| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2011 Fujitsu. All rights reserved. |
| * Written by Miao Xie <miaox@cn.fujitsu.com> |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/iversion.h> |
| #include <linux/sched/mm.h> |
| #include "misc.h" |
| #include "delayed-inode.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "ctree.h" |
| #include "qgroup.h" |
| #include "locking.h" |
| |
| #define BTRFS_DELAYED_WRITEBACK 512 |
| #define BTRFS_DELAYED_BACKGROUND 128 |
| #define BTRFS_DELAYED_BATCH 16 |
| |
| static struct kmem_cache *delayed_node_cache; |
| |
| int __init btrfs_delayed_inode_init(void) |
| { |
| delayed_node_cache = kmem_cache_create("btrfs_delayed_node", |
| sizeof(struct btrfs_delayed_node), |
| 0, |
| SLAB_MEM_SPREAD, |
| NULL); |
| if (!delayed_node_cache) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void __cold btrfs_delayed_inode_exit(void) |
| { |
| kmem_cache_destroy(delayed_node_cache); |
| } |
| |
| static inline void btrfs_init_delayed_node( |
| struct btrfs_delayed_node *delayed_node, |
| struct btrfs_root *root, u64 inode_id) |
| { |
| delayed_node->root = root; |
| delayed_node->inode_id = inode_id; |
| refcount_set(&delayed_node->refs, 0); |
| delayed_node->ins_root = RB_ROOT_CACHED; |
| delayed_node->del_root = RB_ROOT_CACHED; |
| mutex_init(&delayed_node->mutex); |
| INIT_LIST_HEAD(&delayed_node->n_list); |
| INIT_LIST_HEAD(&delayed_node->p_list); |
| } |
| |
| static inline int btrfs_is_continuous_delayed_item( |
| struct btrfs_delayed_item *item1, |
| struct btrfs_delayed_item *item2) |
| { |
| if (item1->key.type == BTRFS_DIR_INDEX_KEY && |
| item1->key.objectid == item2->key.objectid && |
| item1->key.type == item2->key.type && |
| item1->key.offset + 1 == item2->key.offset) |
| return 1; |
| return 0; |
| } |
| |
| static struct btrfs_delayed_node *btrfs_get_delayed_node( |
| struct btrfs_inode *btrfs_inode) |
| { |
| struct btrfs_root *root = btrfs_inode->root; |
| u64 ino = btrfs_ino(btrfs_inode); |
| struct btrfs_delayed_node *node; |
| |
| node = READ_ONCE(btrfs_inode->delayed_node); |
| if (node) { |
| refcount_inc(&node->refs); |
| return node; |
| } |
| |
| spin_lock(&root->inode_lock); |
| node = radix_tree_lookup(&root->delayed_nodes_tree, ino); |
| |
| if (node) { |
| if (btrfs_inode->delayed_node) { |
| refcount_inc(&node->refs); /* can be accessed */ |
| BUG_ON(btrfs_inode->delayed_node != node); |
| spin_unlock(&root->inode_lock); |
| return node; |
| } |
| |
| /* |
| * It's possible that we're racing into the middle of removing |
| * this node from the radix tree. In this case, the refcount |
| * was zero and it should never go back to one. Just return |
| * NULL like it was never in the radix at all; our release |
| * function is in the process of removing it. |
| * |
| * Some implementations of refcount_inc refuse to bump the |
| * refcount once it has hit zero. If we don't do this dance |
| * here, refcount_inc() may decide to just WARN_ONCE() instead |
| * of actually bumping the refcount. |
| * |
| * If this node is properly in the radix, we want to bump the |
| * refcount twice, once for the inode and once for this get |
| * operation. |
| */ |
| if (refcount_inc_not_zero(&node->refs)) { |
| refcount_inc(&node->refs); |
| btrfs_inode->delayed_node = node; |
| } else { |
| node = NULL; |
| } |
| |
| spin_unlock(&root->inode_lock); |
| return node; |
| } |
| spin_unlock(&root->inode_lock); |
| |
| return NULL; |
| } |
| |
| /* Will return either the node or PTR_ERR(-ENOMEM) */ |
| static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( |
| struct btrfs_inode *btrfs_inode) |
| { |
| struct btrfs_delayed_node *node; |
| struct btrfs_root *root = btrfs_inode->root; |
| u64 ino = btrfs_ino(btrfs_inode); |
| int ret; |
| |
| again: |
| node = btrfs_get_delayed_node(btrfs_inode); |
| if (node) |
| return node; |
| |
| node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); |
| if (!node) |
| return ERR_PTR(-ENOMEM); |
| btrfs_init_delayed_node(node, root, ino); |
| |
| /* cached in the btrfs inode and can be accessed */ |
| refcount_set(&node->refs, 2); |
| |
| ret = radix_tree_preload(GFP_NOFS); |
| if (ret) { |
| kmem_cache_free(delayed_node_cache, node); |
| return ERR_PTR(ret); |
| } |
| |
| spin_lock(&root->inode_lock); |
| ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); |
| if (ret == -EEXIST) { |
| spin_unlock(&root->inode_lock); |
| kmem_cache_free(delayed_node_cache, node); |
| radix_tree_preload_end(); |
| goto again; |
| } |
| btrfs_inode->delayed_node = node; |
| spin_unlock(&root->inode_lock); |
| radix_tree_preload_end(); |
| |
| return node; |
| } |
| |
| /* |
| * Call it when holding delayed_node->mutex |
| * |
| * If mod = 1, add this node into the prepared list. |
| */ |
| static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, |
| struct btrfs_delayed_node *node, |
| int mod) |
| { |
| spin_lock(&root->lock); |
| if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { |
| if (!list_empty(&node->p_list)) |
| list_move_tail(&node->p_list, &root->prepare_list); |
| else if (mod) |
| list_add_tail(&node->p_list, &root->prepare_list); |
| } else { |
| list_add_tail(&node->n_list, &root->node_list); |
| list_add_tail(&node->p_list, &root->prepare_list); |
| refcount_inc(&node->refs); /* inserted into list */ |
| root->nodes++; |
| set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); |
| } |
| spin_unlock(&root->lock); |
| } |
| |
| /* Call it when holding delayed_node->mutex */ |
| static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, |
| struct btrfs_delayed_node *node) |
| { |
| spin_lock(&root->lock); |
| if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { |
| root->nodes--; |
| refcount_dec(&node->refs); /* not in the list */ |
| list_del_init(&node->n_list); |
| if (!list_empty(&node->p_list)) |
| list_del_init(&node->p_list); |
| clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); |
| } |
| spin_unlock(&root->lock); |
| } |
| |
| static struct btrfs_delayed_node *btrfs_first_delayed_node( |
| struct btrfs_delayed_root *delayed_root) |
| { |
| struct list_head *p; |
| struct btrfs_delayed_node *node = NULL; |
| |
| spin_lock(&delayed_root->lock); |
| if (list_empty(&delayed_root->node_list)) |
| goto out; |
| |
| p = delayed_root->node_list.next; |
| node = list_entry(p, struct btrfs_delayed_node, n_list); |
| refcount_inc(&node->refs); |
| out: |
| spin_unlock(&delayed_root->lock); |
| |
| return node; |
| } |
| |
| static struct btrfs_delayed_node *btrfs_next_delayed_node( |
| struct btrfs_delayed_node *node) |
| { |
| struct btrfs_delayed_root *delayed_root; |
| struct list_head *p; |
| struct btrfs_delayed_node *next = NULL; |
| |
| delayed_root = node->root->fs_info->delayed_root; |
| spin_lock(&delayed_root->lock); |
| if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { |
| /* not in the list */ |
| if (list_empty(&delayed_root->node_list)) |
| goto out; |
| p = delayed_root->node_list.next; |
| } else if (list_is_last(&node->n_list, &delayed_root->node_list)) |
| goto out; |
| else |
| p = node->n_list.next; |
| |
| next = list_entry(p, struct btrfs_delayed_node, n_list); |
| refcount_inc(&next->refs); |
| out: |
| spin_unlock(&delayed_root->lock); |
| |
| return next; |
| } |
| |
| static void __btrfs_release_delayed_node( |
| struct btrfs_delayed_node *delayed_node, |
| int mod) |
| { |
| struct btrfs_delayed_root *delayed_root; |
| |
| if (!delayed_node) |
| return; |
| |
| delayed_root = delayed_node->root->fs_info->delayed_root; |
| |
| mutex_lock(&delayed_node->mutex); |
| if (delayed_node->count) |
| btrfs_queue_delayed_node(delayed_root, delayed_node, mod); |
| else |
| btrfs_dequeue_delayed_node(delayed_root, delayed_node); |
| mutex_unlock(&delayed_node->mutex); |
| |
| if (refcount_dec_and_test(&delayed_node->refs)) { |
| struct btrfs_root *root = delayed_node->root; |
| |
| spin_lock(&root->inode_lock); |
| /* |
| * Once our refcount goes to zero, nobody is allowed to bump it |
| * back up. We can delete it now. |
| */ |
| ASSERT(refcount_read(&delayed_node->refs) == 0); |
| radix_tree_delete(&root->delayed_nodes_tree, |
| delayed_node->inode_id); |
| spin_unlock(&root->inode_lock); |
| kmem_cache_free(delayed_node_cache, delayed_node); |
| } |
| } |
| |
| static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) |
| { |
| __btrfs_release_delayed_node(node, 0); |
| } |
| |
| static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( |
| struct btrfs_delayed_root *delayed_root) |
| { |
| struct list_head *p; |
| struct btrfs_delayed_node *node = NULL; |
| |
| spin_lock(&delayed_root->lock); |
| if (list_empty(&delayed_root->prepare_list)) |
| goto out; |
| |
| p = delayed_root->prepare_list.next; |
| list_del_init(p); |
| node = list_entry(p, struct btrfs_delayed_node, p_list); |
| refcount_inc(&node->refs); |
| out: |
| spin_unlock(&delayed_root->lock); |
| |
| return node; |
| } |
| |
| static inline void btrfs_release_prepared_delayed_node( |
| struct btrfs_delayed_node *node) |
| { |
| __btrfs_release_delayed_node(node, 1); |
| } |
| |
| static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) |
| { |
| struct btrfs_delayed_item *item; |
| item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); |
| if (item) { |
| item->data_len = data_len; |
| item->ins_or_del = 0; |
| item->bytes_reserved = 0; |
| item->delayed_node = NULL; |
| refcount_set(&item->refs, 1); |
| } |
| return item; |
| } |
| |
| /* |
| * __btrfs_lookup_delayed_item - look up the delayed item by key |
| * @delayed_node: pointer to the delayed node |
| * @key: the key to look up |
| * @prev: used to store the prev item if the right item isn't found |
| * @next: used to store the next item if the right item isn't found |
| * |
| * Note: if we don't find the right item, we will return the prev item and |
| * the next item. |
| */ |
| static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( |
| struct rb_root *root, |
| struct btrfs_key *key, |
| struct btrfs_delayed_item **prev, |
| struct btrfs_delayed_item **next) |
| { |
| struct rb_node *node, *prev_node = NULL; |
| struct btrfs_delayed_item *delayed_item = NULL; |
| int ret = 0; |
| |
| node = root->rb_node; |
| |
| while (node) { |
| delayed_item = rb_entry(node, struct btrfs_delayed_item, |
| rb_node); |
| prev_node = node; |
| ret = btrfs_comp_cpu_keys(&delayed_item->key, key); |
| if (ret < 0) |
| node = node->rb_right; |
| else if (ret > 0) |
| node = node->rb_left; |
| else |
| return delayed_item; |
| } |
| |
| if (prev) { |
| if (!prev_node) |
| *prev = NULL; |
| else if (ret < 0) |
| *prev = delayed_item; |
| else if ((node = rb_prev(prev_node)) != NULL) { |
| *prev = rb_entry(node, struct btrfs_delayed_item, |
| rb_node); |
| } else |
| *prev = NULL; |
| } |
| |
| if (next) { |
| if (!prev_node) |
| *next = NULL; |
| else if (ret > 0) |
| *next = delayed_item; |
| else if ((node = rb_next(prev_node)) != NULL) { |
| *next = rb_entry(node, struct btrfs_delayed_item, |
| rb_node); |
| } else |
| *next = NULL; |
| } |
| return NULL; |
| } |
| |
| static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( |
| struct btrfs_delayed_node *delayed_node, |
| struct btrfs_key *key) |
| { |
| return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key, |
| NULL, NULL); |
| } |
| |
| static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, |
| struct btrfs_delayed_item *ins, |
| int action) |
| { |
| struct rb_node **p, *node; |
| struct rb_node *parent_node = NULL; |
| struct rb_root_cached *root; |
| struct btrfs_delayed_item *item; |
| int cmp; |
| bool leftmost = true; |
| |
| if (action == BTRFS_DELAYED_INSERTION_ITEM) |
| root = &delayed_node->ins_root; |
| else if (action == BTRFS_DELAYED_DELETION_ITEM) |
| root = &delayed_node->del_root; |
| else |
| BUG(); |
| p = &root->rb_root.rb_node; |
| node = &ins->rb_node; |
| |
| while (*p) { |
| parent_node = *p; |
| item = rb_entry(parent_node, struct btrfs_delayed_item, |
| rb_node); |
| |
| cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); |
| if (cmp < 0) { |
| p = &(*p)->rb_right; |
| leftmost = false; |
| } else if (cmp > 0) { |
| p = &(*p)->rb_left; |
| } else { |
| return -EEXIST; |
| } |
| } |
| |
| rb_link_node(node, parent_node, p); |
| rb_insert_color_cached(node, root, leftmost); |
| ins->delayed_node = delayed_node; |
| ins->ins_or_del = action; |
| |
| if (ins->key.type == BTRFS_DIR_INDEX_KEY && |
| action == BTRFS_DELAYED_INSERTION_ITEM && |
| ins->key.offset >= delayed_node->index_cnt) |
| delayed_node->index_cnt = ins->key.offset + 1; |
| |
| delayed_node->count++; |
| atomic_inc(&delayed_node->root->fs_info->delayed_root->items); |
| return 0; |
| } |
| |
| static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, |
| struct btrfs_delayed_item *item) |
| { |
| return __btrfs_add_delayed_item(node, item, |
| BTRFS_DELAYED_INSERTION_ITEM); |
| } |
| |
| static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, |
| struct btrfs_delayed_item *item) |
| { |
| return __btrfs_add_delayed_item(node, item, |
| BTRFS_DELAYED_DELETION_ITEM); |
| } |
| |
| static void finish_one_item(struct btrfs_delayed_root *delayed_root) |
| { |
| int seq = atomic_inc_return(&delayed_root->items_seq); |
| |
| /* atomic_dec_return implies a barrier */ |
| if ((atomic_dec_return(&delayed_root->items) < |
| BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) |
| cond_wake_up_nomb(&delayed_root->wait); |
| } |
| |
| static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) |
| { |
| struct rb_root_cached *root; |
| struct btrfs_delayed_root *delayed_root; |
| |
| /* Not associated with any delayed_node */ |
| if (!delayed_item->delayed_node) |
| return; |
| delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; |
| |
| BUG_ON(!delayed_root); |
| BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && |
| delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); |
| |
| if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) |
| root = &delayed_item->delayed_node->ins_root; |
| else |
| root = &delayed_item->delayed_node->del_root; |
| |
| rb_erase_cached(&delayed_item->rb_node, root); |
| delayed_item->delayed_node->count--; |
| |
| finish_one_item(delayed_root); |
| } |
| |
| static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) |
| { |
| if (item) { |
| __btrfs_remove_delayed_item(item); |
| if (refcount_dec_and_test(&item->refs)) |
| kfree(item); |
| } |
| } |
| |
| static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( |
| struct btrfs_delayed_node *delayed_node) |
| { |
| struct rb_node *p; |
| struct btrfs_delayed_item *item = NULL; |
| |
| p = rb_first_cached(&delayed_node->ins_root); |
| if (p) |
| item = rb_entry(p, struct btrfs_delayed_item, rb_node); |
| |
| return item; |
| } |
| |
| static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( |
| struct btrfs_delayed_node *delayed_node) |
| { |
| struct rb_node *p; |
| struct btrfs_delayed_item *item = NULL; |
| |
| p = rb_first_cached(&delayed_node->del_root); |
| if (p) |
| item = rb_entry(p, struct btrfs_delayed_item, rb_node); |
| |
| return item; |
| } |
| |
| static struct btrfs_delayed_item *__btrfs_next_delayed_item( |
| struct btrfs_delayed_item *item) |
| { |
| struct rb_node *p; |
| struct btrfs_delayed_item *next = NULL; |
| |
| p = rb_next(&item->rb_node); |
| if (p) |
| next = rb_entry(p, struct btrfs_delayed_item, rb_node); |
| |
| return next; |
| } |
| |
| static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_delayed_item *item) |
| { |
| struct btrfs_block_rsv *src_rsv; |
| struct btrfs_block_rsv *dst_rsv; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| u64 num_bytes; |
| int ret; |
| |
| if (!trans->bytes_reserved) |
| return 0; |
| |
| src_rsv = trans->block_rsv; |
| dst_rsv = &fs_info->delayed_block_rsv; |
| |
| num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); |
| |
| /* |
| * Here we migrate space rsv from transaction rsv, since have already |
| * reserved space when starting a transaction. So no need to reserve |
| * qgroup space here. |
| */ |
| ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); |
| if (!ret) { |
| trace_btrfs_space_reservation(fs_info, "delayed_item", |
| item->key.objectid, |
| num_bytes, 1); |
| item->bytes_reserved = num_bytes; |
| } |
| |
| return ret; |
| } |
| |
| static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, |
| struct btrfs_delayed_item *item) |
| { |
| struct btrfs_block_rsv *rsv; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| |
| if (!item->bytes_reserved) |
| return; |
| |
| rsv = &fs_info->delayed_block_rsv; |
| /* |
| * Check btrfs_delayed_item_reserve_metadata() to see why we don't need |
| * to release/reserve qgroup space. |
| */ |
| trace_btrfs_space_reservation(fs_info, "delayed_item", |
| item->key.objectid, item->bytes_reserved, |
| 0); |
| btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); |
| } |
| |
| static int btrfs_delayed_inode_reserve_metadata( |
| struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_inode *inode, |
| struct btrfs_delayed_node *node) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_block_rsv *src_rsv; |
| struct btrfs_block_rsv *dst_rsv; |
| u64 num_bytes; |
| int ret; |
| |
| src_rsv = trans->block_rsv; |
| dst_rsv = &fs_info->delayed_block_rsv; |
| |
| num_bytes = btrfs_calc_metadata_size(fs_info, 1); |
| |
| /* |
| * btrfs_dirty_inode will update the inode under btrfs_join_transaction |
| * which doesn't reserve space for speed. This is a problem since we |
| * still need to reserve space for this update, so try to reserve the |
| * space. |
| * |
| * Now if src_rsv == delalloc_block_rsv we'll let it just steal since |
| * we always reserve enough to update the inode item. |
| */ |
| if (!src_rsv || (!trans->bytes_reserved && |
| src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { |
| ret = btrfs_qgroup_reserve_meta(root, num_bytes, |
| BTRFS_QGROUP_RSV_META_PREALLOC, true); |
| if (ret < 0) |
| return ret; |
| ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, |
| BTRFS_RESERVE_NO_FLUSH); |
| /* |
| * Since we're under a transaction reserve_metadata_bytes could |
| * try to commit the transaction which will make it return |
| * EAGAIN to make us stop the transaction we have, so return |
| * ENOSPC instead so that btrfs_dirty_inode knows what to do. |
| */ |
| if (ret == -EAGAIN) { |
| ret = -ENOSPC; |
| btrfs_qgroup_free_meta_prealloc(root, num_bytes); |
| } |
| if (!ret) { |
| node->bytes_reserved = num_bytes; |
| trace_btrfs_space_reservation(fs_info, |
| "delayed_inode", |
| btrfs_ino(inode), |
| num_bytes, 1); |
| } else { |
| btrfs_qgroup_free_meta_prealloc(root, num_bytes); |
| } |
| return ret; |
| } |
| |
| ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); |
| if (!ret) { |
| trace_btrfs_space_reservation(fs_info, "delayed_inode", |
| btrfs_ino(inode), num_bytes, 1); |
| node->bytes_reserved = num_bytes; |
| } |
| |
| return ret; |
| } |
| |
| static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, |
| struct btrfs_delayed_node *node, |
| bool qgroup_free) |
| { |
| struct btrfs_block_rsv *rsv; |
| |
| if (!node->bytes_reserved) |
| return; |
| |
| rsv = &fs_info->delayed_block_rsv; |
| trace_btrfs_space_reservation(fs_info, "delayed_inode", |
| node->inode_id, node->bytes_reserved, 0); |
| btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); |
| if (qgroup_free) |
| btrfs_qgroup_free_meta_prealloc(node->root, |
| node->bytes_reserved); |
| else |
| btrfs_qgroup_convert_reserved_meta(node->root, |
| node->bytes_reserved); |
| node->bytes_reserved = 0; |
| } |
| |
| /* |
| * This helper will insert some continuous items into the same leaf according |
| * to the free space of the leaf. |
| */ |
| static int btrfs_batch_insert_items(struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_delayed_item *item) |
| { |
| struct btrfs_delayed_item *curr, *next; |
| int free_space; |
| int total_data_size = 0, total_size = 0; |
| struct extent_buffer *leaf; |
| char *data_ptr; |
| struct btrfs_key *keys; |
| u32 *data_size; |
| struct list_head head; |
| int slot; |
| int nitems; |
| int i; |
| int ret = 0; |
| |
| BUG_ON(!path->nodes[0]); |
| |
| leaf = path->nodes[0]; |
| free_space = btrfs_leaf_free_space(leaf); |
| INIT_LIST_HEAD(&head); |
| |
| next = item; |
| nitems = 0; |
| |
| /* |
| * count the number of the continuous items that we can insert in batch |
| */ |
| while (total_size + next->data_len + sizeof(struct btrfs_item) <= |
| free_space) { |
| total_data_size += next->data_len; |
| total_size += next->data_len + sizeof(struct btrfs_item); |
| list_add_tail(&next->tree_list, &head); |
| nitems++; |
| |
| curr = next; |
| next = __btrfs_next_delayed_item(curr); |
| if (!next) |
| break; |
| |
| if (!btrfs_is_continuous_delayed_item(curr, next)) |
| break; |
| } |
| |
| if (!nitems) { |
| ret = 0; |
| goto out; |
| } |
| |
| /* |
| * we need allocate some memory space, but it might cause the task |
| * to sleep, so we set all locked nodes in the path to blocking locks |
| * first. |
| */ |
| btrfs_set_path_blocking(path); |
| |
| keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); |
| if (!keys) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); |
| if (!data_size) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| /* get keys of all the delayed items */ |
| i = 0; |
| list_for_each_entry(next, &head, tree_list) { |
| keys[i] = next->key; |
| data_size[i] = next->data_len; |
| i++; |
| } |
| |
| /* insert the keys of the items */ |
| setup_items_for_insert(root, path, keys, data_size, nitems); |
| |
| /* insert the dir index items */ |
| slot = path->slots[0]; |
| list_for_each_entry_safe(curr, next, &head, tree_list) { |
| data_ptr = btrfs_item_ptr(leaf, slot, char); |
| write_extent_buffer(leaf, &curr->data, |
| (unsigned long)data_ptr, |
| curr->data_len); |
| slot++; |
| |
| btrfs_delayed_item_release_metadata(root, curr); |
| |
| list_del(&curr->tree_list); |
| btrfs_release_delayed_item(curr); |
| } |
| |
| error: |
| kfree(data_size); |
| kfree(keys); |
| out: |
| return ret; |
| } |
| |
| /* |
| * This helper can just do simple insertion that needn't extend item for new |
| * data, such as directory name index insertion, inode insertion. |
| */ |
| static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_delayed_item *delayed_item) |
| { |
| struct extent_buffer *leaf; |
| unsigned int nofs_flag; |
| char *ptr; |
| int ret; |
| |
| nofs_flag = memalloc_nofs_save(); |
| ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, |
| delayed_item->data_len); |
| memalloc_nofs_restore(nofs_flag); |
| if (ret < 0 && ret != -EEXIST) |
| return ret; |
| |
| leaf = path->nodes[0]; |
| |
| ptr = btrfs_item_ptr(leaf, path->slots[0], char); |
| |
| write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, |
| delayed_item->data_len); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| btrfs_delayed_item_release_metadata(root, delayed_item); |
| return 0; |
| } |
| |
| /* |
| * we insert an item first, then if there are some continuous items, we try |
| * to insert those items into the same leaf. |
| */ |
| static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_root *root, |
| struct btrfs_delayed_node *node) |
| { |
| struct btrfs_delayed_item *curr, *prev; |
| int ret = 0; |
| |
| do_again: |
| mutex_lock(&node->mutex); |
| curr = __btrfs_first_delayed_insertion_item(node); |
| if (!curr) |
| goto insert_end; |
| |
| ret = btrfs_insert_delayed_item(trans, root, path, curr); |
| if (ret < 0) { |
| btrfs_release_path(path); |
| goto insert_end; |
| } |
| |
| prev = curr; |
| curr = __btrfs_next_delayed_item(prev); |
| if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { |
| /* insert the continuous items into the same leaf */ |
| path->slots[0]++; |
| btrfs_batch_insert_items(root, path, curr); |
| } |
| btrfs_release_delayed_item(prev); |
| btrfs_mark_buffer_dirty(path->nodes[0]); |
| |
| btrfs_release_path(path); |
| mutex_unlock(&node->mutex); |
| goto do_again; |
| |
| insert_end: |
| mutex_unlock(&node->mutex); |
| return ret; |
| } |
| |
| static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_delayed_item *item) |
| { |
| struct btrfs_delayed_item *curr, *next; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| struct list_head head; |
| int nitems, i, last_item; |
| int ret = 0; |
| |
| BUG_ON(!path->nodes[0]); |
| |
| leaf = path->nodes[0]; |
| |
| i = path->slots[0]; |
| last_item = btrfs_header_nritems(leaf) - 1; |
| if (i > last_item) |
| return -ENOENT; /* FIXME: Is errno suitable? */ |
| |
| next = item; |
| INIT_LIST_HEAD(&head); |
| btrfs_item_key_to_cpu(leaf, &key, i); |
| nitems = 0; |
| /* |
| * count the number of the dir index items that we can delete in batch |
| */ |
| while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { |
| list_add_tail(&next->tree_list, &head); |
| nitems++; |
| |
| curr = next; |
| next = __btrfs_next_delayed_item(curr); |
| if (!next) |
| break; |
| |
| if (!btrfs_is_continuous_delayed_item(curr, next)) |
| break; |
| |
| i++; |
| if (i > last_item) |
| break; |
| btrfs_item_key_to_cpu(leaf, &key, i); |
| } |
| |
| if (!nitems) |
| return 0; |
| |
| ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); |
| if (ret) |
| goto out; |
| |
| list_for_each_entry_safe(curr, next, &head, tree_list) { |
| btrfs_delayed_item_release_metadata(root, curr); |
| list_del(&curr->tree_list); |
| btrfs_release_delayed_item(curr); |
| } |
| |
| out: |
| return ret; |
| } |
| |
| static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_root *root, |
| struct btrfs_delayed_node *node) |
| { |
| struct btrfs_delayed_item *curr, *prev; |
| unsigned int nofs_flag; |
| int ret = 0; |
| |
| do_again: |
| mutex_lock(&node->mutex); |
| curr = __btrfs_first_delayed_deletion_item(node); |
| if (!curr) |
| goto delete_fail; |
| |
| nofs_flag = memalloc_nofs_save(); |
| ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); |
| memalloc_nofs_restore(nofs_flag); |
| if (ret < 0) |
| goto delete_fail; |
| else if (ret > 0) { |
| /* |
| * can't find the item which the node points to, so this node |
| * is invalid, just drop it. |
| */ |
| prev = curr; |
| curr = __btrfs_next_delayed_item(prev); |
| btrfs_release_delayed_item(prev); |
| ret = 0; |
| btrfs_release_path(path); |
| if (curr) { |
| mutex_unlock(&node->mutex); |
| goto do_again; |
| } else |
| goto delete_fail; |
| } |
| |
| btrfs_batch_delete_items(trans, root, path, curr); |
| btrfs_release_path(path); |
| mutex_unlock(&node->mutex); |
| goto do_again; |
| |
| delete_fail: |
| btrfs_release_path(path); |
| mutex_unlock(&node->mutex); |
| return ret; |
| } |
| |
| static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) |
| { |
| struct btrfs_delayed_root *delayed_root; |
| |
| if (delayed_node && |
| test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { |
| BUG_ON(!delayed_node->root); |
| clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); |
| delayed_node->count--; |
| |
| delayed_root = delayed_node->root->fs_info->delayed_root; |
| finish_one_item(delayed_root); |
| } |
| } |
| |
| static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) |
| { |
| struct btrfs_delayed_root *delayed_root; |
| |
| ASSERT(delayed_node->root); |
| clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); |
| delayed_node->count--; |
| |
| delayed_root = delayed_node->root->fs_info->delayed_root; |
| finish_one_item(delayed_root); |
| } |
| |
| static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_delayed_node *node) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_key key; |
| struct btrfs_inode_item *inode_item; |
| struct extent_buffer *leaf; |
| unsigned int nofs_flag; |
| int mod; |
| int ret; |
| |
| key.objectid = node->inode_id; |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| |
| if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) |
| mod = -1; |
| else |
| mod = 1; |
| |
| nofs_flag = memalloc_nofs_save(); |
| ret = btrfs_lookup_inode(trans, root, path, &key, mod); |
| memalloc_nofs_restore(nofs_flag); |
| if (ret > 0) { |
| btrfs_release_path(path); |
| return -ENOENT; |
| } else if (ret < 0) { |
| return ret; |
| } |
| |
| leaf = path->nodes[0]; |
| inode_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_inode_item); |
| write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, |
| sizeof(struct btrfs_inode_item)); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) |
| goto no_iref; |
| |
| path->slots[0]++; |
| if (path->slots[0] >= btrfs_header_nritems(leaf)) |
| goto search; |
| again: |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (key.objectid != node->inode_id) |
| goto out; |
| |
| if (key.type != BTRFS_INODE_REF_KEY && |
| key.type != BTRFS_INODE_EXTREF_KEY) |
| goto out; |
| |
| /* |
| * Delayed iref deletion is for the inode who has only one link, |
| * so there is only one iref. The case that several irefs are |
| * in the same item doesn't exist. |
| */ |
| btrfs_del_item(trans, root, path); |
| out: |
| btrfs_release_delayed_iref(node); |
| no_iref: |
| btrfs_release_path(path); |
| err_out: |
| btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); |
| btrfs_release_delayed_inode(node); |
| |
| return ret; |
| |
| search: |
| btrfs_release_path(path); |
| |
| key.type = BTRFS_INODE_EXTREF_KEY; |
| key.offset = -1; |
| |
| nofs_flag = memalloc_nofs_save(); |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| memalloc_nofs_restore(nofs_flag); |
| if (ret < 0) |
| goto err_out; |
| ASSERT(ret); |
| |
| ret = 0; |
| leaf = path->nodes[0]; |
| path->slots[0]--; |
| goto again; |
| } |
| |
| static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_delayed_node *node) |
| { |
| int ret; |
| |
| mutex_lock(&node->mutex); |
| if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { |
| mutex_unlock(&node->mutex); |
| return 0; |
| } |
| |
| ret = __btrfs_update_delayed_inode(trans, root, path, node); |
| mutex_unlock(&node->mutex); |
| return ret; |
| } |
| |
| static inline int |
| __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_delayed_node *node) |
| { |
| int ret; |
| |
| ret = btrfs_insert_delayed_items(trans, path, node->root, node); |
| if (ret) |
| return ret; |
| |
| ret = btrfs_delete_delayed_items(trans, path, node->root, node); |
| if (ret) |
| return ret; |
| |
| ret = btrfs_update_delayed_inode(trans, node->root, path, node); |
| return ret; |
| } |
| |
| /* |
| * Called when committing the transaction. |
| * Returns 0 on success. |
| * Returns < 0 on error and returns with an aborted transaction with any |
| * outstanding delayed items cleaned up. |
| */ |
| static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_delayed_root *delayed_root; |
| struct btrfs_delayed_node *curr_node, *prev_node; |
| struct btrfs_path *path; |
| struct btrfs_block_rsv *block_rsv; |
| int ret = 0; |
| bool count = (nr > 0); |
| |
| if (TRANS_ABORTED(trans)) |
| return -EIO; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| path->leave_spinning = 1; |
| |
| block_rsv = trans->block_rsv; |
| trans->block_rsv = &fs_info->delayed_block_rsv; |
| |
| delayed_root = fs_info->delayed_root; |
| |
| curr_node = btrfs_first_delayed_node(delayed_root); |
| while (curr_node && (!count || (count && nr--))) { |
| ret = __btrfs_commit_inode_delayed_items(trans, path, |
| curr_node); |
| if (ret) { |
| btrfs_release_delayed_node(curr_node); |
| curr_node = NULL; |
| btrfs_abort_transaction(trans, ret); |
| break; |
| } |
| |
| prev_node = curr_node; |
| curr_node = btrfs_next_delayed_node(curr_node); |
| btrfs_release_delayed_node(prev_node); |
| } |
| |
| if (curr_node) |
| btrfs_release_delayed_node(curr_node); |
| btrfs_free_path(path); |
| trans->block_rsv = block_rsv; |
| |
| return ret; |
| } |
| |
| int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) |
| { |
| return __btrfs_run_delayed_items(trans, -1); |
| } |
| |
| int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) |
| { |
| return __btrfs_run_delayed_items(trans, nr); |
| } |
| |
| int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode) |
| { |
| struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); |
| struct btrfs_path *path; |
| struct btrfs_block_rsv *block_rsv; |
| int ret; |
| |
| if (!delayed_node) |
| return 0; |
| |
| mutex_lock(&delayed_node->mutex); |
| if (!delayed_node->count) { |
| mutex_unlock(&delayed_node->mutex); |
| btrfs_release_delayed_node(delayed_node); |
| return 0; |
| } |
| mutex_unlock(&delayed_node->mutex); |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| btrfs_release_delayed_node(delayed_node); |
| return -ENOMEM; |
| } |
| path->leave_spinning = 1; |
| |
| block_rsv = trans->block_rsv; |
| trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; |
| |
| ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); |
| |
| btrfs_release_delayed_node(delayed_node); |
| btrfs_free_path(path); |
| trans->block_rsv = block_rsv; |
| |
| return ret; |
| } |
| |
| int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); |
| struct btrfs_path *path; |
| struct btrfs_block_rsv *block_rsv; |
| int ret; |
| |
| if (!delayed_node) |
| return 0; |
| |
| mutex_lock(&delayed_node->mutex); |
| if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { |
| mutex_unlock(&delayed_node->mutex); |
| btrfs_release_delayed_node(delayed_node); |
| return 0; |
| } |
| mutex_unlock(&delayed_node->mutex); |
| |
| trans = btrfs_join_transaction(delayed_node->root); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto trans_out; |
| } |
| path->leave_spinning = 1; |
| |
| block_rsv = trans->block_rsv; |
| trans->block_rsv = &fs_info->delayed_block_rsv; |
| |
| mutex_lock(&delayed_node->mutex); |
| if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) |
| ret = __btrfs_update_delayed_inode(trans, delayed_node->root, |
| path, delayed_node); |
| else |
| ret = 0; |
| mutex_unlock(&delayed_node->mutex); |
| |
| btrfs_free_path(path); |
| trans->block_rsv = block_rsv; |
| trans_out: |
| btrfs_end_transaction(trans); |
| btrfs_btree_balance_dirty(fs_info); |
| out: |
| btrfs_release_delayed_node(delayed_node); |
| |
| return ret; |
| } |
| |
| void btrfs_remove_delayed_node(struct btrfs_inode *inode) |
| { |
| struct btrfs_delayed_node *delayed_node; |
| |
| delayed_node = READ_ONCE(inode->delayed_node); |
| if (!delayed_node) |
| return; |
| |
| inode->delayed_node = NULL; |
| btrfs_release_delayed_node(delayed_node); |
| } |
| |
| struct btrfs_async_delayed_work { |
| struct btrfs_delayed_root *delayed_root; |
| int nr; |
| struct btrfs_work work; |
| }; |
| |
| static void btrfs_async_run_delayed_root(struct btrfs_work *work) |
| { |
| struct btrfs_async_delayed_work *async_work; |
| struct btrfs_delayed_root *delayed_root; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_path *path; |
| struct btrfs_delayed_node *delayed_node = NULL; |
| struct btrfs_root *root; |
| struct btrfs_block_rsv *block_rsv; |
| int total_done = 0; |
| |
| async_work = container_of(work, struct btrfs_async_delayed_work, work); |
| delayed_root = async_work->delayed_root; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| goto out; |
| |
| do { |
| if (atomic_read(&delayed_root->items) < |
| BTRFS_DELAYED_BACKGROUND / 2) |
| break; |
| |
| delayed_node = btrfs_first_prepared_delayed_node(delayed_root); |
| if (!delayed_node) |
| break; |
| |
| path->leave_spinning = 1; |
| root = delayed_node->root; |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| btrfs_release_path(path); |
| btrfs_release_prepared_delayed_node(delayed_node); |
| total_done++; |
| continue; |
| } |
| |
| block_rsv = trans->block_rsv; |
| trans->block_rsv = &root->fs_info->delayed_block_rsv; |
| |
| __btrfs_commit_inode_delayed_items(trans, path, delayed_node); |
| |
| trans->block_rsv = block_rsv; |
| btrfs_end_transaction(trans); |
| btrfs_btree_balance_dirty_nodelay(root->fs_info); |
| |
| btrfs_release_path(path); |
| btrfs_release_prepared_delayed_node(delayed_node); |
| total_done++; |
| |
| } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) |
| || total_done < async_work->nr); |
| |
| btrfs_free_path(path); |
| out: |
| wake_up(&delayed_root->wait); |
| kfree(async_work); |
| } |
| |
| |
| static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, |
| struct btrfs_fs_info *fs_info, int nr) |
| { |
| struct btrfs_async_delayed_work *async_work; |
| |
| async_work = kmalloc(sizeof(*async_work), GFP_NOFS); |
| if (!async_work) |
| return -ENOMEM; |
| |
| async_work->delayed_root = delayed_root; |
| btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL, |
| NULL); |
| async_work->nr = nr; |
| |
| btrfs_queue_work(fs_info->delayed_workers, &async_work->work); |
| return 0; |
| } |
| |
| void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) |
| { |
| WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); |
| } |
| |
| static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) |
| { |
| int val = atomic_read(&delayed_root->items_seq); |
| |
| if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) |
| return 1; |
| |
| if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) |
| return 1; |
| |
| return 0; |
| } |
| |
| void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; |
| |
| if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || |
| btrfs_workqueue_normal_congested(fs_info->delayed_workers)) |
| return; |
| |
| if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { |
| int seq; |
| int ret; |
| |
| seq = atomic_read(&delayed_root->items_seq); |
| |
| ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); |
| if (ret) |
| return; |
| |
| wait_event_interruptible(delayed_root->wait, |
| could_end_wait(delayed_root, seq)); |
| return; |
| } |
| |
| btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); |
| } |
| |
| /* Will return 0 or -ENOMEM */ |
| int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, |
| const char *name, int name_len, |
| struct btrfs_inode *dir, |
| struct btrfs_disk_key *disk_key, u8 type, |
| u64 index) |
| { |
| struct btrfs_delayed_node *delayed_node; |
| struct btrfs_delayed_item *delayed_item; |
| struct btrfs_dir_item *dir_item; |
| int ret; |
| |
| delayed_node = btrfs_get_or_create_delayed_node(dir); |
| if (IS_ERR(delayed_node)) |
| return PTR_ERR(delayed_node); |
| |
| delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); |
| if (!delayed_item) { |
| ret = -ENOMEM; |
| goto release_node; |
| } |
| |
| delayed_item->key.objectid = btrfs_ino(dir); |
| delayed_item->key.type = BTRFS_DIR_INDEX_KEY; |
| delayed_item->key.offset = index; |
| |
| dir_item = (struct btrfs_dir_item *)delayed_item->data; |
| dir_item->location = *disk_key; |
| btrfs_set_stack_dir_transid(dir_item, trans->transid); |
| btrfs_set_stack_dir_data_len(dir_item, 0); |
| btrfs_set_stack_dir_name_len(dir_item, name_len); |
| btrfs_set_stack_dir_type(dir_item, type); |
| memcpy((char *)(dir_item + 1), name, name_len); |
| |
| ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item); |
| /* |
| * we have reserved enough space when we start a new transaction, |
| * so reserving metadata failure is impossible |
| */ |
| BUG_ON(ret); |
| |
| mutex_lock(&delayed_node->mutex); |
| ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); |
| if (unlikely(ret)) { |
| btrfs_err(trans->fs_info, |
| "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", |
| name_len, name, delayed_node->root->root_key.objectid, |
| delayed_node->inode_id, ret); |
| BUG(); |
| } |
| mutex_unlock(&delayed_node->mutex); |
| |
| release_node: |
| btrfs_release_delayed_node(delayed_node); |
| return ret; |
| } |
| |
| static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, |
| struct btrfs_delayed_node *node, |
| struct btrfs_key *key) |
| { |
| struct btrfs_delayed_item *item; |
| |
| mutex_lock(&node->mutex); |
| item = __btrfs_lookup_delayed_insertion_item(node, key); |
| if (!item) { |
| mutex_unlock(&node->mutex); |
| return 1; |
| } |
| |
| btrfs_delayed_item_release_metadata(node->root, item); |
| btrfs_release_delayed_item(item); |
| mutex_unlock(&node->mutex); |
| return 0; |
| } |
| |
| int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *dir, u64 index) |
| { |
| struct btrfs_delayed_node *node; |
| struct btrfs_delayed_item *item; |
| struct btrfs_key item_key; |
| int ret; |
| |
| node = btrfs_get_or_create_delayed_node(dir); |
| if (IS_ERR(node)) |
| return PTR_ERR(node); |
| |
| item_key.objectid = btrfs_ino(dir); |
| item_key.type = BTRFS_DIR_INDEX_KEY; |
| item_key.offset = index; |
| |
| ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, |
| &item_key); |
| if (!ret) |
| goto end; |
| |
| item = btrfs_alloc_delayed_item(0); |
| if (!item) { |
| ret = -ENOMEM; |
| goto end; |
| } |
| |
| item->key = item_key; |
| |
| ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item); |
| /* |
| * we have reserved enough space when we start a new transaction, |
| * so reserving metadata failure is impossible. |
| */ |
| if (ret < 0) { |
| btrfs_err(trans->fs_info, |
| "metadata reservation failed for delayed dir item deltiona, should have been reserved"); |
| btrfs_release_delayed_item(item); |
| goto end; |
| } |
| |
| mutex_lock(&node->mutex); |
| ret = __btrfs_add_delayed_deletion_item(node, item); |
| if (unlikely(ret)) { |
| btrfs_err(trans->fs_info, |
| "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", |
| index, node->root->root_key.objectid, |
| node->inode_id, ret); |
| btrfs_delayed_item_release_metadata(dir->root, item); |
| btrfs_release_delayed_item(item); |
| } |
| mutex_unlock(&node->mutex); |
| end: |
| btrfs_release_delayed_node(node); |
| return ret; |
| } |
| |
| int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) |
| { |
| struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); |
| |
| if (!delayed_node) |
| return -ENOENT; |
| |
| /* |
| * Since we have held i_mutex of this directory, it is impossible that |
| * a new directory index is added into the delayed node and index_cnt |
| * is updated now. So we needn't lock the delayed node. |
| */ |
| if (!delayed_node->index_cnt) { |
| btrfs_release_delayed_node(delayed_node); |
| return -EINVAL; |
| } |
| |
| inode->index_cnt = delayed_node->index_cnt; |
| btrfs_release_delayed_node(delayed_node); |
| return 0; |
| } |
| |
| bool btrfs_readdir_get_delayed_items(struct inode *inode, |
| struct list_head *ins_list, |
| struct list_head *del_list) |
| { |
| struct btrfs_delayed_node *delayed_node; |
| struct btrfs_delayed_item *item; |
| |
| delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); |
| if (!delayed_node) |
| return false; |
| |
| /* |
| * We can only do one readdir with delayed items at a time because of |
| * item->readdir_list. |
| */ |
| inode_unlock_shared(inode); |
| inode_lock(inode); |
| |
| mutex_lock(&delayed_node->mutex); |
| item = __btrfs_first_delayed_insertion_item(delayed_node); |
| while (item) { |
| refcount_inc(&item->refs); |
| list_add_tail(&item->readdir_list, ins_list); |
| item = __btrfs_next_delayed_item(item); |
| } |
| |
| item = __btrfs_first_delayed_deletion_item(delayed_node); |
| while (item) { |
| refcount_inc(&item->refs); |
| list_add_tail(&item->readdir_list, del_list); |
| item = __btrfs_next_delayed_item(item); |
| } |
| mutex_unlock(&delayed_node->mutex); |
| /* |
| * This delayed node is still cached in the btrfs inode, so refs |
| * must be > 1 now, and we needn't check it is going to be freed |
| * or not. |
| * |
| * Besides that, this function is used to read dir, we do not |
| * insert/delete delayed items in this period. So we also needn't |
| * requeue or dequeue this delayed node. |
| */ |
| refcount_dec(&delayed_node->refs); |
| |
| return true; |
| } |
| |
| void btrfs_readdir_put_delayed_items(struct inode *inode, |
| struct list_head *ins_list, |
| struct list_head *del_list) |
| { |
| struct btrfs_delayed_item *curr, *next; |
| |
| list_for_each_entry_safe(curr, next, ins_list, readdir_list) { |
| list_del(&curr->readdir_list); |
| if (refcount_dec_and_test(&curr->refs)) |
| kfree(curr); |
| } |
| |
| list_for_each_entry_safe(curr, next, del_list, readdir_list) { |
| list_del(&curr->readdir_list); |
| if (refcount_dec_and_test(&curr->refs)) |
| kfree(curr); |
| } |
| |
| /* |
| * The VFS is going to do up_read(), so we need to downgrade back to a |
| * read lock. |
| */ |
| downgrade_write(&inode->i_rwsem); |
| } |
| |
| int btrfs_should_delete_dir_index(struct list_head *del_list, |
| u64 index) |
| { |
| struct btrfs_delayed_item *curr; |
| int ret = 0; |
| |
| list_for_each_entry(curr, del_list, readdir_list) { |
| if (curr->key.offset > index) |
| break; |
| if (curr->key.offset == index) { |
| ret = 1; |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| /* |
| * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree |
| * |
| */ |
| int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, |
| struct list_head *ins_list) |
| { |
| struct btrfs_dir_item *di; |
| struct btrfs_delayed_item *curr, *next; |
| struct btrfs_key location; |
| char *name; |
| int name_len; |
| int over = 0; |
| unsigned char d_type; |
| |
| if (list_empty(ins_list)) |
| return 0; |
| |
| /* |
| * Changing the data of the delayed item is impossible. So |
| * we needn't lock them. And we have held i_mutex of the |
| * directory, nobody can delete any directory indexes now. |
| */ |
| list_for_each_entry_safe(curr, next, ins_list, readdir_list) { |
| list_del(&curr->readdir_list); |
| |
| if (curr->key.offset < ctx->pos) { |
| if (refcount_dec_and_test(&curr->refs)) |
| kfree(curr); |
| continue; |
| } |
| |
| ctx->pos = curr->key.offset; |
| |
| di = (struct btrfs_dir_item *)curr->data; |
| name = (char *)(di + 1); |
| name_len = btrfs_stack_dir_name_len(di); |
| |
| d_type = fs_ftype_to_dtype(di->type); |
| btrfs_disk_key_to_cpu(&location, &di->location); |
| |
| over = !dir_emit(ctx, name, name_len, |
| location.objectid, d_type); |
| |
| if (refcount_dec_and_test(&curr->refs)) |
| kfree(curr); |
| |
| if (over) |
| return 1; |
| ctx->pos++; |
| } |
| return 0; |
| } |
| |
| static void fill_stack_inode_item(struct btrfs_trans_handle *trans, |
| struct btrfs_inode_item *inode_item, |
| struct inode *inode) |
| { |
| btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); |
| btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); |
| btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); |
| btrfs_set_stack_inode_mode(inode_item, inode->i_mode); |
| btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); |
| btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); |
| btrfs_set_stack_inode_generation(inode_item, |
| BTRFS_I(inode)->generation); |
| btrfs_set_stack_inode_sequence(inode_item, |
| inode_peek_iversion(inode)); |
| btrfs_set_stack_inode_transid(inode_item, trans->transid); |
| btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); |
| btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); |
| btrfs_set_stack_inode_block_group(inode_item, 0); |
| |
| btrfs_set_stack_timespec_sec(&inode_item->atime, |
| inode->i_atime.tv_sec); |
| btrfs_set_stack_timespec_nsec(&inode_item->atime, |
| inode->i_atime.tv_nsec); |
| |
| btrfs_set_stack_timespec_sec(&inode_item->mtime, |
| inode->i_mtime.tv_sec); |
| btrfs_set_stack_timespec_nsec(&inode_item->mtime, |
| inode->i_mtime.tv_nsec); |
| |
| btrfs_set_stack_timespec_sec(&inode_item->ctime, |
| inode->i_ctime.tv_sec); |
| btrfs_set_stack_timespec_nsec(&inode_item->ctime, |
| inode->i_ctime.tv_nsec); |
| |
| btrfs_set_stack_timespec_sec(&inode_item->otime, |
| BTRFS_I(inode)->i_otime.tv_sec); |
| btrfs_set_stack_timespec_nsec(&inode_item->otime, |
| BTRFS_I(inode)->i_otime.tv_nsec); |
| } |
| |
| int btrfs_fill_inode(struct inode *inode, u32 *rdev) |
| { |
| struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; |
| struct btrfs_delayed_node *delayed_node; |
| struct btrfs_inode_item *inode_item; |
| |
| delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); |
| if (!delayed_node) |
| return -ENOENT; |
| |
| mutex_lock(&delayed_node->mutex); |
| if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { |
| mutex_unlock(&delayed_node->mutex); |
| btrfs_release_delayed_node(delayed_node); |
| return -ENOENT; |
| } |
| |
| inode_item = &delayed_node->inode_item; |
| |
| i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); |
| i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); |
| btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); |
| btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, |
| round_up(i_size_read(inode), fs_info->sectorsize)); |
| inode->i_mode = btrfs_stack_inode_mode(inode_item); |
| set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); |
| inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); |
| BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); |
| BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); |
| |
| inode_set_iversion_queried(inode, |
| btrfs_stack_inode_sequence(inode_item)); |
| inode->i_rdev = 0; |
| *rdev = btrfs_stack_inode_rdev(inode_item); |
| BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); |
| |
| inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); |
| inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); |
| |
| inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); |
| inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); |
| |
| inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); |
| inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); |
| |
| BTRFS_I(inode)->i_otime.tv_sec = |
| btrfs_stack_timespec_sec(&inode_item->otime); |
| BTRFS_I(inode)->i_otime.tv_nsec = |
| btrfs_stack_timespec_nsec(&inode_item->otime); |
| |
| inode->i_generation = BTRFS_I(inode)->generation; |
| BTRFS_I(inode)->index_cnt = (u64)-1; |
| |
| mutex_unlock(&delayed_node->mutex); |
| btrfs_release_delayed_node(delayed_node); |
| return 0; |
| } |
| |
| int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, struct inode *inode) |
| { |
| struct btrfs_delayed_node *delayed_node; |
| int ret = 0; |
| |
| delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode)); |
| if (IS_ERR(delayed_node)) |
| return PTR_ERR(delayed_node); |
| |
| mutex_lock(&delayed_node->mutex); |
| if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { |
| fill_stack_inode_item(trans, &delayed_node->inode_item, inode); |
| goto release_node; |
| } |
| |
| ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode), |
| delayed_node); |
| if (ret) |
| goto release_node; |
| |
| fill_stack_inode_item(trans, &delayed_node->inode_item, inode); |
| set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); |
| delayed_node->count++; |
| atomic_inc(&root->fs_info->delayed_root->items); |
| release_node: |
| mutex_unlock(&delayed_node->mutex); |
| btrfs_release_delayed_node(delayed_node); |
| return ret; |
| } |
| |
| int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct btrfs_delayed_node *delayed_node; |
| |
| /* |
| * we don't do delayed inode updates during log recovery because it |
| * leads to enospc problems. This means we also can't do |
| * delayed inode refs |
| */ |
| if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) |
| return -EAGAIN; |
| |
| delayed_node = btrfs_get_or_create_delayed_node(inode); |
| if (IS_ERR(delayed_node)) |
| return PTR_ERR(delayed_node); |
| |
| /* |
| * We don't reserve space for inode ref deletion is because: |
| * - We ONLY do async inode ref deletion for the inode who has only |
| * one link(i_nlink == 1), it means there is only one inode ref. |
| * And in most case, the inode ref and the inode item are in the |
| * same leaf, and we will deal with them at the same time. |
| * Since we are sure we will reserve the space for the inode item, |
| * it is unnecessary to reserve space for inode ref deletion. |
| * - If the inode ref and the inode item are not in the same leaf, |
| * We also needn't worry about enospc problem, because we reserve |
| * much more space for the inode update than it needs. |
| * - At the worst, we can steal some space from the global reservation. |
| * It is very rare. |
| */ |
| mutex_lock(&delayed_node->mutex); |
| if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) |
| goto release_node; |
| |
| set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); |
| delayed_node->count++; |
| atomic_inc(&fs_info->delayed_root->items); |
| release_node: |
| mutex_unlock(&delayed_node->mutex); |
| btrfs_release_delayed_node(delayed_node); |
| return 0; |
| } |
| |
| static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) |
| { |
| struct btrfs_root *root = delayed_node->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_delayed_item *curr_item, *prev_item; |
| |
| mutex_lock(&delayed_node->mutex); |
| curr_item = __btrfs_first_delayed_insertion_item(delayed_node); |
| while (curr_item) { |
| btrfs_delayed_item_release_metadata(root, curr_item); |
| prev_item = curr_item; |
| curr_item = __btrfs_next_delayed_item(prev_item); |
| btrfs_release_delayed_item(prev_item); |
| } |
| |
| curr_item = __btrfs_first_delayed_deletion_item(delayed_node); |
| while (curr_item) { |
| btrfs_delayed_item_release_metadata(root, curr_item); |
| prev_item = curr_item; |
| curr_item = __btrfs_next_delayed_item(prev_item); |
| btrfs_release_delayed_item(prev_item); |
| } |
| |
| if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) |
| btrfs_release_delayed_iref(delayed_node); |
| |
| if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { |
| btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); |
| btrfs_release_delayed_inode(delayed_node); |
| } |
| mutex_unlock(&delayed_node->mutex); |
| } |
| |
| void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) |
| { |
| struct btrfs_delayed_node *delayed_node; |
| |
| delayed_node = btrfs_get_delayed_node(inode); |
| if (!delayed_node) |
| return; |
| |
| __btrfs_kill_delayed_node(delayed_node); |
| btrfs_release_delayed_node(delayed_node); |
| } |
| |
| void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) |
| { |
| u64 inode_id = 0; |
| struct btrfs_delayed_node *delayed_nodes[8]; |
| int i, n; |
| |
| while (1) { |
| spin_lock(&root->inode_lock); |
| n = radix_tree_gang_lookup(&root->delayed_nodes_tree, |
| (void **)delayed_nodes, inode_id, |
| ARRAY_SIZE(delayed_nodes)); |
| if (!n) { |
| spin_unlock(&root->inode_lock); |
| break; |
| } |
| |
| inode_id = delayed_nodes[n - 1]->inode_id + 1; |
| for (i = 0; i < n; i++) { |
| /* |
| * Don't increase refs in case the node is dead and |
| * about to be removed from the tree in the loop below |
| */ |
| if (!refcount_inc_not_zero(&delayed_nodes[i]->refs)) |
| delayed_nodes[i] = NULL; |
| } |
| spin_unlock(&root->inode_lock); |
| |
| for (i = 0; i < n; i++) { |
| if (!delayed_nodes[i]) |
| continue; |
| __btrfs_kill_delayed_node(delayed_nodes[i]); |
| btrfs_release_delayed_node(delayed_nodes[i]); |
| } |
| } |
| } |
| |
| void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_delayed_node *curr_node, *prev_node; |
| |
| curr_node = btrfs_first_delayed_node(fs_info->delayed_root); |
| while (curr_node) { |
| __btrfs_kill_delayed_node(curr_node); |
| |
| prev_node = curr_node; |
| curr_node = btrfs_next_delayed_node(curr_node); |
| btrfs_release_delayed_node(prev_node); |
| } |
| } |
| |