Qiuxu Zhuo | 98f2fc8 | 2019-01-30 11:15:18 -0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * EDAC driver for Intel(R) Xeon(R) Skylake processors |
| 4 | * Copyright (c) 2016, Intel Corporation. |
| 5 | */ |
| 6 | |
| 7 | #include <linux/kernel.h> |
| 8 | #include <linux/processor.h> |
| 9 | #include <asm/cpu_device_id.h> |
| 10 | #include <asm/intel-family.h> |
| 11 | #include <asm/mce.h> |
| 12 | |
| 13 | #include "edac_module.h" |
| 14 | #include "skx_common.h" |
| 15 | |
| 16 | #define EDAC_MOD_STR "skx_edac" |
| 17 | |
| 18 | /* |
| 19 | * Debug macros |
| 20 | */ |
| 21 | #define skx_printk(level, fmt, arg...) \ |
| 22 | edac_printk(level, "skx", fmt, ##arg) |
| 23 | |
| 24 | #define skx_mc_printk(mci, level, fmt, arg...) \ |
| 25 | edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg) |
| 26 | |
| 27 | static struct list_head *skx_edac_list; |
| 28 | |
| 29 | static u64 skx_tolm, skx_tohm; |
| 30 | static int skx_num_sockets; |
| 31 | static unsigned int nvdimm_count; |
| 32 | |
| 33 | #define MASK26 0x3FFFFFF /* Mask for 2^26 */ |
| 34 | #define MASK29 0x1FFFFFFF /* Mask for 2^29 */ |
| 35 | |
| 36 | static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx) |
| 37 | { |
| 38 | struct skx_dev *d; |
| 39 | |
| 40 | list_for_each_entry(d, skx_edac_list, list) { |
| 41 | if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number) |
| 42 | return d; |
| 43 | } |
| 44 | |
| 45 | return NULL; |
| 46 | } |
| 47 | |
| 48 | enum munittype { |
| 49 | CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD |
| 50 | }; |
| 51 | |
| 52 | struct munit { |
| 53 | u16 did; |
| 54 | u16 devfn[SKX_NUM_IMC]; |
| 55 | u8 busidx; |
| 56 | u8 per_socket; |
| 57 | enum munittype mtype; |
| 58 | }; |
| 59 | |
| 60 | /* |
| 61 | * List of PCI device ids that we need together with some device |
| 62 | * number and function numbers to tell which memory controller the |
| 63 | * device belongs to. |
| 64 | */ |
| 65 | static const struct munit skx_all_munits[] = { |
| 66 | { 0x2054, { }, 1, 1, SAD_ALL }, |
| 67 | { 0x2055, { }, 1, 1, UTIL_ALL }, |
| 68 | { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 }, |
| 69 | { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 }, |
| 70 | { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 }, |
| 71 | { 0x208e, { }, 1, 0, SAD }, |
| 72 | { } |
| 73 | }; |
| 74 | |
| 75 | static int get_all_munits(const struct munit *m) |
| 76 | { |
| 77 | struct pci_dev *pdev, *prev; |
| 78 | struct skx_dev *d; |
| 79 | u32 reg; |
| 80 | int i = 0, ndev = 0; |
| 81 | |
| 82 | prev = NULL; |
| 83 | for (;;) { |
| 84 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev); |
| 85 | if (!pdev) |
| 86 | break; |
| 87 | ndev++; |
| 88 | if (m->per_socket == SKX_NUM_IMC) { |
| 89 | for (i = 0; i < SKX_NUM_IMC; i++) |
| 90 | if (m->devfn[i] == pdev->devfn) |
| 91 | break; |
| 92 | if (i == SKX_NUM_IMC) |
| 93 | goto fail; |
| 94 | } |
| 95 | d = get_skx_dev(pdev->bus, m->busidx); |
| 96 | if (!d) |
| 97 | goto fail; |
| 98 | |
| 99 | /* Be sure that the device is enabled */ |
| 100 | if (unlikely(pci_enable_device(pdev) < 0)) { |
| 101 | skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n", |
| 102 | PCI_VENDOR_ID_INTEL, m->did); |
| 103 | goto fail; |
| 104 | } |
| 105 | |
| 106 | switch (m->mtype) { |
| 107 | case CHAN0: case CHAN1: case CHAN2: |
| 108 | pci_dev_get(pdev); |
| 109 | d->imc[i].chan[m->mtype].cdev = pdev; |
| 110 | break; |
| 111 | case SAD_ALL: |
| 112 | pci_dev_get(pdev); |
| 113 | d->sad_all = pdev; |
| 114 | break; |
| 115 | case UTIL_ALL: |
| 116 | pci_dev_get(pdev); |
| 117 | d->util_all = pdev; |
| 118 | break; |
| 119 | case SAD: |
| 120 | /* |
| 121 | * one of these devices per core, including cores |
| 122 | * that don't exist on this SKU. Ignore any that |
| 123 | * read a route table of zero, make sure all the |
| 124 | * non-zero values match. |
| 125 | */ |
| 126 | pci_read_config_dword(pdev, 0xB4, ®); |
| 127 | if (reg != 0) { |
| 128 | if (d->mcroute == 0) { |
| 129 | d->mcroute = reg; |
| 130 | } else if (d->mcroute != reg) { |
| 131 | skx_printk(KERN_ERR, "mcroute mismatch\n"); |
| 132 | goto fail; |
| 133 | } |
| 134 | } |
| 135 | ndev--; |
| 136 | break; |
| 137 | } |
| 138 | |
| 139 | prev = pdev; |
| 140 | } |
| 141 | |
| 142 | return ndev; |
| 143 | fail: |
| 144 | pci_dev_put(pdev); |
| 145 | return -ENODEV; |
| 146 | } |
| 147 | |
| 148 | static const struct x86_cpu_id skx_cpuids[] = { |
| 149 | { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 }, |
| 150 | { } |
| 151 | }; |
| 152 | MODULE_DEVICE_TABLE(x86cpu, skx_cpuids); |
| 153 | |
| 154 | #define SKX_GET_MTMTR(dev, reg) \ |
| 155 | pci_read_config_dword((dev), 0x87c, &(reg)) |
| 156 | |
| 157 | static bool skx_check_ecc(struct pci_dev *pdev) |
| 158 | { |
| 159 | u32 mtmtr; |
| 160 | |
| 161 | SKX_GET_MTMTR(pdev, mtmtr); |
| 162 | |
| 163 | return !!GET_BITFIELD(mtmtr, 2, 2); |
| 164 | } |
| 165 | |
| 166 | static int skx_get_dimm_config(struct mem_ctl_info *mci) |
| 167 | { |
| 168 | struct skx_pvt *pvt = mci->pvt_info; |
| 169 | struct skx_imc *imc = pvt->imc; |
| 170 | u32 mtr, amap, mcddrtcfg; |
| 171 | struct dimm_info *dimm; |
| 172 | int i, j; |
| 173 | int ndimms; |
| 174 | |
| 175 | for (i = 0; i < SKX_NUM_CHANNELS; i++) { |
| 176 | ndimms = 0; |
| 177 | pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap); |
| 178 | pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg); |
| 179 | for (j = 0; j < SKX_NUM_DIMMS; j++) { |
| 180 | dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, |
| 181 | mci->n_layers, i, j, 0); |
| 182 | pci_read_config_dword(imc->chan[i].cdev, |
| 183 | 0x80 + 4 * j, &mtr); |
| 184 | if (IS_DIMM_PRESENT(mtr)) { |
| 185 | ndimms += skx_get_dimm_info(mtr, amap, dimm, imc, i, j); |
| 186 | } else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) { |
| 187 | ndimms += skx_get_nvdimm_info(dimm, imc, i, j, |
| 188 | EDAC_MOD_STR); |
| 189 | nvdimm_count++; |
| 190 | } |
| 191 | } |
| 192 | if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) { |
| 193 | skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc); |
| 194 | return -ENODEV; |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | return 0; |
| 199 | } |
| 200 | |
| 201 | #define SKX_MAX_SAD 24 |
| 202 | |
| 203 | #define SKX_GET_SAD(d, i, reg) \ |
| 204 | pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg)) |
| 205 | #define SKX_GET_ILV(d, i, reg) \ |
| 206 | pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg)) |
| 207 | |
| 208 | #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31) |
| 209 | #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27) |
| 210 | #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26) |
| 211 | #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6) |
| 212 | #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4) |
| 213 | #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2) |
| 214 | #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0) |
| 215 | |
| 216 | #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0) |
| 217 | #define SKX_ILV_TARGET(tgt) ((tgt) & 7) |
| 218 | |
| 219 | static bool skx_sad_decode(struct decoded_addr *res) |
| 220 | { |
| 221 | struct skx_dev *d = list_first_entry(skx_edac_list, typeof(*d), list); |
| 222 | u64 addr = res->addr; |
| 223 | int i, idx, tgt, lchan, shift; |
| 224 | u32 sad, ilv; |
| 225 | u64 limit, prev_limit; |
| 226 | int remote = 0; |
| 227 | |
| 228 | /* Simple sanity check for I/O space or out of range */ |
| 229 | if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) { |
| 230 | edac_dbg(0, "Address 0x%llx out of range\n", addr); |
| 231 | return false; |
| 232 | } |
| 233 | |
| 234 | restart: |
| 235 | prev_limit = 0; |
| 236 | for (i = 0; i < SKX_MAX_SAD; i++) { |
| 237 | SKX_GET_SAD(d, i, sad); |
| 238 | limit = SKX_SAD_LIMIT(sad); |
| 239 | if (SKX_SAD_ENABLE(sad)) { |
| 240 | if (addr >= prev_limit && addr <= limit) |
| 241 | goto sad_found; |
| 242 | } |
| 243 | prev_limit = limit + 1; |
| 244 | } |
| 245 | edac_dbg(0, "No SAD entry for 0x%llx\n", addr); |
| 246 | return false; |
| 247 | |
| 248 | sad_found: |
| 249 | SKX_GET_ILV(d, i, ilv); |
| 250 | |
| 251 | switch (SKX_SAD_INTERLEAVE(sad)) { |
| 252 | case 0: |
| 253 | idx = GET_BITFIELD(addr, 6, 8); |
| 254 | break; |
| 255 | case 1: |
| 256 | idx = GET_BITFIELD(addr, 8, 10); |
| 257 | break; |
| 258 | case 2: |
| 259 | idx = GET_BITFIELD(addr, 12, 14); |
| 260 | break; |
| 261 | case 3: |
| 262 | idx = GET_BITFIELD(addr, 30, 32); |
| 263 | break; |
| 264 | } |
| 265 | |
| 266 | tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3); |
| 267 | |
| 268 | /* If point to another node, find it and start over */ |
| 269 | if (SKX_ILV_REMOTE(tgt)) { |
| 270 | if (remote) { |
| 271 | edac_dbg(0, "Double remote!\n"); |
| 272 | return false; |
| 273 | } |
| 274 | remote = 1; |
| 275 | list_for_each_entry(d, skx_edac_list, list) { |
| 276 | if (d->imc[0].src_id == SKX_ILV_TARGET(tgt)) |
| 277 | goto restart; |
| 278 | } |
| 279 | edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt)); |
| 280 | return false; |
| 281 | } |
| 282 | |
| 283 | if (SKX_SAD_MOD3(sad) == 0) { |
| 284 | lchan = SKX_ILV_TARGET(tgt); |
| 285 | } else { |
| 286 | switch (SKX_SAD_MOD3MODE(sad)) { |
| 287 | case 0: |
| 288 | shift = 6; |
| 289 | break; |
| 290 | case 1: |
| 291 | shift = 8; |
| 292 | break; |
| 293 | case 2: |
| 294 | shift = 12; |
| 295 | break; |
| 296 | default: |
| 297 | edac_dbg(0, "illegal mod3mode\n"); |
| 298 | return false; |
| 299 | } |
| 300 | switch (SKX_SAD_MOD3ASMOD2(sad)) { |
| 301 | case 0: |
| 302 | lchan = (addr >> shift) % 3; |
| 303 | break; |
| 304 | case 1: |
| 305 | lchan = (addr >> shift) % 2; |
| 306 | break; |
| 307 | case 2: |
| 308 | lchan = (addr >> shift) % 2; |
| 309 | lchan = (lchan << 1) | !lchan; |
| 310 | break; |
| 311 | case 3: |
| 312 | lchan = ((addr >> shift) % 2) << 1; |
| 313 | break; |
| 314 | } |
| 315 | lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1); |
| 316 | } |
| 317 | |
| 318 | res->dev = d; |
| 319 | res->socket = d->imc[0].src_id; |
| 320 | res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2); |
| 321 | res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19); |
| 322 | |
| 323 | edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n", |
| 324 | res->addr, res->socket, res->imc, res->channel); |
| 325 | return true; |
| 326 | } |
| 327 | |
| 328 | #define SKX_MAX_TAD 8 |
| 329 | |
| 330 | #define SKX_GET_TADBASE(d, mc, i, reg) \ |
| 331 | pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg)) |
| 332 | #define SKX_GET_TADWAYNESS(d, mc, i, reg) \ |
| 333 | pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg)) |
| 334 | #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \ |
| 335 | pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg)) |
| 336 | |
| 337 | #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26) |
| 338 | #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5) |
| 339 | #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7) |
| 340 | #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26) |
| 341 | #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26) |
| 342 | #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11)) |
| 343 | #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1) |
| 344 | |
| 345 | /* which bit used for both socket and channel interleave */ |
| 346 | static int skx_granularity[] = { 6, 8, 12, 30 }; |
| 347 | |
| 348 | static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits) |
| 349 | { |
| 350 | addr >>= shift; |
| 351 | addr /= ways; |
| 352 | addr <<= shift; |
| 353 | |
| 354 | return addr | (lowbits & ((1ull << shift) - 1)); |
| 355 | } |
| 356 | |
| 357 | static bool skx_tad_decode(struct decoded_addr *res) |
| 358 | { |
| 359 | int i; |
| 360 | u32 base, wayness, chnilvoffset; |
| 361 | int skt_interleave_bit, chn_interleave_bit; |
| 362 | u64 channel_addr; |
| 363 | |
| 364 | for (i = 0; i < SKX_MAX_TAD; i++) { |
| 365 | SKX_GET_TADBASE(res->dev, res->imc, i, base); |
| 366 | SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness); |
| 367 | if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness)) |
| 368 | goto tad_found; |
| 369 | } |
| 370 | edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr); |
| 371 | return false; |
| 372 | |
| 373 | tad_found: |
| 374 | res->sktways = SKX_TAD_SKTWAYS(wayness); |
| 375 | res->chanways = SKX_TAD_CHNWAYS(wayness); |
| 376 | skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)]; |
| 377 | chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)]; |
| 378 | |
| 379 | SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset); |
| 380 | channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset); |
| 381 | |
| 382 | if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) { |
| 383 | /* Must handle channel first, then socket */ |
| 384 | channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, |
| 385 | res->chanways, channel_addr); |
| 386 | channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, |
| 387 | res->sktways, channel_addr); |
| 388 | } else { |
| 389 | /* Handle socket then channel. Preserve low bits from original address */ |
| 390 | channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, |
| 391 | res->sktways, res->addr); |
| 392 | channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, |
| 393 | res->chanways, res->addr); |
| 394 | } |
| 395 | |
| 396 | res->chan_addr = channel_addr; |
| 397 | |
| 398 | edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n", |
| 399 | res->addr, res->chan_addr, res->sktways, res->chanways); |
| 400 | return true; |
| 401 | } |
| 402 | |
| 403 | #define SKX_MAX_RIR 4 |
| 404 | |
| 405 | #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \ |
| 406 | pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ |
| 407 | 0x108 + 4 * (i), &(reg)) |
| 408 | #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \ |
| 409 | pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ |
| 410 | 0x120 + 16 * (idx) + 4 * (i), &(reg)) |
| 411 | |
| 412 | #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31) |
| 413 | #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29) |
| 414 | #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29)) |
| 415 | #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19) |
| 416 | #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26)) |
| 417 | |
| 418 | static bool skx_rir_decode(struct decoded_addr *res) |
| 419 | { |
| 420 | int i, idx, chan_rank; |
| 421 | int shift; |
| 422 | u32 rirway, rirlv; |
| 423 | u64 rank_addr, prev_limit = 0, limit; |
| 424 | |
| 425 | if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg) |
| 426 | shift = 6; |
| 427 | else |
| 428 | shift = 13; |
| 429 | |
| 430 | for (i = 0; i < SKX_MAX_RIR; i++) { |
| 431 | SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway); |
| 432 | limit = SKX_RIR_LIMIT(rirway); |
| 433 | if (SKX_RIR_VALID(rirway)) { |
| 434 | if (prev_limit <= res->chan_addr && |
| 435 | res->chan_addr <= limit) |
| 436 | goto rir_found; |
| 437 | } |
| 438 | prev_limit = limit; |
| 439 | } |
| 440 | edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr); |
| 441 | return false; |
| 442 | |
| 443 | rir_found: |
| 444 | rank_addr = res->chan_addr >> shift; |
| 445 | rank_addr /= SKX_RIR_WAYS(rirway); |
| 446 | rank_addr <<= shift; |
| 447 | rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0); |
| 448 | |
| 449 | res->rank_address = rank_addr; |
| 450 | idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway); |
| 451 | |
| 452 | SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv); |
| 453 | res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv); |
| 454 | chan_rank = SKX_RIR_CHAN_RANK(rirlv); |
| 455 | res->channel_rank = chan_rank; |
| 456 | res->dimm = chan_rank / 4; |
| 457 | res->rank = chan_rank % 4; |
| 458 | |
| 459 | edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n", |
| 460 | res->addr, res->dimm, res->rank, |
| 461 | res->channel_rank, res->rank_address); |
| 462 | return true; |
| 463 | } |
| 464 | |
| 465 | static u8 skx_close_row[] = { |
| 466 | 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33 |
| 467 | }; |
| 468 | |
| 469 | static u8 skx_close_column[] = { |
| 470 | 3, 4, 5, 14, 19, 23, 24, 25, 26, 27 |
| 471 | }; |
| 472 | |
| 473 | static u8 skx_open_row[] = { |
| 474 | 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33 |
| 475 | }; |
| 476 | |
| 477 | static u8 skx_open_column[] = { |
| 478 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 |
| 479 | }; |
| 480 | |
| 481 | static u8 skx_open_fine_column[] = { |
| 482 | 3, 4, 5, 7, 8, 9, 10, 11, 12, 13 |
| 483 | }; |
| 484 | |
| 485 | static int skx_bits(u64 addr, int nbits, u8 *bits) |
| 486 | { |
| 487 | int i, res = 0; |
| 488 | |
| 489 | for (i = 0; i < nbits; i++) |
| 490 | res |= ((addr >> bits[i]) & 1) << i; |
| 491 | return res; |
| 492 | } |
| 493 | |
| 494 | static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1) |
| 495 | { |
| 496 | int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1); |
| 497 | |
| 498 | if (do_xor) |
| 499 | ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1); |
| 500 | |
| 501 | return ret; |
| 502 | } |
| 503 | |
| 504 | static bool skx_mad_decode(struct decoded_addr *r) |
| 505 | { |
| 506 | struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm]; |
| 507 | int bg0 = dimm->fine_grain_bank ? 6 : 13; |
| 508 | |
| 509 | if (dimm->close_pg) { |
| 510 | r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row); |
| 511 | r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column); |
| 512 | r->column |= 0x400; /* C10 is autoprecharge, always set */ |
| 513 | r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28); |
| 514 | r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21); |
| 515 | } else { |
| 516 | r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row); |
| 517 | if (dimm->fine_grain_bank) |
| 518 | r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column); |
| 519 | else |
| 520 | r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column); |
| 521 | r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23); |
| 522 | r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21); |
| 523 | } |
| 524 | r->row &= (1u << dimm->rowbits) - 1; |
| 525 | |
| 526 | edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n", |
| 527 | r->addr, r->row, r->column, r->bank_address, |
| 528 | r->bank_group); |
| 529 | return true; |
| 530 | } |
| 531 | |
| 532 | static bool skx_decode(struct decoded_addr *res) |
| 533 | { |
| 534 | return skx_sad_decode(res) && skx_tad_decode(res) && |
| 535 | skx_rir_decode(res) && skx_mad_decode(res); |
| 536 | } |
| 537 | |
| 538 | static struct notifier_block skx_mce_dec = { |
| 539 | .notifier_call = skx_mce_check_error, |
| 540 | .priority = MCE_PRIO_EDAC, |
| 541 | }; |
| 542 | |
Qiuxu Zhuo | fe78351 | 2019-03-21 15:13:39 -0700 | [diff] [blame^] | 543 | #ifdef CONFIG_EDAC_DEBUG |
| 544 | /* |
| 545 | * Debug feature. |
| 546 | * Exercise the address decode logic by writing an address to |
| 547 | * /sys/kernel/debug/edac/skx_test/addr. |
| 548 | */ |
| 549 | static struct dentry *skx_test; |
| 550 | |
| 551 | static int debugfs_u64_set(void *data, u64 val) |
| 552 | { |
| 553 | struct mce m; |
| 554 | |
| 555 | pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val); |
| 556 | |
| 557 | memset(&m, 0, sizeof(m)); |
| 558 | /* ADDRV + MemRd + Unknown channel */ |
| 559 | m.status = MCI_STATUS_ADDRV + 0x90; |
| 560 | /* One corrected error */ |
| 561 | m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT); |
| 562 | m.addr = val; |
| 563 | skx_mce_check_error(NULL, 0, &m); |
| 564 | |
| 565 | return 0; |
| 566 | } |
| 567 | DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); |
| 568 | |
| 569 | static void setup_skx_debug(void) |
| 570 | { |
| 571 | skx_test = edac_debugfs_create_dir("skx_test"); |
| 572 | if (!skx_test) |
| 573 | return; |
| 574 | |
| 575 | if (!edac_debugfs_create_file("addr", 0200, skx_test, |
| 576 | NULL, &fops_u64_wo)) { |
| 577 | debugfs_remove(skx_test); |
| 578 | skx_test = NULL; |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | static void teardown_skx_debug(void) |
| 583 | { |
| 584 | debugfs_remove_recursive(skx_test); |
| 585 | } |
| 586 | #else |
| 587 | static inline void setup_skx_debug(void) {} |
| 588 | static inline void teardown_skx_debug(void) {} |
| 589 | #endif /*CONFIG_EDAC_DEBUG*/ |
| 590 | |
Qiuxu Zhuo | 98f2fc8 | 2019-01-30 11:15:18 -0800 | [diff] [blame] | 591 | /* |
| 592 | * skx_init: |
| 593 | * make sure we are running on the correct cpu model |
| 594 | * search for all the devices we need |
| 595 | * check which DIMMs are present. |
| 596 | */ |
| 597 | static int __init skx_init(void) |
| 598 | { |
| 599 | const struct x86_cpu_id *id; |
| 600 | const struct munit *m; |
| 601 | const char *owner; |
| 602 | int rc = 0, i, off[3] = {0xd0, 0xd4, 0xd8}; |
| 603 | u8 mc = 0, src_id, node_id; |
| 604 | struct skx_dev *d; |
| 605 | |
| 606 | edac_dbg(2, "\n"); |
| 607 | |
| 608 | owner = edac_get_owner(); |
| 609 | if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) |
| 610 | return -EBUSY; |
| 611 | |
| 612 | id = x86_match_cpu(skx_cpuids); |
| 613 | if (!id) |
| 614 | return -ENODEV; |
| 615 | |
| 616 | rc = skx_get_hi_lo(0x2034, off, &skx_tolm, &skx_tohm); |
| 617 | if (rc) |
| 618 | return rc; |
| 619 | |
| 620 | rc = skx_get_all_bus_mappings(0x2016, 0xcc, SKX, &skx_edac_list); |
| 621 | if (rc < 0) |
| 622 | goto fail; |
| 623 | if (rc == 0) { |
| 624 | edac_dbg(2, "No memory controllers found\n"); |
| 625 | return -ENODEV; |
| 626 | } |
| 627 | skx_num_sockets = rc; |
| 628 | |
| 629 | for (m = skx_all_munits; m->did; m++) { |
| 630 | rc = get_all_munits(m); |
| 631 | if (rc < 0) |
| 632 | goto fail; |
| 633 | if (rc != m->per_socket * skx_num_sockets) { |
| 634 | edac_dbg(2, "Expected %d, got %d of 0x%x\n", |
| 635 | m->per_socket * skx_num_sockets, rc, m->did); |
| 636 | rc = -ENODEV; |
| 637 | goto fail; |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | list_for_each_entry(d, skx_edac_list, list) { |
| 642 | rc = skx_get_src_id(d, &src_id); |
| 643 | if (rc < 0) |
| 644 | goto fail; |
| 645 | rc = skx_get_node_id(d, &node_id); |
| 646 | if (rc < 0) |
| 647 | goto fail; |
| 648 | edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id); |
| 649 | for (i = 0; i < SKX_NUM_IMC; i++) { |
| 650 | d->imc[i].mc = mc++; |
| 651 | d->imc[i].lmc = i; |
| 652 | d->imc[i].src_id = src_id; |
| 653 | d->imc[i].node_id = node_id; |
| 654 | rc = skx_register_mci(&d->imc[i], d->imc[i].chan[0].cdev, |
| 655 | "Skylake Socket", EDAC_MOD_STR, |
| 656 | skx_get_dimm_config); |
| 657 | if (rc < 0) |
| 658 | goto fail; |
| 659 | } |
| 660 | } |
| 661 | |
| 662 | skx_set_decode(skx_decode); |
| 663 | |
| 664 | if (nvdimm_count && skx_adxl_get() == -ENODEV) |
| 665 | skx_printk(KERN_NOTICE, "Only decoding DDR4 address!\n"); |
| 666 | |
| 667 | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
| 668 | opstate_init(); |
| 669 | |
Qiuxu Zhuo | fe78351 | 2019-03-21 15:13:39 -0700 | [diff] [blame^] | 670 | setup_skx_debug(); |
Qiuxu Zhuo | 98f2fc8 | 2019-01-30 11:15:18 -0800 | [diff] [blame] | 671 | |
| 672 | mce_register_decode_chain(&skx_mce_dec); |
| 673 | |
| 674 | return 0; |
| 675 | fail: |
| 676 | skx_remove(); |
| 677 | return rc; |
| 678 | } |
| 679 | |
| 680 | static void __exit skx_exit(void) |
| 681 | { |
| 682 | edac_dbg(2, "\n"); |
| 683 | mce_unregister_decode_chain(&skx_mce_dec); |
| 684 | teardown_skx_debug(); |
| 685 | if (nvdimm_count) |
| 686 | skx_adxl_put(); |
| 687 | skx_remove(); |
| 688 | } |
| 689 | |
| 690 | module_init(skx_init); |
| 691 | module_exit(skx_exit); |
| 692 | |
| 693 | module_param(edac_op_state, int, 0444); |
| 694 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |
| 695 | |
| 696 | MODULE_LICENSE("GPL v2"); |
| 697 | MODULE_AUTHOR("Tony Luck"); |
| 698 | MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors"); |