blob: 2e64806b40afd8f939eb0e7079c85a1f4e07da73 [file] [log] [blame]
Mika Westerberg011f23a2010-05-06 04:47:04 +00001/*
2 * Driver for Cirrus Logic EP93xx SPI controller.
3 *
Mika Westerberg626a96d2011-05-29 13:10:06 +03004 * Copyright (C) 2010-2011 Mika Westerberg
Mika Westerberg011f23a2010-05-06 04:47:04 +00005 *
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
7 *
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9 *
10 * For more information about the SPI controller see documentation on Cirrus
11 * Logic web site:
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19#include <linux/io.h>
20#include <linux/clk.h>
21#include <linux/err.h>
22#include <linux/delay.h>
23#include <linux/device.h>
Mika Westerberg626a96d2011-05-29 13:10:06 +030024#include <linux/dmaengine.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000025#include <linux/bitops.h>
26#include <linux/interrupt.h>
Mika Westerberg5bdb76132011-10-15 21:40:09 +030027#include <linux/module.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000028#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/sched.h>
Mika Westerberg626a96d2011-05-29 13:10:06 +030031#include <linux/scatterlist.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000032#include <linux/spi/spi.h>
33
Arnd Bergmanna3b29242012-08-24 15:12:11 +020034#include <linux/platform_data/dma-ep93xx.h>
35#include <linux/platform_data/spi-ep93xx.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000036
37#define SSPCR0 0x0000
38#define SSPCR0_MODE_SHIFT 6
39#define SSPCR0_SCR_SHIFT 8
40
41#define SSPCR1 0x0004
42#define SSPCR1_RIE BIT(0)
43#define SSPCR1_TIE BIT(1)
44#define SSPCR1_RORIE BIT(2)
45#define SSPCR1_LBM BIT(3)
46#define SSPCR1_SSE BIT(4)
47#define SSPCR1_MS BIT(5)
48#define SSPCR1_SOD BIT(6)
49
50#define SSPDR 0x0008
51
52#define SSPSR 0x000c
53#define SSPSR_TFE BIT(0)
54#define SSPSR_TNF BIT(1)
55#define SSPSR_RNE BIT(2)
56#define SSPSR_RFF BIT(3)
57#define SSPSR_BSY BIT(4)
58#define SSPCPSR 0x0010
59
60#define SSPIIR 0x0014
61#define SSPIIR_RIS BIT(0)
62#define SSPIIR_TIS BIT(1)
63#define SSPIIR_RORIS BIT(2)
64#define SSPICR SSPIIR
65
66/* timeout in milliseconds */
67#define SPI_TIMEOUT 5
68/* maximum depth of RX/TX FIFO */
69#define SPI_FIFO_SIZE 8
70
71/**
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @lock: spinlock that protects concurrent accesses to fields @running,
74 * @current_msg and @msg_queue
75 * @pdev: pointer to platform device
76 * @clk: clock for the controller
77 * @regs_base: pointer to ioremap()'d registers
Mika Westerberg626a96d2011-05-29 13:10:06 +030078 * @sspdr_phys: physical address of the SSPDR register
Mika Westerberg011f23a2010-05-06 04:47:04 +000079 * @min_rate: minimum clock rate (in Hz) supported by the controller
80 * @max_rate: maximum clock rate (in Hz) supported by the controller
81 * @running: is the queue running
82 * @wq: workqueue used by the driver
83 * @msg_work: work that is queued for the driver
84 * @wait: wait here until given transfer is completed
85 * @msg_queue: queue for the messages
86 * @current_msg: message that is currently processed (or %NULL if none)
87 * @tx: current byte in transfer to transmit
88 * @rx: current byte in transfer to receive
89 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
90 * frame decreases this level and sending one frame increases it.
Mika Westerberg626a96d2011-05-29 13:10:06 +030091 * @dma_rx: RX DMA channel
92 * @dma_tx: TX DMA channel
93 * @dma_rx_data: RX parameters passed to the DMA engine
94 * @dma_tx_data: TX parameters passed to the DMA engine
95 * @rx_sgt: sg table for RX transfers
96 * @tx_sgt: sg table for TX transfers
97 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
98 * the client
Mika Westerberg011f23a2010-05-06 04:47:04 +000099 *
100 * This structure holds EP93xx SPI controller specific information. When
101 * @running is %true, driver accepts transfer requests from protocol drivers.
102 * @current_msg is used to hold pointer to the message that is currently
103 * processed. If @current_msg is %NULL, it means that no processing is going
104 * on.
105 *
106 * Most of the fields are only written once and they can be accessed without
107 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
108 * @running, and @msg_queue.
109 */
110struct ep93xx_spi {
111 spinlock_t lock;
112 const struct platform_device *pdev;
113 struct clk *clk;
114 void __iomem *regs_base;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300115 unsigned long sspdr_phys;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000116 unsigned long min_rate;
117 unsigned long max_rate;
118 bool running;
119 struct workqueue_struct *wq;
120 struct work_struct msg_work;
121 struct completion wait;
122 struct list_head msg_queue;
123 struct spi_message *current_msg;
124 size_t tx;
125 size_t rx;
126 size_t fifo_level;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300127 struct dma_chan *dma_rx;
128 struct dma_chan *dma_tx;
129 struct ep93xx_dma_data dma_rx_data;
130 struct ep93xx_dma_data dma_tx_data;
131 struct sg_table rx_sgt;
132 struct sg_table tx_sgt;
133 void *zeropage;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000134};
135
136/**
137 * struct ep93xx_spi_chip - SPI device hardware settings
138 * @spi: back pointer to the SPI device
Mika Westerberg011f23a2010-05-06 04:47:04 +0000139 * @ops: private chip operations
Mika Westerberg011f23a2010-05-06 04:47:04 +0000140 */
141struct ep93xx_spi_chip {
142 const struct spi_device *spi;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000143 struct ep93xx_spi_chip_ops *ops;
144};
145
146/* converts bits per word to CR0.DSS value */
147#define bits_per_word_to_dss(bpw) ((bpw) - 1)
148
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700149static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi,
150 u16 reg, u8 value)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000151{
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700152 writeb(value, espi->regs_base + reg);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000153}
154
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700155static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000156{
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700157 return readb(spi->regs_base + reg);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000158}
159
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700160static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi,
161 u16 reg, u16 value)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000162{
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700163 writew(value, espi->regs_base + reg);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000164}
165
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700166static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000167{
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700168 return readw(spi->regs_base + reg);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000169}
170
171static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
172{
173 u8 regval;
174 int err;
175
176 err = clk_enable(espi->clk);
177 if (err)
178 return err;
179
180 regval = ep93xx_spi_read_u8(espi, SSPCR1);
181 regval |= SSPCR1_SSE;
182 ep93xx_spi_write_u8(espi, SSPCR1, regval);
183
184 return 0;
185}
186
187static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
188{
189 u8 regval;
190
191 regval = ep93xx_spi_read_u8(espi, SSPCR1);
192 regval &= ~SSPCR1_SSE;
193 ep93xx_spi_write_u8(espi, SSPCR1, regval);
194
195 clk_disable(espi->clk);
196}
197
198static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
199{
200 u8 regval;
201
202 regval = ep93xx_spi_read_u8(espi, SSPCR1);
203 regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
204 ep93xx_spi_write_u8(espi, SSPCR1, regval);
205}
206
207static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
208{
209 u8 regval;
210
211 regval = ep93xx_spi_read_u8(espi, SSPCR1);
212 regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
213 ep93xx_spi_write_u8(espi, SSPCR1, regval);
214}
215
216/**
217 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
218 * @espi: ep93xx SPI controller struct
Mika Westerberg011f23a2010-05-06 04:47:04 +0000219 * @rate: desired SPI output clock rate
H Hartley Sweetenf7ef1da2013-07-02 10:10:29 -0700220 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
221 * @div_scr: pointer to return the scr divider
Mika Westerberg011f23a2010-05-06 04:47:04 +0000222 */
223static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
H Hartley Sweetenf7ef1da2013-07-02 10:10:29 -0700224 unsigned long rate,
225 u8 *div_cpsr, u8 *div_scr)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000226{
227 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
228 int cpsr, scr;
229
230 /*
231 * Make sure that max value is between values supported by the
232 * controller. Note that minimum value is already checked in
233 * ep93xx_spi_transfer().
234 */
235 rate = clamp(rate, espi->min_rate, espi->max_rate);
236
237 /*
238 * Calculate divisors so that we can get speed according the
239 * following formula:
240 * rate = spi_clock_rate / (cpsr * (1 + scr))
241 *
242 * cpsr must be even number and starts from 2, scr can be any number
243 * between 0 and 255.
244 */
245 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
246 for (scr = 0; scr <= 255; scr++) {
247 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
H Hartley Sweetenf7ef1da2013-07-02 10:10:29 -0700248 *div_scr = (u8)scr;
249 *div_cpsr = (u8)cpsr;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000250 return 0;
251 }
252 }
253 }
254
255 return -EINVAL;
256}
257
258static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
259{
260 struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
261 int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
262
263 if (chip->ops && chip->ops->cs_control)
264 chip->ops->cs_control(spi, value);
265}
266
267/**
268 * ep93xx_spi_setup() - setup an SPI device
269 * @spi: SPI device to setup
270 *
271 * This function sets up SPI device mode, speed etc. Can be called multiple
272 * times for a single device. Returns %0 in case of success, negative error in
273 * case of failure. When this function returns success, the device is
274 * deselected.
275 */
276static int ep93xx_spi_setup(struct spi_device *spi)
277{
278 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
279 struct ep93xx_spi_chip *chip;
280
Mika Westerberg011f23a2010-05-06 04:47:04 +0000281 chip = spi_get_ctldata(spi);
282 if (!chip) {
283 dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
284 spi->modalias);
285
286 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
287 if (!chip)
288 return -ENOMEM;
289
290 chip->spi = spi;
291 chip->ops = spi->controller_data;
292
293 if (chip->ops && chip->ops->setup) {
294 int ret = chip->ops->setup(spi);
295 if (ret) {
296 kfree(chip);
297 return ret;
298 }
299 }
300
301 spi_set_ctldata(spi, chip);
302 }
303
Mika Westerberg011f23a2010-05-06 04:47:04 +0000304 ep93xx_spi_cs_control(spi, false);
305 return 0;
306}
307
308/**
309 * ep93xx_spi_transfer() - queue message to be transferred
310 * @spi: target SPI device
311 * @msg: message to be transferred
312 *
313 * This function is called by SPI device drivers when they are going to transfer
314 * a new message. It simply puts the message in the queue and schedules
315 * workqueue to perform the actual transfer later on.
316 *
317 * Returns %0 on success and negative error in case of failure.
318 */
319static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
320{
321 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
322 struct spi_transfer *t;
323 unsigned long flags;
324
325 if (!msg || !msg->complete)
326 return -EINVAL;
327
328 /* first validate each transfer */
329 list_for_each_entry(t, &msg->transfers, transfer_list) {
Mika Westerberg011f23a2010-05-06 04:47:04 +0000330 if (t->speed_hz && t->speed_hz < espi->min_rate)
331 return -EINVAL;
332 }
333
334 /*
335 * Now that we own the message, let's initialize it so that it is
336 * suitable for us. We use @msg->status to signal whether there was
337 * error in transfer and @msg->state is used to hold pointer to the
338 * current transfer (or %NULL if no active current transfer).
339 */
340 msg->state = NULL;
341 msg->status = 0;
342 msg->actual_length = 0;
343
344 spin_lock_irqsave(&espi->lock, flags);
345 if (!espi->running) {
346 spin_unlock_irqrestore(&espi->lock, flags);
347 return -ESHUTDOWN;
348 }
349 list_add_tail(&msg->queue, &espi->msg_queue);
350 queue_work(espi->wq, &espi->msg_work);
351 spin_unlock_irqrestore(&espi->lock, flags);
352
353 return 0;
354}
355
356/**
357 * ep93xx_spi_cleanup() - cleans up master controller specific state
358 * @spi: SPI device to cleanup
359 *
360 * This function releases master controller specific state for given @spi
361 * device.
362 */
363static void ep93xx_spi_cleanup(struct spi_device *spi)
364{
365 struct ep93xx_spi_chip *chip;
366
367 chip = spi_get_ctldata(spi);
368 if (chip) {
369 if (chip->ops && chip->ops->cleanup)
370 chip->ops->cleanup(spi);
371 spi_set_ctldata(spi, NULL);
372 kfree(chip);
373 }
374}
375
376/**
377 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
378 * @espi: ep93xx SPI controller struct
379 * @chip: chip specific settings
H Hartley Sweetenf7ef1da2013-07-02 10:10:29 -0700380 * @speed_hz: transfer speed
H Hartley Sweetend9b65df2013-07-02 10:09:29 -0700381 * @bits_per_word: transfer bits_per_word
Mika Westerberg011f23a2010-05-06 04:47:04 +0000382 */
H Hartley Sweetenf7ef1da2013-07-02 10:10:29 -0700383static int ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
384 const struct ep93xx_spi_chip *chip,
385 u32 speed_hz, u8 bits_per_word)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000386{
H Hartley Sweetend9b65df2013-07-02 10:09:29 -0700387 u8 dss = bits_per_word_to_dss(bits_per_word);
H Hartley Sweetenf7ef1da2013-07-02 10:10:29 -0700388 u8 div_cpsr = 0;
389 u8 div_scr = 0;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000390 u16 cr0;
H Hartley Sweetenf7ef1da2013-07-02 10:10:29 -0700391 int err;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000392
H Hartley Sweetenf7ef1da2013-07-02 10:10:29 -0700393 err = ep93xx_spi_calc_divisors(espi, speed_hz, &div_cpsr, &div_scr);
394 if (err)
395 return err;
396
397 cr0 = div_scr << SSPCR0_SCR_SHIFT;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000398 cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
H Hartley Sweetend9b65df2013-07-02 10:09:29 -0700399 cr0 |= dss;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000400
401 dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
H Hartley Sweetenf7ef1da2013-07-02 10:10:29 -0700402 chip->spi->mode, div_cpsr, div_scr, dss);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000403 dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
404
H Hartley Sweetenf7ef1da2013-07-02 10:10:29 -0700405 ep93xx_spi_write_u8(espi, SSPCPSR, div_cpsr);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000406 ep93xx_spi_write_u16(espi, SSPCR0, cr0);
H Hartley Sweetenf7ef1da2013-07-02 10:10:29 -0700407
408 return 0;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000409}
410
Mika Westerberg011f23a2010-05-06 04:47:04 +0000411static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
412{
H Hartley Sweeten701c3582013-07-02 10:07:01 -0700413 if (t->bits_per_word > 8) {
Mika Westerberg011f23a2010-05-06 04:47:04 +0000414 u16 tx_val = 0;
415
416 if (t->tx_buf)
417 tx_val = ((u16 *)t->tx_buf)[espi->tx];
418 ep93xx_spi_write_u16(espi, SSPDR, tx_val);
419 espi->tx += sizeof(tx_val);
420 } else {
421 u8 tx_val = 0;
422
423 if (t->tx_buf)
424 tx_val = ((u8 *)t->tx_buf)[espi->tx];
425 ep93xx_spi_write_u8(espi, SSPDR, tx_val);
426 espi->tx += sizeof(tx_val);
427 }
428}
429
430static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
431{
H Hartley Sweeten701c3582013-07-02 10:07:01 -0700432 if (t->bits_per_word > 8) {
Mika Westerberg011f23a2010-05-06 04:47:04 +0000433 u16 rx_val;
434
435 rx_val = ep93xx_spi_read_u16(espi, SSPDR);
436 if (t->rx_buf)
437 ((u16 *)t->rx_buf)[espi->rx] = rx_val;
438 espi->rx += sizeof(rx_val);
439 } else {
440 u8 rx_val;
441
442 rx_val = ep93xx_spi_read_u8(espi, SSPDR);
443 if (t->rx_buf)
444 ((u8 *)t->rx_buf)[espi->rx] = rx_val;
445 espi->rx += sizeof(rx_val);
446 }
447}
448
449/**
450 * ep93xx_spi_read_write() - perform next RX/TX transfer
451 * @espi: ep93xx SPI controller struct
452 *
453 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
454 * called several times, the whole transfer will be completed. Returns
455 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
456 *
457 * When this function is finished, RX FIFO should be empty and TX FIFO should be
458 * full.
459 */
460static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
461{
462 struct spi_message *msg = espi->current_msg;
463 struct spi_transfer *t = msg->state;
464
465 /* read as long as RX FIFO has frames in it */
466 while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
467 ep93xx_do_read(espi, t);
468 espi->fifo_level--;
469 }
470
471 /* write as long as TX FIFO has room */
472 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
473 ep93xx_do_write(espi, t);
474 espi->fifo_level++;
475 }
476
Mika Westerberg626a96d2011-05-29 13:10:06 +0300477 if (espi->rx == t->len)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000478 return 0;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000479
480 return -EINPROGRESS;
481}
482
Mika Westerberg626a96d2011-05-29 13:10:06 +0300483static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
484{
485 /*
486 * Now everything is set up for the current transfer. We prime the TX
487 * FIFO, enable interrupts, and wait for the transfer to complete.
488 */
489 if (ep93xx_spi_read_write(espi)) {
490 ep93xx_spi_enable_interrupts(espi);
491 wait_for_completion(&espi->wait);
492 }
493}
494
495/**
496 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
497 * @espi: ep93xx SPI controller struct
498 * @dir: DMA transfer direction
499 *
500 * Function configures the DMA, maps the buffer and prepares the DMA
501 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
502 * in case of failure.
503 */
504static struct dma_async_tx_descriptor *
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700505ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
Mika Westerberg626a96d2011-05-29 13:10:06 +0300506{
507 struct spi_transfer *t = espi->current_msg->state;
508 struct dma_async_tx_descriptor *txd;
509 enum dma_slave_buswidth buswidth;
510 struct dma_slave_config conf;
511 struct scatterlist *sg;
512 struct sg_table *sgt;
513 struct dma_chan *chan;
514 const void *buf, *pbuf;
515 size_t len = t->len;
516 int i, ret, nents;
517
H Hartley Sweeten701c3582013-07-02 10:07:01 -0700518 if (t->bits_per_word > 8)
Mika Westerberg626a96d2011-05-29 13:10:06 +0300519 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
520 else
521 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
522
523 memset(&conf, 0, sizeof(conf));
524 conf.direction = dir;
525
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700526 if (dir == DMA_DEV_TO_MEM) {
Mika Westerberg626a96d2011-05-29 13:10:06 +0300527 chan = espi->dma_rx;
528 buf = t->rx_buf;
529 sgt = &espi->rx_sgt;
530
531 conf.src_addr = espi->sspdr_phys;
532 conf.src_addr_width = buswidth;
533 } else {
534 chan = espi->dma_tx;
535 buf = t->tx_buf;
536 sgt = &espi->tx_sgt;
537
538 conf.dst_addr = espi->sspdr_phys;
539 conf.dst_addr_width = buswidth;
540 }
541
542 ret = dmaengine_slave_config(chan, &conf);
543 if (ret)
544 return ERR_PTR(ret);
545
546 /*
547 * We need to split the transfer into PAGE_SIZE'd chunks. This is
548 * because we are using @espi->zeropage to provide a zero RX buffer
549 * for the TX transfers and we have only allocated one page for that.
550 *
551 * For performance reasons we allocate a new sg_table only when
552 * needed. Otherwise we will re-use the current one. Eventually the
553 * last sg_table is released in ep93xx_spi_release_dma().
554 */
555
556 nents = DIV_ROUND_UP(len, PAGE_SIZE);
557 if (nents != sgt->nents) {
558 sg_free_table(sgt);
559
560 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
561 if (ret)
562 return ERR_PTR(ret);
563 }
564
565 pbuf = buf;
566 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
567 size_t bytes = min_t(size_t, len, PAGE_SIZE);
568
569 if (buf) {
570 sg_set_page(sg, virt_to_page(pbuf), bytes,
571 offset_in_page(pbuf));
572 } else {
573 sg_set_page(sg, virt_to_page(espi->zeropage),
574 bytes, 0);
575 }
576
577 pbuf += bytes;
578 len -= bytes;
579 }
580
581 if (WARN_ON(len)) {
582 dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
583 return ERR_PTR(-EINVAL);
584 }
585
586 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
587 if (!nents)
588 return ERR_PTR(-ENOMEM);
589
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700590 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300591 if (!txd) {
592 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
593 return ERR_PTR(-ENOMEM);
594 }
595 return txd;
596}
597
598/**
599 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
600 * @espi: ep93xx SPI controller struct
601 * @dir: DMA transfer direction
602 *
603 * Function finishes with the DMA transfer. After this, the DMA buffer is
604 * unmapped.
605 */
606static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700607 enum dma_transfer_direction dir)
Mika Westerberg626a96d2011-05-29 13:10:06 +0300608{
609 struct dma_chan *chan;
610 struct sg_table *sgt;
611
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700612 if (dir == DMA_DEV_TO_MEM) {
Mika Westerberg626a96d2011-05-29 13:10:06 +0300613 chan = espi->dma_rx;
614 sgt = &espi->rx_sgt;
615 } else {
616 chan = espi->dma_tx;
617 sgt = &espi->tx_sgt;
618 }
619
620 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
621}
622
623static void ep93xx_spi_dma_callback(void *callback_param)
624{
625 complete(callback_param);
626}
627
628static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
629{
630 struct spi_message *msg = espi->current_msg;
631 struct dma_async_tx_descriptor *rxd, *txd;
632
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700633 rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300634 if (IS_ERR(rxd)) {
635 dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
636 msg->status = PTR_ERR(rxd);
637 return;
638 }
639
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700640 txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300641 if (IS_ERR(txd)) {
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700642 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300643 dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
644 msg->status = PTR_ERR(txd);
645 return;
646 }
647
648 /* We are ready when RX is done */
649 rxd->callback = ep93xx_spi_dma_callback;
650 rxd->callback_param = &espi->wait;
651
652 /* Now submit both descriptors and wait while they finish */
653 dmaengine_submit(rxd);
654 dmaengine_submit(txd);
655
656 dma_async_issue_pending(espi->dma_rx);
657 dma_async_issue_pending(espi->dma_tx);
658
659 wait_for_completion(&espi->wait);
660
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700661 ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
662 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300663}
664
Mika Westerberg011f23a2010-05-06 04:47:04 +0000665/**
666 * ep93xx_spi_process_transfer() - processes one SPI transfer
667 * @espi: ep93xx SPI controller struct
668 * @msg: current message
669 * @t: transfer to process
670 *
671 * This function processes one SPI transfer given in @t. Function waits until
672 * transfer is complete (may sleep) and updates @msg->status based on whether
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300673 * transfer was successfully processed or not.
Mika Westerberg011f23a2010-05-06 04:47:04 +0000674 */
675static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
676 struct spi_message *msg,
677 struct spi_transfer *t)
678{
679 struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
H Hartley Sweeten4870c212013-06-28 11:43:34 -0700680 int err;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000681
682 msg->state = t;
683
H Hartley Sweetenf7ef1da2013-07-02 10:10:29 -0700684 err = ep93xx_spi_chip_setup(espi, chip, t->speed_hz, t->bits_per_word);
H Hartley Sweeten4870c212013-06-28 11:43:34 -0700685 if (err) {
H Hartley Sweetenf7ef1da2013-07-02 10:10:29 -0700686 dev_err(&espi->pdev->dev,
687 "failed to setup chip for transfer\n");
H Hartley Sweeten4870c212013-06-28 11:43:34 -0700688 msg->status = err;
689 return;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000690 }
691
692 espi->rx = 0;
693 espi->tx = 0;
694
695 /*
Mika Westerberg626a96d2011-05-29 13:10:06 +0300696 * There is no point of setting up DMA for the transfers which will
697 * fit into the FIFO and can be transferred with a single interrupt.
698 * So in these cases we will be using PIO and don't bother for DMA.
Mika Westerberg011f23a2010-05-06 04:47:04 +0000699 */
Mika Westerberg626a96d2011-05-29 13:10:06 +0300700 if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
701 ep93xx_spi_dma_transfer(espi);
702 else
703 ep93xx_spi_pio_transfer(espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000704
705 /*
706 * In case of error during transmit, we bail out from processing
707 * the message.
708 */
709 if (msg->status)
710 return;
711
Mika Westerberg626a96d2011-05-29 13:10:06 +0300712 msg->actual_length += t->len;
713
Mika Westerberg011f23a2010-05-06 04:47:04 +0000714 /*
715 * After this transfer is finished, perform any possible
716 * post-transfer actions requested by the protocol driver.
717 */
718 if (t->delay_usecs) {
719 set_current_state(TASK_UNINTERRUPTIBLE);
720 schedule_timeout(usecs_to_jiffies(t->delay_usecs));
721 }
722 if (t->cs_change) {
723 if (!list_is_last(&t->transfer_list, &msg->transfers)) {
724 /*
725 * In case protocol driver is asking us to drop the
726 * chipselect briefly, we let the scheduler to handle
727 * any "delay" here.
728 */
729 ep93xx_spi_cs_control(msg->spi, false);
730 cond_resched();
731 ep93xx_spi_cs_control(msg->spi, true);
732 }
733 }
Mika Westerberg011f23a2010-05-06 04:47:04 +0000734}
735
736/*
737 * ep93xx_spi_process_message() - process one SPI message
738 * @espi: ep93xx SPI controller struct
739 * @msg: message to process
740 *
741 * This function processes a single SPI message. We go through all transfers in
742 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
743 * asserted during the whole message (unless per transfer cs_change is set).
744 *
745 * @msg->status contains %0 in case of success or negative error code in case of
746 * failure.
747 */
748static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
749 struct spi_message *msg)
750{
751 unsigned long timeout;
752 struct spi_transfer *t;
753 int err;
754
755 /*
756 * Enable the SPI controller and its clock.
757 */
758 err = ep93xx_spi_enable(espi);
759 if (err) {
760 dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
761 msg->status = err;
762 return;
763 }
764
765 /*
766 * Just to be sure: flush any data from RX FIFO.
767 */
768 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
769 while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
770 if (time_after(jiffies, timeout)) {
771 dev_warn(&espi->pdev->dev,
772 "timeout while flushing RX FIFO\n");
773 msg->status = -ETIMEDOUT;
774 return;
775 }
776 ep93xx_spi_read_u16(espi, SSPDR);
777 }
778
779 /*
780 * We explicitly handle FIFO level. This way we don't have to check TX
781 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
782 */
783 espi->fifo_level = 0;
784
785 /*
H Hartley Sweeten4870c212013-06-28 11:43:34 -0700786 * Assert the chipselect.
Mika Westerberg011f23a2010-05-06 04:47:04 +0000787 */
Mika Westerberg011f23a2010-05-06 04:47:04 +0000788 ep93xx_spi_cs_control(msg->spi, true);
789
790 list_for_each_entry(t, &msg->transfers, transfer_list) {
791 ep93xx_spi_process_transfer(espi, msg, t);
792 if (msg->status)
793 break;
794 }
795
796 /*
797 * Now the whole message is transferred (or failed for some reason). We
798 * deselect the device and disable the SPI controller.
799 */
800 ep93xx_spi_cs_control(msg->spi, false);
801 ep93xx_spi_disable(espi);
802}
803
804#define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
805
806/**
807 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
808 * @work: work struct
809 *
810 * Workqueue worker function. This function is called when there are new
811 * SPI messages to be processed. Message is taken out from the queue and then
812 * passed to ep93xx_spi_process_message().
813 *
814 * After message is transferred, protocol driver is notified by calling
815 * @msg->complete(). In case of error, @msg->status is set to negative error
816 * number, otherwise it contains zero (and @msg->actual_length is updated).
817 */
818static void ep93xx_spi_work(struct work_struct *work)
819{
820 struct ep93xx_spi *espi = work_to_espi(work);
821 struct spi_message *msg;
822
823 spin_lock_irq(&espi->lock);
824 if (!espi->running || espi->current_msg ||
825 list_empty(&espi->msg_queue)) {
826 spin_unlock_irq(&espi->lock);
827 return;
828 }
829 msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
830 list_del_init(&msg->queue);
831 espi->current_msg = msg;
832 spin_unlock_irq(&espi->lock);
833
834 ep93xx_spi_process_message(espi, msg);
835
836 /*
837 * Update the current message and re-schedule ourselves if there are
838 * more messages in the queue.
839 */
840 spin_lock_irq(&espi->lock);
841 espi->current_msg = NULL;
842 if (espi->running && !list_empty(&espi->msg_queue))
843 queue_work(espi->wq, &espi->msg_work);
844 spin_unlock_irq(&espi->lock);
845
846 /* notify the protocol driver that we are done with this message */
847 msg->complete(msg->context);
848}
849
850static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
851{
852 struct ep93xx_spi *espi = dev_id;
853 u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
854
855 /*
856 * If we got ROR (receive overrun) interrupt we know that something is
857 * wrong. Just abort the message.
858 */
859 if (unlikely(irq_status & SSPIIR_RORIS)) {
860 /* clear the overrun interrupt */
861 ep93xx_spi_write_u8(espi, SSPICR, 0);
862 dev_warn(&espi->pdev->dev,
863 "receive overrun, aborting the message\n");
864 espi->current_msg->status = -EIO;
865 } else {
866 /*
867 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
868 * simply execute next data transfer.
869 */
870 if (ep93xx_spi_read_write(espi)) {
871 /*
872 * In normal case, there still is some processing left
873 * for current transfer. Let's wait for the next
874 * interrupt then.
875 */
876 return IRQ_HANDLED;
877 }
878 }
879
880 /*
881 * Current transfer is finished, either with error or with success. In
882 * any case we disable interrupts and notify the worker to handle
883 * any post-processing of the message.
884 */
885 ep93xx_spi_disable_interrupts(espi);
886 complete(&espi->wait);
887 return IRQ_HANDLED;
888}
889
Mika Westerberg626a96d2011-05-29 13:10:06 +0300890static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
891{
892 if (ep93xx_dma_chan_is_m2p(chan))
893 return false;
894
895 chan->private = filter_param;
896 return true;
897}
898
899static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
900{
901 dma_cap_mask_t mask;
902 int ret;
903
904 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
905 if (!espi->zeropage)
906 return -ENOMEM;
907
908 dma_cap_zero(mask);
909 dma_cap_set(DMA_SLAVE, mask);
910
911 espi->dma_rx_data.port = EP93XX_DMA_SSP;
Vinod Koula485df42011-10-14 10:47:38 +0530912 espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300913 espi->dma_rx_data.name = "ep93xx-spi-rx";
914
915 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
916 &espi->dma_rx_data);
917 if (!espi->dma_rx) {
918 ret = -ENODEV;
919 goto fail_free_page;
920 }
921
922 espi->dma_tx_data.port = EP93XX_DMA_SSP;
Vinod Koula485df42011-10-14 10:47:38 +0530923 espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300924 espi->dma_tx_data.name = "ep93xx-spi-tx";
925
926 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
927 &espi->dma_tx_data);
928 if (!espi->dma_tx) {
929 ret = -ENODEV;
930 goto fail_release_rx;
931 }
932
933 return 0;
934
935fail_release_rx:
936 dma_release_channel(espi->dma_rx);
937 espi->dma_rx = NULL;
938fail_free_page:
939 free_page((unsigned long)espi->zeropage);
940
941 return ret;
942}
943
944static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
945{
946 if (espi->dma_rx) {
947 dma_release_channel(espi->dma_rx);
948 sg_free_table(&espi->rx_sgt);
949 }
950 if (espi->dma_tx) {
951 dma_release_channel(espi->dma_tx);
952 sg_free_table(&espi->tx_sgt);
953 }
954
955 if (espi->zeropage)
956 free_page((unsigned long)espi->zeropage);
957}
958
Grant Likelyfd4a3192012-12-07 16:57:14 +0000959static int ep93xx_spi_probe(struct platform_device *pdev)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000960{
961 struct spi_master *master;
962 struct ep93xx_spi_info *info;
963 struct ep93xx_spi *espi;
964 struct resource *res;
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +0300965 int irq;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000966 int error;
967
968 info = pdev->dev.platform_data;
969
H Hartley Sweeten48a77762013-07-02 10:07:53 -0700970 irq = platform_get_irq(pdev, 0);
971 if (irq < 0) {
972 dev_err(&pdev->dev, "failed to get irq resources\n");
973 return -EBUSY;
974 }
975
976 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
977 if (!res) {
978 dev_err(&pdev->dev, "unable to get iomem resource\n");
979 return -ENODEV;
980 }
981
Mika Westerberg011f23a2010-05-06 04:47:04 +0000982 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
H Hartley Sweetenb2d185e2013-07-02 10:08:59 -0700983 if (!master)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000984 return -ENOMEM;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000985
986 master->setup = ep93xx_spi_setup;
987 master->transfer = ep93xx_spi_transfer;
988 master->cleanup = ep93xx_spi_cleanup;
989 master->bus_num = pdev->id;
990 master->num_chipselect = info->num_chipselect;
991 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
Stephen Warren24778be2013-05-21 20:36:35 -0600992 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000993
994 platform_set_drvdata(pdev, master);
995
996 espi = spi_master_get_devdata(master);
997
H Hartley Sweetene6eb8d92013-07-02 10:08:21 -0700998 espi->clk = devm_clk_get(&pdev->dev, NULL);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000999 if (IS_ERR(espi->clk)) {
1000 dev_err(&pdev->dev, "unable to get spi clock\n");
1001 error = PTR_ERR(espi->clk);
1002 goto fail_release_master;
1003 }
1004
1005 spin_lock_init(&espi->lock);
1006 init_completion(&espi->wait);
1007
1008 /*
1009 * Calculate maximum and minimum supported clock rates
1010 * for the controller.
1011 */
1012 espi->max_rate = clk_get_rate(espi->clk) / 2;
1013 espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1014 espi->pdev = pdev;
1015
Mika Westerberg626a96d2011-05-29 13:10:06 +03001016 espi->sspdr_phys = res->start + SSPDR;
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001017
Thierry Redingb0ee5602013-01-21 11:09:18 +01001018 espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
1019 if (IS_ERR(espi->regs_base)) {
1020 error = PTR_ERR(espi->regs_base);
H Hartley Sweetene6eb8d92013-07-02 10:08:21 -07001021 goto fail_release_master;
Mika Westerberg011f23a2010-05-06 04:47:04 +00001022 }
1023
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001024 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
1025 0, "ep93xx-spi", espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001026 if (error) {
1027 dev_err(&pdev->dev, "failed to request irq\n");
H Hartley Sweetene6eb8d92013-07-02 10:08:21 -07001028 goto fail_release_master;
Mika Westerberg011f23a2010-05-06 04:47:04 +00001029 }
1030
Mika Westerberg626a96d2011-05-29 13:10:06 +03001031 if (info->use_dma && ep93xx_spi_setup_dma(espi))
1032 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1033
Mika Westerberg011f23a2010-05-06 04:47:04 +00001034 espi->wq = create_singlethread_workqueue("ep93xx_spid");
1035 if (!espi->wq) {
1036 dev_err(&pdev->dev, "unable to create workqueue\n");
Wei Yongjun27474d22013-05-16 12:08:56 +08001037 error = -ENOMEM;
Mika Westerberg626a96d2011-05-29 13:10:06 +03001038 goto fail_free_dma;
Mika Westerberg011f23a2010-05-06 04:47:04 +00001039 }
1040 INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1041 INIT_LIST_HEAD(&espi->msg_queue);
1042 espi->running = true;
1043
1044 /* make sure that the hardware is disabled */
1045 ep93xx_spi_write_u8(espi, SSPCR1, 0);
1046
1047 error = spi_register_master(master);
1048 if (error) {
1049 dev_err(&pdev->dev, "failed to register SPI master\n");
1050 goto fail_free_queue;
1051 }
1052
1053 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001054 (unsigned long)res->start, irq);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001055
1056 return 0;
1057
1058fail_free_queue:
1059 destroy_workqueue(espi->wq);
Mika Westerberg626a96d2011-05-29 13:10:06 +03001060fail_free_dma:
1061 ep93xx_spi_release_dma(espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001062fail_release_master:
1063 spi_master_put(master);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001064
1065 return error;
1066}
1067
Grant Likelyfd4a3192012-12-07 16:57:14 +00001068static int ep93xx_spi_remove(struct platform_device *pdev)
Mika Westerberg011f23a2010-05-06 04:47:04 +00001069{
1070 struct spi_master *master = platform_get_drvdata(pdev);
1071 struct ep93xx_spi *espi = spi_master_get_devdata(master);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001072
1073 spin_lock_irq(&espi->lock);
1074 espi->running = false;
1075 spin_unlock_irq(&espi->lock);
1076
1077 destroy_workqueue(espi->wq);
1078
1079 /*
1080 * Complete remaining messages with %-ESHUTDOWN status.
1081 */
1082 spin_lock_irq(&espi->lock);
1083 while (!list_empty(&espi->msg_queue)) {
1084 struct spi_message *msg;
1085
1086 msg = list_first_entry(&espi->msg_queue,
1087 struct spi_message, queue);
1088 list_del_init(&msg->queue);
1089 msg->status = -ESHUTDOWN;
1090 spin_unlock_irq(&espi->lock);
1091 msg->complete(msg->context);
1092 spin_lock_irq(&espi->lock);
1093 }
1094 spin_unlock_irq(&espi->lock);
1095
Mika Westerberg626a96d2011-05-29 13:10:06 +03001096 ep93xx_spi_release_dma(espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001097
1098 spi_unregister_master(master);
1099 return 0;
1100}
1101
1102static struct platform_driver ep93xx_spi_driver = {
1103 .driver = {
1104 .name = "ep93xx-spi",
1105 .owner = THIS_MODULE,
1106 },
Grant Likely940ab882011-10-05 11:29:49 -06001107 .probe = ep93xx_spi_probe,
Grant Likelyfd4a3192012-12-07 16:57:14 +00001108 .remove = ep93xx_spi_remove,
Mika Westerberg011f23a2010-05-06 04:47:04 +00001109};
Grant Likely940ab882011-10-05 11:29:49 -06001110module_platform_driver(ep93xx_spi_driver);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001111
1112MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1113MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1114MODULE_LICENSE("GPL");
1115MODULE_ALIAS("platform:ep93xx-spi");