&ubi->buf_mutex); |
| err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); |
| mutex_unlock(&ubi->buf_mutex); |
| } |
| |
| if (force || err == UBI_IO_BITFLIPS) { |
| /* |
| * Okay, bit flip happened, let's figure out what we can do. |
| */ |
| spin_lock(&ubi->wl_lock); |
| |
| /* |
| * Recheck. We released wl_lock, UBI might have killed the |
| * wl entry under us. |
| */ |
| e = ubi->lookuptbl[pnum]; |
| if (!e) { |
| spin_unlock(&ubi->wl_lock); |
| err = -ENOENT; |
| goto out_resume; |
| } |
| |
| /* |
| * Need to re-check state |
| */ |
| if (!scrub_possible(ubi, e)) { |
| spin_unlock(&ubi->wl_lock); |
| err = -EBUSY; |
| goto out_resume; |
| } |
| |
| if (in_pq(ubi, e)) { |
| prot_queue_del(ubi, e->pnum); |
| wl_tree_add(e, &ubi->scrub); |
| spin_unlock(&ubi->wl_lock); |
| |
| err = ensure_wear_leveling(ubi, 1); |
| } else if (in_wl_tree(e, &ubi->used)) { |
| rb_erase(&e->u.rb, &ubi->used); |
| wl_tree_add(e, &ubi->scrub); |
| spin_unlock(&ubi->wl_lock); |
| |
| err = ensure_wear_leveling(ubi, 1); |
| } else if (in_wl_tree(e, &ubi->free)) { |
| rb_erase(&e->u.rb, &ubi->free); |
| ubi->free_count--; |
| spin_unlock(&ubi->wl_lock); |
| |
| /* |
| * This PEB is empty we can schedule it for |
| * erasure right away. No wear leveling needed. |
| */ |
| err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN, |
| force ? 0 : 1, true); |
| } else { |
| spin_unlock(&ubi->wl_lock); |
| err = -EAGAIN; |
| } |
| |
| if (!err && !force) |
| err = -EUCLEAN; |
| } else { |
| err = 0; |
| } |
| |
| out_resume: |
| up_write(&ubi->work_sem); |
| out: |
| |
| return err; |
| } |
| |
| /** |
| * tree_destroy - destroy an RB-tree. |
| * @ubi: UBI device description object |
| * @root: the root of the tree to destroy |
| */ |
| static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) |
| { |
| struct rb_node *rb; |
| struct ubi_wl_entry *e; |
| |
| rb = root->rb_node; |
| while (rb) { |
| if (rb->rb_left) |
| rb = rb->rb_left; |
| else if (rb->rb_right) |
| rb = rb->rb_right; |
| else { |
| e = rb_entry(rb, struct ubi_wl_entry, u.rb); |
| |
| rb = rb_parent(rb); |
| if (rb) { |
| if (rb->rb_left == &e->u.rb) |
| rb->rb_left = NULL; |
| else |
| rb->rb_right = NULL; |
| } |
| |
| wl_entry_destroy(ubi, e); |
| } |
| } |
| } |
| |
| /** |
| * ubi_thread - UBI background thread. |
| * @u: the UBI device description object pointer |
| */ |
| int ubi_thread(void *u) |
| { |
| int failures = 0; |
| struct ubi_device *ubi = u; |
| |
| ubi_msg(ubi, "background thread \"%s\" started, PID %d", |
| ubi->bgt_name, task_pid_nr(current)); |
| |
| set_freezable(); |
| for (;;) { |
| int err; |
| |
| if (kthread_should_stop()) |
| break; |
| |
| if (try_to_freeze()) |
| continue; |
| |
| spin_lock(&ubi->wl_lock); |
| if (list_empty(&ubi->works) || ubi->ro_mode || |
| !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { |
| set_current_state(TASK_INTERRUPTIBLE); |
| spin_unlock(&ubi->wl_lock); |
| schedule(); |
| continue; |
| } |
| spin_unlock(&ubi->wl_lock); |
| |
| err = do_work(ubi); |
| if (err) { |
| ubi_err(ubi, "%s: work failed with error code %d", |
| ubi->bgt_name, err); |
| if (failures++ > WL_MAX_FAILURES) { |
| /* |
| * Too many failures, disable the thread and |
| * switch to read-only mode. |
| */ |
| ubi_msg(ubi, "%s: %d consecutive failures", |
| ubi->bgt_name, WL_MAX_FAILURES); |
| ubi_ro_mode(ubi); |
| ubi->thread_enabled = 0; |
| continue; |
| } |
| } else |
| failures = 0; |
| |
| cond_resched(); |
| } |
| |
| dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); |
| ubi->thread_enabled = 0; |
| return 0; |
| } |
| |
| /** |
| * shutdown_work - shutdown all pending works. |
| * @ubi: UBI device description object |
| */ |
| static void shutdown_work(struct ubi_device *ubi) |
| { |
| while (!list_empty(&ubi->works)) { |
| struct ubi_work *wrk; |
| |
| wrk = list_entry(ubi->works.next, struct ubi_work, list); |
| list_del(&wrk->list); |
| wrk->func(ubi, wrk, 1); |
| ubi->works_count -= 1; |
| ubi_assert(ubi->works_count >= 0); |
| } |
| } |
| |
| /** |
| * erase_aeb - erase a PEB given in UBI attach info PEB |
| * @ubi: UBI device description object |
| * @aeb: UBI attach info PEB |
| * @sync: If true, erase synchronously. Otherwise schedule for erasure |
| */ |
| static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync) |
| { |
| struct ubi_wl_entry *e; |
| int err; |
| |
| e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); |
| if (!e) |
| return -ENOMEM; |
| |
| e->pnum = aeb->pnum; |
| e->ec = aeb->ec; |
| ubi->lookuptbl[e->pnum] = e; |
| |
| if (sync) { |
| err = sync_erase(ubi, e, false); |
| if (err) |
| goto out_free; |
| |
| wl_tree_add(e, &ubi->free); |
| ubi->free_count++; |
| } else { |
| err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false); |
| if (err) |
| goto out_free; |
| } |
| |
| return 0; |
| |
| out_free: |
| wl_entry_destroy(ubi, e); |
| |
| return err; |
| } |
| |
| /** |
| * ubi_wl_init - initialize the WL sub-system using attaching information. |
| * @ubi: UBI device description object |
| * @ai: attaching information |
| * |
| * This function returns zero in case of success, and a negative error code in |
| * case of failure. |
| */ |
| int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) |
| { |
| int err, i, reserved_pebs, found_pebs = 0; |
| struct rb_node *rb1, *rb2; |
| struct ubi_ainf_volume *av; |
| struct ubi_ainf_peb *aeb, *tmp; |
| struct ubi_wl_entry *e; |
| |
| ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; |
| spin_lock_init(&ubi->wl_lock); |
| mutex_init(&ubi->move_mutex); |
| init_rwsem(&ubi->work_sem); |
| ubi->max_ec = ai->max_ec; |
| INIT_LIST_HEAD(&ubi->works); |
| |
| sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); |
| |
| err = -ENOMEM; |
| ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL); |
| if (!ubi->lookuptbl) |
| return err; |
| |
| for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) |
| INIT_LIST_HEAD(&ubi->pq[i]); |
| ubi->pq_head = 0; |
| |
| ubi->free_count = 0; |
| list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { |
| cond_resched(); |
| |
| err = erase_aeb(ubi, aeb, false); |
| if (err) |
| goto out_free; |
| |
| found_pebs++; |
| } |
| |
| list_for_each_entry(aeb, &ai->free, u.list) { |
| cond_resched(); |
| |
| e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); |
| if (!e) { |
| err = -ENOMEM; |
| goto out_free; |
| } |
| |
| e->pnum = aeb->pnum; |
| e->ec = aeb->ec; |
| ubi_assert(e->ec >= 0); |
| |
| wl_tree_add(e, &ubi->free); |
| ubi->free_count++; |
| |
| ubi->lookuptbl[e->pnum] = e; |
| |
| found_pebs++; |
| } |
| |
| ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { |
| ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { |
| cond_resched(); |
| |
| e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); |
| if (!e) { |
| err = -ENOMEM; |
| goto out_free; |
| } |
| |
| e->pnum = aeb->pnum; |
| e->ec = aeb->ec; |
| ubi->lookuptbl[e->pnum] = e; |
| |
| if (!aeb->scrub) { |
| dbg_wl("add PEB %d EC %d to the used tree", |
| e->pnum, e->ec); |
| wl_tree_add(e, &ubi->used); |
| } else { |
| dbg_wl("add PEB %d EC %d to the scrub tree", |
| e->pnum, e->ec); |
| wl_tree_add(e, &ubi->scrub); |
| } |
| |
| found_pebs++; |
| } |
| } |
| |
| list_for_each_entry(aeb, &ai->fastmap, u.list) { |
| cond_resched(); |
| |
| e = ubi_find_fm_block(ubi, aeb->pnum); |
| |
| if (e) { |
| ubi_assert(!ubi->lookuptbl[e->pnum]); |
| ubi->lookuptbl[e->pnum] = e; |
| } else { |
| bool sync = false; |
| |
| /* |
| * Usually old Fastmap PEBs are scheduled for erasure |
| * and we don't have to care about them but if we face |
| * an power cut before scheduling them we need to |
| * take care of them here. |
| */ |
| if (ubi->lookuptbl[aeb->pnum]) |
| continue; |
| |
| /* |
| * The fastmap update code might not find a free PEB for |
| * writing the fastmap anchor to and then reuses the |
| * current fastmap anchor PEB. When this PEB gets erased |
| * and a power cut happens before it is written again we |
| * must make sure that the fastmap attach code doesn't |
| * find any outdated fastmap anchors, hence we erase the |
| * outdated fastmap anchor PEBs synchronously here. |
| */ |
| if (aeb->vol_id == UBI_FM_SB_VOLUME_ID) |
| sync = true; |
| |
| err = erase_aeb(ubi, aeb, sync); |
| if (err) |
| goto out_free; |
| } |
| |
| found_pebs++; |
| } |
| |
| dbg_wl("found %i PEBs", found_pebs); |
| |
| ubi_assert(ubi->good_peb_count == found_pebs); |
| |
| reserved_pebs = WL_RESERVED_PEBS; |
| ubi_fastmap_init(ubi, &reserved_pebs); |
| |
| if (ubi->avail_pebs < reserved_pebs) { |
| ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", |
| ubi->avail_pebs, reserved_pebs); |
| if (ubi->corr_peb_count) |
| ubi_err(ubi, "%d PEBs are corrupted and not used", |
| ubi->corr_peb_count); |
| err = -ENOSPC; |
| goto out_free; |
| } |
| ubi->avail_pebs -= reserved_pebs; |
| ubi->rsvd_pebs += reserved_pebs; |
| |
| /* Schedule wear-leveling if needed */ |
| err = ensure_wear_leveling(ubi, 0); |
| if (err) |
| goto out_free; |
| |
| #ifdef CONFIG_MTD_UBI_FASTMAP |
| ubi_ensure_anchor_pebs(ubi); |
| #endif |
| return 0; |
| |
| out_free: |
| shutdown_work(ubi); |
| tree_destroy(ubi, &ubi->used); |
| tree_destroy(ubi, &ubi->free); |
| tree_destroy(ubi, &ubi->scrub); |
| kfree(ubi->lookuptbl); |
| return err; |
| } |
| |
| /** |
| * protection_queue_destroy - destroy the protection queue. |
| * @ubi: UBI device description object |
| */ |
| static void protection_queue_destroy(struct ubi_device *ubi) |
| { |
| int i; |
| struct ubi_wl_entry *e, *tmp; |
| |
| for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { |
| list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { |
| list_del(&e->u.list); |
| wl_entry_destroy(ubi, e); |
| } |
| } |
| } |
| |
| /** |
| * ubi_wl_close - close the wear-leveling sub-system. |
| * @ubi: UBI device description object |
| */ |
| void ubi_wl_close(struct ubi_device *ubi) |
| { |
| dbg_wl("close the WL sub-system"); |
| ubi_fastmap_close(ubi); |
| shutdown_work(ubi); |
| protection_queue_destroy(ubi); |
| tree_destroy(ubi, &ubi->used); |
| tree_destroy(ubi, &ubi->erroneous); |
| tree_destroy(ubi, &ubi->free); |
| tree_destroy(ubi, &ubi->scrub); |
| kfree(ubi->lookuptbl); |
| } |
| |
| /** |
| * self_check_ec - make sure that the erase counter of a PEB is correct. |
| * @ubi: UBI device description object |
| * @pnum: the physical eraseblock number to check |
| * @ec: the erase counter to check |
| * |
| * This function returns zero if the erase counter of physical eraseblock @pnum |
| * is equivalent to @ec, and a negative error code if not or if an error |
| * occurred. |
| */ |
| static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) |
| { |
| int err; |
| long long read_ec; |
| struct ubi_ec_hdr *ec_hdr; |
| |
| if (!ubi_dbg_chk_gen(ubi)) |
| return 0; |
| |
| ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); |
| if (!ec_hdr) |
| return -ENOMEM; |
| |
| err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); |
| if (err && err != UBI_IO_BITFLIPS) { |
| /* The header does not have to exist */ |
| err = 0; |
| goto out_free; |
| } |
| |
| read_ec = be64_to_cpu(ec_hdr->ec); |
| if (ec != read_ec && read_ec - ec > 1) { |
| ubi_err(ubi, "self-check failed for PEB %d", pnum); |
| ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); |
| dump_stack(); |
| err = 1; |
| } else |
| err = 0; |
| |
| out_free: |
| kfree(ec_hdr); |
| return err; |
| } |
| |
| /** |
| * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. |
| * @ubi: UBI device description object |
| * @e: the wear-leveling entry to check |
| * @root: the root of the tree |
| * |
| * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it |
| * is not. |
| */ |
| static int self_check_in_wl_tree(const struct ubi_device *ubi, |
| struct ubi_wl_entry *e, struct rb_root *root) |
| { |
| if (!ubi_dbg_chk_gen(ubi)) |
| return 0; |
| |
| if (in_wl_tree(e, root)) |
| return 0; |
| |
| ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", |
| e->pnum, e->ec, root); |
| dump_stack(); |
| return -EINVAL; |
| } |
| |
| /** |
| * self_check_in_pq - check if wear-leveling entry is in the protection |
| * queue. |
| * @ubi: UBI device description object |
| * @e: the wear-leveling entry to check |
| * |
| * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. |
| */ |
| static int self_check_in_pq(const struct ubi_device *ubi, |
| struct ubi_wl_entry *e) |
| { |
| if (!ubi_dbg_chk_gen(ubi)) |
| return 0; |
| |
| if (in_pq(ubi, e)) |
| return 0; |
| |
| ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", |
| e->pnum, e->ec); |
| dump_stack(); |
| return -EINVAL; |
| } |
| #ifndef CONFIG_MTD_UBI_FASTMAP |
| static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) |
| { |
| struct ubi_wl_entry *e; |
| |
| e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); |
| self_check_in_wl_tree(ubi, e, &ubi->free); |
| ubi->free_count--; |
| ubi_assert(ubi->free_count >= 0); |
| rb_erase(&e->u.rb, &ubi->free); |
| |
| return e; |
| } |
| |
| /** |
| * produce_free_peb - produce a free physical eraseblock. |
| * @ubi: UBI device description object |
| * |
| * This function tries to make a free PEB by means of synchronous execution of |
| * pending works. This may be needed if, for example the background thread is |
| * disabled. Returns zero in case of success and a negative error code in case |
| * of failure. |
| */ |
| static int produce_free_peb(struct ubi_device *ubi) |
| { |
| int err; |
| |
| while (!ubi->free.rb_node && ubi->works_count) { |
| spin_unlock(&ubi->wl_lock); |
| |
| dbg_wl("do one work synchronously"); |
| err = do_work(ubi); |
| |
| spin_lock(&ubi->wl_lock); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ubi_wl_get_peb - get a physical eraseblock. |
| * @ubi: UBI device description object |
| * |
| * This function returns a physical eraseblock in case of success and a |
| * negative error code in case of failure. |
| * Returns with ubi->fm_eba_sem held in read mode! |
| */ |
| int ubi_wl_get_peb(struct ubi_device *ubi) |
| { |
| int err; |
| struct ubi_wl_entry *e; |
| |
| retry: |
| down_read(&ubi->fm_eba_sem); |
| spin_lock(&ubi->wl_lock); |
| if (!ubi->free.rb_node) { |
| if (ubi->works_count == 0) { |
| ubi_err(ubi, "no free eraseblocks"); |
| ubi_assert(list_empty(&ubi->works)); |
| spin_unlock(&ubi->wl_lock); |
| return -ENOSPC; |
| } |
| |
| err = produce_free_peb(ubi); |
| if (err < 0) { |
| spin_unlock(&ubi->wl_lock); |
| return err; |
| } |
| spin_unlock(&ubi->wl_lock); |
| up_read(&ubi->fm_eba_sem); |
| goto retry; |
| |
| } |
| e = wl_get_wle(ubi); |
| prot_queue_add(ubi, e); |
| spin_unlock(&ubi->wl_lock); |
| |
| err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, |
| ubi->peb_size - ubi->vid_hdr_aloffset); |
| if (err) { |
| ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); |
| return err; |
| } |
| |
| return e->pnum; |
| } |
| #else |
| #include "fastmap-wl.c" |
| #endif |