blob: a66a51bd032dd0cb02013f20abcca98240be9255 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* DMA-BUF chunk heap exporter
*
* Copyright (c) 2020 Samsung Electronics Co., Ltd.
* Author: <hyesoo.yu@samsung.com> for Samsung Electronics.
*/
#include <linux/cma.h>
#include <linux/device.h>
#include <linux/dma-buf.h>
#include <linux/dma-heap.h>
#include <linux/dma-mapping.h>
#include <linux/dma-map-ops.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_reserved_mem.h>
#include <linux/scatterlist.h>
#include <linux/sched/signal.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
struct chunk_heap {
struct dma_heap *heap;
uint32_t order;
struct cma *cma;
};
struct chunk_heap_buffer {
struct chunk_heap *heap;
struct list_head attachments;
struct mutex lock;
struct sg_table sg_table;
unsigned long len;
int vmap_cnt;
void *vaddr;
};
struct chunk_heap_attachment {
struct device *dev;
struct sg_table *table;
struct list_head list;
bool mapped;
};
static struct chunk_heap chunk_heaps[MAX_CMA_AREAS] __initdata;
static unsigned int chunk_heap_count __initdata;
static struct sg_table *dup_sg_table(struct sg_table *table)
{
struct sg_table *new_table;
int ret, i;
struct scatterlist *sg, *new_sg;
new_table = kzalloc(sizeof(*new_table), GFP_KERNEL);
if (!new_table)
return ERR_PTR(-ENOMEM);
ret = sg_alloc_table(new_table, table->orig_nents, GFP_KERNEL);
if (ret) {
kfree(new_table);
return ERR_PTR(-ENOMEM);
}
new_sg = new_table->sgl;
for_each_sgtable_sg(table, sg, i) {
sg_set_page(new_sg, sg_page(sg), sg->length, sg->offset);
new_sg = sg_next(new_sg);
}
return new_table;
}
static int chunk_heap_attach(struct dma_buf *dmabuf, struct dma_buf_attachment *attachment)
{
struct chunk_heap_buffer *buffer = dmabuf->priv;
struct chunk_heap_attachment *a;
struct sg_table *table;
a = kzalloc(sizeof(*a), GFP_KERNEL);
if (!a)
return -ENOMEM;
table = dup_sg_table(&buffer->sg_table);
if (IS_ERR(table)) {
kfree(a);
return -ENOMEM;
}
a->table = table;
a->dev = attachment->dev;
attachment->priv = a;
mutex_lock(&buffer->lock);
list_add(&a->list, &buffer->attachments);
mutex_unlock(&buffer->lock);
return 0;
}
static void chunk_heap_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attachment)
{
struct chunk_heap_buffer *buffer = dmabuf->priv;
struct chunk_heap_attachment *a = attachment->priv;
mutex_lock(&buffer->lock);
list_del(&a->list);
mutex_unlock(&buffer->lock);
sg_free_table(a->table);
kfree(a->table);
kfree(a);
}
static struct sg_table *chunk_heap_map_dma_buf(struct dma_buf_attachment *attachment,
enum dma_data_direction direction)
{
struct chunk_heap_attachment *a = attachment->priv;
struct sg_table *table = a->table;
int ret;
if (a->mapped)
return table;
ret = dma_map_sgtable(attachment->dev, table, direction, 0);
if (ret)
return ERR_PTR(ret);
a->mapped = true;
return table;
}
static void chunk_heap_unmap_dma_buf(struct dma_buf_attachment *attachment,
struct sg_table *table,
enum dma_data_direction direction)
{
struct chunk_heap_attachment *a = attachment->priv;
a->mapped = false;
dma_unmap_sgtable(attachment->dev, table, direction, 0);
}
static int chunk_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
enum dma_data_direction direction)
{
struct chunk_heap_buffer *buffer = dmabuf->priv;
struct chunk_heap_attachment *a;
mutex_lock(&buffer->lock);
if (buffer->vmap_cnt)
invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);
list_for_each_entry(a, &buffer->attachments, list) {
if (!a->mapped)
continue;
dma_sync_sgtable_for_cpu(a->dev, a->table, direction);
}
mutex_unlock(&buffer->lock);
return 0;
}
static int chunk_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
enum dma_data_direction direction)
{
struct chunk_heap_buffer *buffer = dmabuf->priv;
struct chunk_heap_attachment *a;
mutex_lock(&buffer->lock);
if (buffer->vmap_cnt)
flush_kernel_vmap_range(buffer->vaddr, buffer->len);
list_for_each_entry(a, &buffer->attachments, list) {
if (!a->mapped)
continue;
dma_sync_sgtable_for_device(a->dev, a->table, direction);
}
mutex_unlock(&buffer->lock);
return 0;
}
static int chunk_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
{
struct chunk_heap_buffer *buffer = dmabuf->priv;
struct sg_table *table = &buffer->sg_table;
unsigned long addr = vma->vm_start;
struct sg_page_iter piter;
int ret;
for_each_sgtable_page(table, &piter, vma->vm_pgoff) {
struct page *page = sg_page_iter_page(&piter);
ret = remap_pfn_range(vma, addr, page_to_pfn(page), PAGE_SIZE,
vma->vm_page_prot);
if (ret)
return ret;
addr += PAGE_SIZE;
if (addr >= vma->vm_end)
return 0;
}
return 0;
}
static void *chunk_heap_do_vmap(struct chunk_heap_buffer *buffer)
{
struct sg_table *table = &buffer->sg_table;
int npages = PAGE_ALIGN(buffer->len) / PAGE_SIZE;
struct page **pages = vmalloc(sizeof(struct page *) * npages);
struct page **tmp = pages;
struct sg_page_iter piter;
void *vaddr;
if (!pages)
return ERR_PTR(-ENOMEM);
for_each_sgtable_page(table, &piter, 0) {
WARN_ON(tmp - pages >= npages);
*tmp++ = sg_page_iter_page(&piter);
}
vaddr = vmap(pages, npages, VM_MAP, PAGE_KERNEL);
vfree(pages);
if (!vaddr)
return ERR_PTR(-ENOMEM);
return vaddr;
}
static void *chunk_heap_vmap(struct dma_buf *dmabuf)
{
struct chunk_heap_buffer *buffer = dmabuf->priv;
void *vaddr;
mutex_lock(&buffer->lock);
if (buffer->vmap_cnt) {
vaddr = buffer->vaddr;
} else {
vaddr = chunk_heap_do_vmap(buffer);
if (IS_ERR(vaddr)) {
mutex_unlock(&buffer->lock);
return vaddr;
}
buffer->vaddr = vaddr;
}
buffer->vmap_cnt++;
mutex_unlock(&buffer->lock);
return vaddr;
}
static void chunk_heap_vunmap(struct dma_buf *dmabuf, void *vaddr)
{
struct chunk_heap_buffer *buffer = dmabuf->priv;
mutex_lock(&buffer->lock);
if (!--buffer->vmap_cnt) {
vunmap(buffer->vaddr);
buffer->vaddr = NULL;
}
mutex_unlock(&buffer->lock);
}
static void chunk_heap_dma_buf_release(struct dma_buf *dmabuf)
{
struct chunk_heap_buffer *buffer = dmabuf->priv;
struct chunk_heap *chunk_heap = buffer->heap;
struct sg_table *table;
struct scatterlist *sg;
int i;
table = &buffer->sg_table;
for_each_sgtable_sg(table, sg, i)
cma_release(chunk_heap->cma, sg_page(sg), 1 << chunk_heap->order);
sg_free_table(table);
kfree(buffer);
}
static const struct dma_buf_ops chunk_heap_buf_ops = {
.attach = chunk_heap_attach,
.detach = chunk_heap_detach,
.map_dma_buf = chunk_heap_map_dma_buf,
.unmap_dma_buf = chunk_heap_unmap_dma_buf,
.begin_cpu_access = chunk_heap_dma_buf_begin_cpu_access,
.end_cpu_access = chunk_heap_dma_buf_end_cpu_access,
.mmap = chunk_heap_mmap,
.vmap = chunk_heap_vmap,
.vunmap = chunk_heap_vunmap,
.release = chunk_heap_dma_buf_release,
};
struct dma_buf *chunk_heap_allocate(struct dma_heap *heap, unsigned long len,
unsigned long fd_flags, unsigned long heap_flags)
{
struct chunk_heap *chunk_heap = dma_heap_get_drvdata(heap);
struct chunk_heap_buffer *buffer;
DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
struct dma_buf *dmabuf;
struct sg_table *table;
struct scatterlist *sg;
struct page **pages;
unsigned int chunk_size = PAGE_SIZE << chunk_heap->order;
unsigned int count, alloced = 0;
unsigned int alloc_order = max_t(unsigned int, pageblock_order, chunk_heap->order);
unsigned int nr_chunks_per_alloc = 1 << (alloc_order - chunk_heap->order);
gfp_t gfp_flags = GFP_KERNEL|__GFP_NORETRY;
int ret = -ENOMEM;
pgoff_t pg;
buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
if (!buffer)
return ret;
INIT_LIST_HEAD(&buffer->attachments);
mutex_init(&buffer->lock);
buffer->heap = chunk_heap;
buffer->len = ALIGN(len, chunk_size);
count = buffer->len / chunk_size;
pages = kvmalloc_array(count, sizeof(*pages), GFP_KERNEL);
if (!pages)
goto err_pages;
while (alloced < count) {
struct page *page;
int i;
while (count - alloced < nr_chunks_per_alloc) {
alloc_order--;
nr_chunks_per_alloc >>= 1;
}
page = cma_alloc(chunk_heap->cma, 1 << alloc_order,
alloc_order, gfp_flags);
if (!page) {
if (gfp_flags & __GFP_NORETRY) {
gfp_flags &= ~__GFP_NORETRY;
continue;
}
break;
}
for (i = 0; i < nr_chunks_per_alloc; i++, alloced++) {
pages[alloced] = page;
page += 1 << chunk_heap->order;
}
}
if (alloced < count)
goto err_alloc;
table = &buffer->sg_table;
if (sg_alloc_table(table, count, GFP_KERNEL))
goto err_alloc;
sg = table->sgl;
for (pg = 0; pg < count; pg++) {
sg_set_page(sg, pages[pg], chunk_size, 0);
sg = sg_next(sg);
}
exp_info.ops = &chunk_heap_buf_ops;
exp_info.size = buffer->len;
exp_info.flags = fd_flags;
exp_info.priv = buffer;
dmabuf = dma_buf_export(&exp_info);
if (IS_ERR(dmabuf)) {
ret = PTR_ERR(dmabuf);
goto err_export;
}
kvfree(pages);
ret = dma_buf_fd(dmabuf, fd_flags);
if (ret < 0) {
dma_buf_put(dmabuf);
return ret;
}
return dmabuf;
err_export:
sg_free_table(table);
err_alloc:
for (pg = 0; pg < alloced; pg++)
cma_release(chunk_heap->cma, pages[pg], 1 << chunk_heap->order);
kvfree(pages);
err_pages:
kfree(buffer);
return ERR_PTR(ret);
}
static const struct dma_heap_ops chunk_heap_ops = {
.allocate = chunk_heap_allocate,
};
#define CHUNK_PREFIX "chunk-"
static int register_chunk_heap(struct chunk_heap *chunk_heap_info)
{
struct dma_heap_export_info exp_info;
const char *name = cma_get_name(chunk_heap_info->cma);
size_t len = strlen(CHUNK_PREFIX) + strlen(name) + 1;
char *buf = kmalloc(len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
sprintf(buf, CHUNK_PREFIX"%s", cma_get_name(chunk_heap_info->cma));
buf[len] = '\0';
exp_info.name = buf;
exp_info.name = cma_get_name(chunk_heap_info->cma);
exp_info.ops = &chunk_heap_ops;
exp_info.priv = chunk_heap_info;
chunk_heap_info->heap = dma_heap_add(&exp_info);
if (IS_ERR(chunk_heap_info->heap)) {
kfree(buf);
return PTR_ERR(chunk_heap_info->heap);
}
return 0;
}
static int __init chunk_heap_init(void)
{
unsigned int i;
for (i = 0; i < chunk_heap_count; i++)
register_chunk_heap(&chunk_heaps[i]);
return 0;
}
module_init(chunk_heap_init);
#ifdef CONFIG_OF_EARLY_FLATTREE
static int __init dmabuf_chunk_heap_area_init(struct reserved_mem *rmem)
{
int ret;
struct cma *cma;
struct chunk_heap *chunk_heap_info;
const __be32 *chunk_order;
phys_addr_t align = PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order);
phys_addr_t mask = align - 1;
if ((rmem->base & mask) || (rmem->size & mask)) {
pr_err("Incorrect alignment for CMA region\n");
return -EINVAL;
}
ret = cma_init_reserved_mem(rmem->base, rmem->size, 0, rmem->name, &cma);
if (ret) {
pr_err("Reserved memory: unable to setup CMA region\n");
return ret;
}
/* Architecture specific contiguous memory fixup. */
dma_contiguous_early_fixup(rmem->base, rmem->size);
chunk_heap_info = &chunk_heaps[chunk_heap_count];
chunk_heap_info->cma = cma;
chunk_order = of_get_flat_dt_prop(rmem->fdt_node, "chunk-order", NULL);
if (chunk_order)
chunk_heap_info->order = be32_to_cpu(*chunk_order);
else
chunk_heap_info->order = 4;
chunk_heap_count++;
return 0;
}
RESERVEDMEM_OF_DECLARE(dmabuf_chunk_heap, "dma_heap,chunk",
dmabuf_chunk_heap_area_init);
#endif
MODULE_DESCRIPTION("DMA-BUF Chunk Heap");
MODULE_LICENSE("GPL v2");