blob: 6adb5328a0164b0ab01eddea13ee1babb8368e7f [file] [log] [blame]
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements functions needed to recover from unclean un-mounts.
25 * When UBIFS is mounted, it checks a flag on the master node to determine if
André Goddard Rosaaf901ca2009-11-14 13:09:05 -020026 * an un-mount was completed successfully. If not, the process of mounting
Artem Bityutskiy6fb43742010-05-23 15:20:21 +030027 * incorporates additional checking and fixing of on-flash data structures.
Artem Bityutskiy1e517642008-07-14 19:08:37 +030028 * UBIFS always cleans away all remnants of an unclean un-mount, so that
29 * errors do not accumulate. However UBIFS defers recovery if it is mounted
30 * read-only, and the flash is not modified in that case.
Artem Bityutskiybe7b42a52011-02-06 16:41:06 +020031 *
32 * The general UBIFS approach to the recovery is that it recovers from
33 * corruptions which could be caused by power cuts, but it refuses to recover
34 * from corruption caused by other reasons. And UBIFS tries to distinguish
35 * between these 2 reasons of corruptions and silently recover in the former
36 * case and loudly complain in the latter case.
37 *
38 * UBIFS writes only to erased LEBs, so it writes only to the flash space
39 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
40 * of the LEB to the end. And UBIFS assumes that the underlying flash media
Artem Bityutskiy2765df72011-02-02 09:22:54 +020041 * writes in @c->max_write_size bytes at a time.
Artem Bityutskiybe7b42a52011-02-06 16:41:06 +020042 *
43 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
44 * I/O unit corresponding to offset X to contain corrupted data, all the
45 * following min. I/O units have to contain empty space (all 0xFFs). If this is
46 * not true, the corruption cannot be the result of a power cut, and UBIFS
47 * refuses to mount.
Artem Bityutskiy1e517642008-07-14 19:08:37 +030048 */
49
50#include <linux/crc32.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090051#include <linux/slab.h>
Artem Bityutskiy1e517642008-07-14 19:08:37 +030052#include "ubifs.h"
53
54/**
55 * is_empty - determine whether a buffer is empty (contains all 0xff).
56 * @buf: buffer to clean
57 * @len: length of buffer
58 *
59 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
60 * %0 is returned.
61 */
62static int is_empty(void *buf, int len)
63{
64 uint8_t *p = buf;
65 int i;
66
67 for (i = 0; i < len; i++)
68 if (*p++ != 0xff)
69 return 0;
70 return 1;
71}
72
73/**
Artem Bityutskiy06112542009-06-29 19:27:14 +030074 * first_non_ff - find offset of the first non-0xff byte.
75 * @buf: buffer to search in
76 * @len: length of buffer
77 *
78 * This function returns offset of the first non-0xff byte in @buf or %-1 if
79 * the buffer contains only 0xff bytes.
80 */
81static int first_non_ff(void *buf, int len)
82{
83 uint8_t *p = buf;
84 int i;
85
86 for (i = 0; i < len; i++)
87 if (*p++ != 0xff)
88 return i;
89 return -1;
90}
91
92/**
Artem Bityutskiy1e517642008-07-14 19:08:37 +030093 * get_master_node - get the last valid master node allowing for corruption.
94 * @c: UBIFS file-system description object
95 * @lnum: LEB number
96 * @pbuf: buffer containing the LEB read, is returned here
97 * @mst: master node, if found, is returned here
98 * @cor: corruption, if found, is returned here
99 *
100 * This function allocates a buffer, reads the LEB into it, and finds and
101 * returns the last valid master node allowing for one area of corruption.
102 * The corrupt area, if there is one, must be consistent with the assumption
103 * that it is the result of an unclean unmount while the master node was being
104 * written. Under those circumstances, it is valid to use the previously written
105 * master node.
106 *
107 * This function returns %0 on success and a negative error code on failure.
108 */
109static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
110 struct ubifs_mst_node **mst, void **cor)
111{
112 const int sz = c->mst_node_alsz;
113 int err, offs, len;
114 void *sbuf, *buf;
115
116 sbuf = vmalloc(c->leb_size);
117 if (!sbuf)
118 return -ENOMEM;
119
120 err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
121 if (err && err != -EBADMSG)
122 goto out_free;
123
124 /* Find the first position that is definitely not a node */
125 offs = 0;
126 buf = sbuf;
127 len = c->leb_size;
128 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
129 struct ubifs_ch *ch = buf;
130
131 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
132 break;
133 offs += sz;
134 buf += sz;
135 len -= sz;
136 }
137 /* See if there was a valid master node before that */
138 if (offs) {
139 int ret;
140
141 offs -= sz;
142 buf -= sz;
143 len += sz;
144 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
145 if (ret != SCANNED_A_NODE && offs) {
146 /* Could have been corruption so check one place back */
147 offs -= sz;
148 buf -= sz;
149 len += sz;
150 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
151 if (ret != SCANNED_A_NODE)
152 /*
153 * We accept only one area of corruption because
154 * we are assuming that it was caused while
155 * trying to write a master node.
156 */
157 goto out_err;
158 }
159 if (ret == SCANNED_A_NODE) {
160 struct ubifs_ch *ch = buf;
161
162 if (ch->node_type != UBIFS_MST_NODE)
163 goto out_err;
164 dbg_rcvry("found a master node at %d:%d", lnum, offs);
165 *mst = buf;
166 offs += sz;
167 buf += sz;
168 len -= sz;
169 }
170 }
171 /* Check for corruption */
172 if (offs < c->leb_size) {
173 if (!is_empty(buf, min_t(int, len, sz))) {
174 *cor = buf;
175 dbg_rcvry("found corruption at %d:%d", lnum, offs);
176 }
177 offs += sz;
178 buf += sz;
179 len -= sz;
180 }
181 /* Check remaining empty space */
182 if (offs < c->leb_size)
183 if (!is_empty(buf, len))
184 goto out_err;
185 *pbuf = sbuf;
186 return 0;
187
188out_err:
189 err = -EINVAL;
190out_free:
191 vfree(sbuf);
192 *mst = NULL;
193 *cor = NULL;
194 return err;
195}
196
197/**
198 * write_rcvrd_mst_node - write recovered master node.
199 * @c: UBIFS file-system description object
200 * @mst: master node
201 *
202 * This function returns %0 on success and a negative error code on failure.
203 */
204static int write_rcvrd_mst_node(struct ubifs_info *c,
205 struct ubifs_mst_node *mst)
206{
207 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
Harvey Harrison0ecb9522008-10-24 10:52:57 -0700208 __le32 save_flags;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300209
210 dbg_rcvry("recovery");
211
212 save_flags = mst->flags;
Harvey Harrison0ecb9522008-10-24 10:52:57 -0700213 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300214
215 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
216 err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
217 if (err)
218 goto out;
219 err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
220 if (err)
221 goto out;
222out:
223 mst->flags = save_flags;
224 return err;
225}
226
227/**
228 * ubifs_recover_master_node - recover the master node.
229 * @c: UBIFS file-system description object
230 *
231 * This function recovers the master node from corruption that may occur due to
232 * an unclean unmount.
233 *
234 * This function returns %0 on success and a negative error code on failure.
235 */
236int ubifs_recover_master_node(struct ubifs_info *c)
237{
238 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
239 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
240 const int sz = c->mst_node_alsz;
241 int err, offs1, offs2;
242
243 dbg_rcvry("recovery");
244
245 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
246 if (err)
247 goto out_free;
248
249 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
250 if (err)
251 goto out_free;
252
253 if (mst1) {
254 offs1 = (void *)mst1 - buf1;
255 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
256 (offs1 == 0 && !cor1)) {
257 /*
258 * mst1 was written by recovery at offset 0 with no
259 * corruption.
260 */
261 dbg_rcvry("recovery recovery");
262 mst = mst1;
263 } else if (mst2) {
264 offs2 = (void *)mst2 - buf2;
265 if (offs1 == offs2) {
266 /* Same offset, so must be the same */
267 if (memcmp((void *)mst1 + UBIFS_CH_SZ,
268 (void *)mst2 + UBIFS_CH_SZ,
269 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
270 goto out_err;
271 mst = mst1;
272 } else if (offs2 + sz == offs1) {
273 /* 1st LEB was written, 2nd was not */
274 if (cor1)
275 goto out_err;
276 mst = mst1;
277 } else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
278 /* 1st LEB was unmapped and written, 2nd not */
279 if (cor1)
280 goto out_err;
281 mst = mst1;
282 } else
283 goto out_err;
284 } else {
285 /*
286 * 2nd LEB was unmapped and about to be written, so
287 * there must be only one master node in the first LEB
288 * and no corruption.
289 */
290 if (offs1 != 0 || cor1)
291 goto out_err;
292 mst = mst1;
293 }
294 } else {
295 if (!mst2)
296 goto out_err;
297 /*
298 * 1st LEB was unmapped and about to be written, so there must
299 * be no room left in 2nd LEB.
300 */
301 offs2 = (void *)mst2 - buf2;
302 if (offs2 + sz + sz <= c->leb_size)
303 goto out_err;
304 mst = mst2;
305 }
306
Artem Bityutskiy348709b2009-08-25 15:00:55 +0300307 ubifs_msg("recovered master node from LEB %d",
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300308 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
309
310 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
311
Artem Bityutskiy2ef13292010-09-19 18:34:26 +0300312 if (c->ro_mount) {
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300313 /* Read-only mode. Keep a copy for switching to rw mode */
314 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
315 if (!c->rcvrd_mst_node) {
316 err = -ENOMEM;
317 goto out_free;
318 }
319 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
Artem Bityutskiy6e0d9fd2011-04-21 14:49:55 +0300320
321 /*
322 * We had to recover the master node, which means there was an
323 * unclean reboot. However, it is possible that the master node
324 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
325 * E.g., consider the following chain of events:
326 *
327 * 1. UBIFS was cleanly unmounted, so the master node is clean
328 * 2. UBIFS is being mounted R/W and starts changing the master
329 * node in the first (%UBIFS_MST_LNUM). A power cut happens,
330 * so this LEB ends up with some amount of garbage at the
331 * end.
332 * 3. UBIFS is being mounted R/O. We reach this place and
333 * recover the master node from the second LEB
334 * (%UBIFS_MST_LNUM + 1). But we cannot update the media
335 * because we are being mounted R/O. We have to defer the
336 * operation.
337 * 4. However, this master node (@c->mst_node) is marked as
338 * clean (since the step 1). And if we just return, the
339 * mount code will be confused and won't recover the master
340 * node when it is re-mounter R/W later.
341 *
342 * Thus, to force the recovery by marking the master node as
343 * dirty.
344 */
345 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300346 } else {
347 /* Write the recovered master node */
348 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
349 err = write_rcvrd_mst_node(c, c->mst_node);
350 if (err)
351 goto out_free;
352 }
353
354 vfree(buf2);
355 vfree(buf1);
356
357 return 0;
358
359out_err:
360 err = -EINVAL;
361out_free:
362 ubifs_err("failed to recover master node");
363 if (mst1) {
364 dbg_err("dumping first master node");
365 dbg_dump_node(c, mst1);
366 }
367 if (mst2) {
368 dbg_err("dumping second master node");
369 dbg_dump_node(c, mst2);
370 }
371 vfree(buf2);
372 vfree(buf1);
373 return err;
374}
375
376/**
377 * ubifs_write_rcvrd_mst_node - write the recovered master node.
378 * @c: UBIFS file-system description object
379 *
380 * This function writes the master node that was recovered during mounting in
381 * read-only mode and must now be written because we are remounting rw.
382 *
383 * This function returns %0 on success and a negative error code on failure.
384 */
385int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
386{
387 int err;
388
389 if (!c->rcvrd_mst_node)
390 return 0;
391 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
392 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
393 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
394 if (err)
395 return err;
396 kfree(c->rcvrd_mst_node);
397 c->rcvrd_mst_node = NULL;
398 return 0;
399}
400
401/**
402 * is_last_write - determine if an offset was in the last write to a LEB.
403 * @c: UBIFS file-system description object
404 * @buf: buffer to check
405 * @offs: offset to check
406 *
407 * This function returns %1 if @offs was in the last write to the LEB whose data
Artem Bityutskiy2765df72011-02-02 09:22:54 +0200408 * is in @buf, otherwise %0 is returned. The determination is made by checking
409 * for subsequent empty space starting from the next @c->max_write_size
410 * boundary.
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300411 */
412static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
413{
Artem Bityutskiy428ff9d2009-05-25 16:59:28 +0300414 int empty_offs, check_len;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300415 uint8_t *p;
416
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300417 /*
Artem Bityutskiy2765df72011-02-02 09:22:54 +0200418 * Round up to the next @c->max_write_size boundary i.e. @offs is in
419 * the last wbuf written. After that should be empty space.
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300420 */
Artem Bityutskiy2765df72011-02-02 09:22:54 +0200421 empty_offs = ALIGN(offs + 1, c->max_write_size);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300422 check_len = c->leb_size - empty_offs;
423 p = buf + empty_offs - offs;
Artem Bityutskiy431102f2009-06-29 18:58:34 +0300424 return is_empty(p, check_len);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300425}
426
427/**
428 * clean_buf - clean the data from an LEB sitting in a buffer.
429 * @c: UBIFS file-system description object
430 * @buf: buffer to clean
431 * @lnum: LEB number to clean
432 * @offs: offset from which to clean
433 * @len: length of buffer
434 *
435 * This function pads up to the next min_io_size boundary (if there is one) and
436 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
Artem Bityutskiy428ff9d2009-05-25 16:59:28 +0300437 * @c->min_io_size boundary.
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300438 */
439static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
440 int *offs, int *len)
441{
442 int empty_offs, pad_len;
443
444 lnum = lnum;
445 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
446
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300447 ubifs_assert(!(*offs & 7));
448 empty_offs = ALIGN(*offs, c->min_io_size);
449 pad_len = empty_offs - *offs;
450 ubifs_pad(c, *buf, pad_len);
451 *offs += pad_len;
452 *buf += pad_len;
453 *len -= pad_len;
454 memset(*buf, 0xff, c->leb_size - empty_offs);
455}
456
457/**
458 * no_more_nodes - determine if there are no more nodes in a buffer.
459 * @c: UBIFS file-system description object
460 * @buf: buffer to check
461 * @len: length of buffer
462 * @lnum: LEB number of the LEB from which @buf was read
463 * @offs: offset from which @buf was read
464 *
Adrian Hunterde097572009-03-20 11:09:04 +0100465 * This function ensures that the corrupted node at @offs is the last thing
466 * written to a LEB. This function returns %1 if more data is not found and
467 * %0 if more data is found.
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300468 */
469static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
470 int lnum, int offs)
471{
Adrian Hunterde097572009-03-20 11:09:04 +0100472 struct ubifs_ch *ch = buf;
473 int skip, dlen = le32_to_cpu(ch->len);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300474
Adrian Hunterde097572009-03-20 11:09:04 +0100475 /* Check for empty space after the corrupt node's common header */
Artem Bityutskiy2765df72011-02-02 09:22:54 +0200476 skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
Adrian Hunterde097572009-03-20 11:09:04 +0100477 if (is_empty(buf + skip, len - skip))
478 return 1;
479 /*
480 * The area after the common header size is not empty, so the common
481 * header must be intact. Check it.
482 */
483 if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
484 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
485 return 0;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300486 }
Adrian Hunterde097572009-03-20 11:09:04 +0100487 /* Now we know the corrupt node's length we can skip over it */
Artem Bityutskiy2765df72011-02-02 09:22:54 +0200488 skip = ALIGN(offs + dlen, c->max_write_size) - offs;
Adrian Hunterde097572009-03-20 11:09:04 +0100489 /* After which there should be empty space */
490 if (is_empty(buf + skip, len - skip))
491 return 1;
492 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
493 return 0;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300494}
495
496/**
497 * fix_unclean_leb - fix an unclean LEB.
498 * @c: UBIFS file-system description object
499 * @sleb: scanned LEB information
500 * @start: offset where scan started
501 */
502static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
503 int start)
504{
505 int lnum = sleb->lnum, endpt = start;
506
507 /* Get the end offset of the last node we are keeping */
508 if (!list_empty(&sleb->nodes)) {
509 struct ubifs_scan_node *snod;
510
511 snod = list_entry(sleb->nodes.prev,
512 struct ubifs_scan_node, list);
513 endpt = snod->offs + snod->len;
514 }
515
Artem Bityutskiy2ef13292010-09-19 18:34:26 +0300516 if (c->ro_mount && !c->remounting_rw) {
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300517 /* Add to recovery list */
518 struct ubifs_unclean_leb *ucleb;
519
520 dbg_rcvry("need to fix LEB %d start %d endpt %d",
521 lnum, start, sleb->endpt);
522 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
523 if (!ucleb)
524 return -ENOMEM;
525 ucleb->lnum = lnum;
526 ucleb->endpt = endpt;
527 list_add_tail(&ucleb->list, &c->unclean_leb_list);
528 } else {
529 /* Write the fixed LEB back to flash */
530 int err;
531
532 dbg_rcvry("fixing LEB %d start %d endpt %d",
533 lnum, start, sleb->endpt);
534 if (endpt == 0) {
535 err = ubifs_leb_unmap(c, lnum);
536 if (err)
537 return err;
538 } else {
539 int len = ALIGN(endpt, c->min_io_size);
540
541 if (start) {
542 err = ubi_read(c->ubi, lnum, sleb->buf, 0,
543 start);
544 if (err)
545 return err;
546 }
547 /* Pad to min_io_size */
548 if (len > endpt) {
549 int pad_len = len - ALIGN(endpt, 8);
550
551 if (pad_len > 0) {
552 void *buf = sleb->buf + len - pad_len;
553
554 ubifs_pad(c, buf, pad_len);
555 }
556 }
557 err = ubi_leb_change(c->ubi, lnum, sleb->buf, len,
558 UBI_UNKNOWN);
559 if (err)
560 return err;
561 }
562 }
563 return 0;
564}
565
566/**
Artem Bityutskiybbf2b372011-05-16 15:15:52 +0300567 * drop_last_node - drop the last node or group of nodes.
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300568 * @sleb: scanned LEB information
569 * @offs: offset of dropped nodes is returned here
Artem Bityutskiybbf2b372011-05-16 15:15:52 +0300570 * @grouped: non-zero if whole group of nodes have to be dropped
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300571 *
Artem Bityutskiybbf2b372011-05-16 15:15:52 +0300572 * This is a helper function for 'ubifs_recover_leb()' which drops the last
573 * node of the scanned LEB or the last group of nodes if @grouped is not zero.
574 * This function returns %1 if a node was dropped and %0 otherwise.
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300575 */
Artem Bityutskiybbf2b372011-05-16 15:15:52 +0300576static int drop_last_node(struct ubifs_scan_leb *sleb, int *offs, int grouped)
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300577{
578 int dropped = 0;
579
580 while (!list_empty(&sleb->nodes)) {
581 struct ubifs_scan_node *snod;
582 struct ubifs_ch *ch;
583
584 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
585 list);
586 ch = snod->node;
587 if (ch->group_type != UBIFS_IN_NODE_GROUP)
588 return dropped;
589 dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
590 *offs = snod->offs;
591 list_del(&snod->list);
592 kfree(snod);
593 sleb->nodes_cnt -= 1;
594 dropped = 1;
Artem Bityutskiybbf2b372011-05-16 15:15:52 +0300595 if (!grouped)
596 break;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300597 }
598 return dropped;
599}
600
601/**
602 * ubifs_recover_leb - scan and recover a LEB.
603 * @c: UBIFS file-system description object
604 * @lnum: LEB number
605 * @offs: offset
606 * @sbuf: LEB-sized buffer to use
Artem Bityutskiyefcfde52011-05-26 08:36:52 +0300607 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
608 * belong to any journal head)
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300609 *
610 * This function does a scan of a LEB, but caters for errors that might have
611 * been caused by the unclean unmount from which we are attempting to recover.
Artem Bityutskiyed43f2f2009-06-29 17:59:23 +0300612 * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
613 * found, and a negative error code in case of failure.
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300614 */
615struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
Artem Bityutskiyefcfde52011-05-26 08:36:52 +0300616 int offs, void *sbuf, int jhead)
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300617{
Artem Bityutskiybbf2b372011-05-16 15:15:52 +0300618 int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
Artem Bityutskiyefcfde52011-05-26 08:36:52 +0300619 int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300620 struct ubifs_scan_leb *sleb;
621 void *buf = sbuf + offs;
622
Artem Bityutskiyefcfde52011-05-26 08:36:52 +0300623 dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300624
625 sleb = ubifs_start_scan(c, lnum, offs, sbuf);
626 if (IS_ERR(sleb))
627 return sleb;
628
Artem Bityutskiybbf2b372011-05-16 15:15:52 +0300629 ubifs_assert(len >= 8);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300630 while (len >= 8) {
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300631 dbg_scan("look at LEB %d:%d (%d bytes left)",
632 lnum, offs, len);
633
634 cond_resched();
635
636 /*
637 * Scan quietly until there is an error from which we cannot
638 * recover
639 */
Artem Bityutskiyab759502011-05-26 06:51:48 +0300640 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300641 if (ret == SCANNED_A_NODE) {
642 /* A valid node, and not a padding node */
643 struct ubifs_ch *ch = buf;
644 int node_len;
645
646 err = ubifs_add_snod(c, sleb, buf, offs);
647 if (err)
648 goto error;
649 node_len = ALIGN(le32_to_cpu(ch->len), 8);
650 offs += node_len;
651 buf += node_len;
652 len -= node_len;
Artem Bityutskiy61799202011-05-16 13:41:55 +0300653 } else if (ret > 0) {
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300654 /* Padding bytes or a valid padding node */
655 offs += ret;
656 buf += ret;
657 len -= ret;
Artem Bityutskiy61799202011-05-16 13:41:55 +0300658 } else if (ret == SCANNED_EMPTY_SPACE ||
659 ret == SCANNED_GARBAGE ||
660 ret == SCANNED_A_BAD_PAD_NODE ||
661 ret == SCANNED_A_CORRUPT_NODE) {
662 dbg_rcvry("found corruption - %d", ret);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300663 break;
Artem Bityutskiy61799202011-05-16 13:41:55 +0300664 } else {
665 dbg_err("unexpected return value %d", ret);
Artem Bityutskiyed43f2f2009-06-29 17:59:23 +0300666 err = -EINVAL;
667 goto error;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300668 }
669 }
670
Artem Bityutskiy61799202011-05-16 13:41:55 +0300671 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
Artem Bityutskiy43e07072011-05-16 14:21:51 +0300672 if (!is_last_write(c, buf, offs))
Artem Bityutskiy61799202011-05-16 13:41:55 +0300673 goto corrupted_rescan;
674 } else if (ret == SCANNED_A_CORRUPT_NODE) {
Artem Bityutskiy43e07072011-05-16 14:21:51 +0300675 if (!no_more_nodes(c, buf, len, lnum, offs))
Artem Bityutskiy61799202011-05-16 13:41:55 +0300676 goto corrupted_rescan;
677 } else if (!is_empty(buf, len)) {
Artem Bityutskiy43e07072011-05-16 14:21:51 +0300678 if (!is_last_write(c, buf, offs)) {
Artem Bityutskiy06112542009-06-29 19:27:14 +0300679 int corruption = first_non_ff(buf, len);
680
Artem Bityutskiybe7b42a52011-02-06 16:41:06 +0200681 /*
682 * See header comment for this file for more
683 * explanations about the reasons we have this check.
684 */
Artem Bityutskiy06112542009-06-29 19:27:14 +0300685 ubifs_err("corrupt empty space LEB %d:%d, corruption "
686 "starts at %d", lnum, offs, corruption);
687 /* Make sure we dump interesting non-0xFF data */
Artem Bityutskiy10ac2792011-02-08 17:21:11 +0200688 offs += corruption;
Artem Bityutskiy06112542009-06-29 19:27:14 +0300689 buf += corruption;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300690 goto corrupted;
691 }
692 }
693
Artem Bityutskiybbf2b372011-05-16 15:15:52 +0300694 min_io_unit = round_down(offs, c->min_io_size);
695 if (grouped)
696 /*
697 * If nodes are grouped, always drop the incomplete group at
698 * the end.
699 */
700 drop_last_node(sleb, &offs, 1);
701
702 /*
703 * While we are in the middle of the same min. I/O unit keep dropping
704 * nodes. So basically, what we want is to make sure that the last min.
705 * I/O unit where we saw the corruption is dropped completely with all
Artem Bityutskiyab759502011-05-26 06:51:48 +0300706 * the uncorrupted nodes which may possibly sit there.
Artem Bityutskiybbf2b372011-05-16 15:15:52 +0300707 *
708 * In other words, let's name the min. I/O unit where the corruption
709 * starts B, and the previous min. I/O unit A. The below code tries to
710 * deal with a situation when half of B contains valid nodes or the end
711 * of a valid node, and the second half of B contains corrupted data or
712 * garbage. This means that UBIFS had been writing to B just before the
713 * power cut happened. I do not know how realistic is this scenario
714 * that half of the min. I/O unit had been written successfully and the
715 * other half not, but this is possible in our 'failure mode emulation'
716 * infrastructure at least.
717 *
718 * So what is the problem, why we need to drop those nodes? Whey can't
719 * we just clean-up the second half of B by putting a padding node
720 * there? We can, and this works fine with one exception which was
721 * reproduced with power cut emulation testing and happens extremely
722 * rarely. The description follows, but it is worth noting that that is
723 * only about the GC head, so we could do this trick only if the bud
724 * belongs to the GC head, but it does not seem to be worth an
725 * additional "if" statement.
726 *
727 * So, imagine the file-system is full, we run GC which is moving valid
728 * nodes from LEB X to LEB Y (obviously, LEB Y is the current GC head
729 * LEB). The @c->gc_lnum is -1, which means that GC will retain LEB X
730 * and will try to continue. Imagine that LEB X is currently the
731 * dirtiest LEB, and the amount of used space in LEB Y is exactly the
732 * same as amount of free space in LEB X.
733 *
734 * And a power cut happens when nodes are moved from LEB X to LEB Y. We
735 * are here trying to recover LEB Y which is the GC head LEB. We find
736 * the min. I/O unit B as described above. Then we clean-up LEB Y by
737 * padding min. I/O unit. And later 'ubifs_rcvry_gc_commit()' function
738 * fails, because it cannot find a dirty LEB which could be GC'd into
739 * LEB Y! Even LEB X does not match because the amount of valid nodes
740 * there does not fit the free space in LEB Y any more! And this is
741 * because of the padding node which we added to LEB Y. The
742 * user-visible effect of this which I once observed and analysed is
743 * that we cannot mount the file-system with -ENOSPC error.
744 *
745 * So obviously, to make sure that situation does not happen we should
746 * free min. I/O unit B in LEB Y completely and the last used min. I/O
747 * unit in LEB Y should be A. This is basically what the below code
748 * tries to do.
749 */
750 while (min_io_unit == round_down(offs, c->min_io_size) &&
751 min_io_unit != offs &&
752 drop_last_node(sleb, &offs, grouped));
753
754 buf = sbuf + offs;
755 len = c->leb_size - offs;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300756
Artem Bityutskiy43e07072011-05-16 14:21:51 +0300757 clean_buf(c, &buf, lnum, &offs, &len);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300758 ubifs_end_scan(c, sleb, lnum, offs);
759
Artem Bityutskiy7c47bfd2011-05-16 13:44:48 +0300760 err = fix_unclean_leb(c, sleb, start);
761 if (err)
762 goto error;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300763
764 return sleb;
765
Artem Bityutskiy61799202011-05-16 13:41:55 +0300766corrupted_rescan:
767 /* Re-scan the corrupted data with verbose messages */
768 dbg_err("corruptio %d", ret);
769 ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300770corrupted:
771 ubifs_scanned_corruption(c, lnum, offs, buf);
772 err = -EUCLEAN;
773error:
774 ubifs_err("LEB %d scanning failed", lnum);
775 ubifs_scan_destroy(sleb);
776 return ERR_PTR(err);
777}
778
779/**
780 * get_cs_sqnum - get commit start sequence number.
781 * @c: UBIFS file-system description object
782 * @lnum: LEB number of commit start node
783 * @offs: offset of commit start node
784 * @cs_sqnum: commit start sequence number is returned here
785 *
786 * This function returns %0 on success and a negative error code on failure.
787 */
788static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
789 unsigned long long *cs_sqnum)
790{
791 struct ubifs_cs_node *cs_node = NULL;
792 int err, ret;
793
794 dbg_rcvry("at %d:%d", lnum, offs);
795 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
796 if (!cs_node)
797 return -ENOMEM;
798 if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
799 goto out_err;
800 err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
801 if (err && err != -EBADMSG)
802 goto out_free;
803 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
804 if (ret != SCANNED_A_NODE) {
805 dbg_err("Not a valid node");
806 goto out_err;
807 }
808 if (cs_node->ch.node_type != UBIFS_CS_NODE) {
809 dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
810 goto out_err;
811 }
812 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
813 dbg_err("CS node cmt_no %llu != current cmt_no %llu",
814 (unsigned long long)le64_to_cpu(cs_node->cmt_no),
815 c->cmt_no);
816 goto out_err;
817 }
818 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
819 dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
820 kfree(cs_node);
821 return 0;
822
823out_err:
824 err = -EINVAL;
825out_free:
826 ubifs_err("failed to get CS sqnum");
827 kfree(cs_node);
828 return err;
829}
830
831/**
832 * ubifs_recover_log_leb - scan and recover a log LEB.
833 * @c: UBIFS file-system description object
834 * @lnum: LEB number
835 * @offs: offset
836 * @sbuf: LEB-sized buffer to use
837 *
838 * This function does a scan of a LEB, but caters for errors that might have
Artem Bityutskiy7d08ae32010-10-17 15:50:19 +0300839 * been caused by unclean reboots from which we are attempting to recover
840 * (assume that only the last log LEB can be corrupted by an unclean reboot).
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300841 *
842 * This function returns %0 on success and a negative error code on failure.
843 */
844struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
845 int offs, void *sbuf)
846{
847 struct ubifs_scan_leb *sleb;
848 int next_lnum;
849
850 dbg_rcvry("LEB %d", lnum);
851 next_lnum = lnum + 1;
852 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
853 next_lnum = UBIFS_LOG_LNUM;
854 if (next_lnum != c->ltail_lnum) {
855 /*
856 * We can only recover at the end of the log, so check that the
857 * next log LEB is empty or out of date.
858 */
Artem Bityutskiy348709b2009-08-25 15:00:55 +0300859 sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300860 if (IS_ERR(sleb))
861 return sleb;
862 if (sleb->nodes_cnt) {
863 struct ubifs_scan_node *snod;
864 unsigned long long cs_sqnum = c->cs_sqnum;
865
866 snod = list_entry(sleb->nodes.next,
867 struct ubifs_scan_node, list);
868 if (cs_sqnum == 0) {
869 int err;
870
871 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
872 if (err) {
873 ubifs_scan_destroy(sleb);
874 return ERR_PTR(err);
875 }
876 }
877 if (snod->sqnum > cs_sqnum) {
878 ubifs_err("unrecoverable log corruption "
879 "in LEB %d", lnum);
880 ubifs_scan_destroy(sleb);
881 return ERR_PTR(-EUCLEAN);
882 }
883 }
884 ubifs_scan_destroy(sleb);
885 }
Artem Bityutskiyefcfde52011-05-26 08:36:52 +0300886 return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300887}
888
889/**
890 * recover_head - recover a head.
891 * @c: UBIFS file-system description object
892 * @lnum: LEB number of head to recover
893 * @offs: offset of head to recover
894 * @sbuf: LEB-sized buffer to use
895 *
896 * This function ensures that there is no data on the flash at a head location.
897 *
898 * This function returns %0 on success and a negative error code on failure.
899 */
900static int recover_head(const struct ubifs_info *c, int lnum, int offs,
901 void *sbuf)
902{
Artem Bityutskiy2765df72011-02-02 09:22:54 +0200903 int len = c->max_write_size, err;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300904
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300905 if (offs + len > c->leb_size)
906 len = c->leb_size - offs;
907
908 if (!len)
909 return 0;
910
911 /* Read at the head location and check it is empty flash */
912 err = ubi_read(c->ubi, lnum, sbuf, offs, len);
Artem Bityutskiy431102f2009-06-29 18:58:34 +0300913 if (err || !is_empty(sbuf, len)) {
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300914 dbg_rcvry("cleaning head at %d:%d", lnum, offs);
915 if (offs == 0)
916 return ubifs_leb_unmap(c, lnum);
917 err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
918 if (err)
919 return err;
920 return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
921 }
922
923 return 0;
924}
925
926/**
927 * ubifs_recover_inl_heads - recover index and LPT heads.
928 * @c: UBIFS file-system description object
929 * @sbuf: LEB-sized buffer to use
930 *
931 * This function ensures that there is no data on the flash at the index and
932 * LPT head locations.
933 *
934 * This deals with the recovery of a half-completed journal commit. UBIFS is
935 * careful never to overwrite the last version of the index or the LPT. Because
936 * the index and LPT are wandering trees, data from a half-completed commit will
937 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
938 * assumed to be empty and will be unmapped anyway before use, or in the index
939 * and LPT heads.
940 *
941 * This function returns %0 on success and a negative error code on failure.
942 */
943int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
944{
945 int err;
946
Artem Bityutskiy2ef13292010-09-19 18:34:26 +0300947 ubifs_assert(!c->ro_mount || c->remounting_rw);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300948
949 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
950 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
951 if (err)
952 return err;
953
954 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
955 err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
956 if (err)
957 return err;
958
959 return 0;
960}
961
962/**
963 * clean_an_unclean_leb - read and write a LEB to remove corruption.
964 * @c: UBIFS file-system description object
965 * @ucleb: unclean LEB information
966 * @sbuf: LEB-sized buffer to use
967 *
968 * This function reads a LEB up to a point pre-determined by the mount recovery,
969 * checks the nodes, and writes the result back to the flash, thereby cleaning
970 * off any following corruption, or non-fatal ECC errors.
971 *
972 * This function returns %0 on success and a negative error code on failure.
973 */
974static int clean_an_unclean_leb(const struct ubifs_info *c,
975 struct ubifs_unclean_leb *ucleb, void *sbuf)
976{
977 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
978 void *buf = sbuf;
979
980 dbg_rcvry("LEB %d len %d", lnum, len);
981
982 if (len == 0) {
983 /* Nothing to read, just unmap it */
984 err = ubifs_leb_unmap(c, lnum);
985 if (err)
986 return err;
987 return 0;
988 }
989
990 err = ubi_read(c->ubi, lnum, buf, offs, len);
991 if (err && err != -EBADMSG)
992 return err;
993
994 while (len >= 8) {
995 int ret;
996
997 cond_resched();
998
999 /* Scan quietly until there is an error */
1000 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1001
1002 if (ret == SCANNED_A_NODE) {
1003 /* A valid node, and not a padding node */
1004 struct ubifs_ch *ch = buf;
1005 int node_len;
1006
1007 node_len = ALIGN(le32_to_cpu(ch->len), 8);
1008 offs += node_len;
1009 buf += node_len;
1010 len -= node_len;
1011 continue;
1012 }
1013
1014 if (ret > 0) {
1015 /* Padding bytes or a valid padding node */
1016 offs += ret;
1017 buf += ret;
1018 len -= ret;
1019 continue;
1020 }
1021
1022 if (ret == SCANNED_EMPTY_SPACE) {
1023 ubifs_err("unexpected empty space at %d:%d",
1024 lnum, offs);
1025 return -EUCLEAN;
1026 }
1027
1028 if (quiet) {
1029 /* Redo the last scan but noisily */
1030 quiet = 0;
1031 continue;
1032 }
1033
1034 ubifs_scanned_corruption(c, lnum, offs, buf);
1035 return -EUCLEAN;
1036 }
1037
1038 /* Pad to min_io_size */
1039 len = ALIGN(ucleb->endpt, c->min_io_size);
1040 if (len > ucleb->endpt) {
1041 int pad_len = len - ALIGN(ucleb->endpt, 8);
1042
1043 if (pad_len > 0) {
1044 buf = c->sbuf + len - pad_len;
1045 ubifs_pad(c, buf, pad_len);
1046 }
1047 }
1048
1049 /* Write back the LEB atomically */
1050 err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
1051 if (err)
1052 return err;
1053
1054 dbg_rcvry("cleaned LEB %d", lnum);
1055
1056 return 0;
1057}
1058
1059/**
1060 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1061 * @c: UBIFS file-system description object
1062 * @sbuf: LEB-sized buffer to use
1063 *
1064 * This function cleans a LEB identified during recovery that needs to be
1065 * written but was not because UBIFS was mounted read-only. This happens when
1066 * remounting to read-write mode.
1067 *
1068 * This function returns %0 on success and a negative error code on failure.
1069 */
1070int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
1071{
1072 dbg_rcvry("recovery");
1073 while (!list_empty(&c->unclean_leb_list)) {
1074 struct ubifs_unclean_leb *ucleb;
1075 int err;
1076
1077 ucleb = list_entry(c->unclean_leb_list.next,
1078 struct ubifs_unclean_leb, list);
1079 err = clean_an_unclean_leb(c, ucleb, sbuf);
1080 if (err)
1081 return err;
1082 list_del(&ucleb->list);
1083 kfree(ucleb);
1084 }
1085 return 0;
1086}
1087
1088/**
Artem Bityutskiy44744212011-04-27 14:52:35 +03001089 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1090 * @c: UBIFS file-system description object
1091 *
1092 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1093 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1094 * zero in case of success and a negative error code in case of failure.
1095 */
1096static int grab_empty_leb(struct ubifs_info *c)
1097{
1098 int lnum, err;
1099
1100 /*
1101 * Note, it is very important to first search for an empty LEB and then
1102 * run the commit, not vice-versa. The reason is that there might be
1103 * only one empty LEB at the moment, the one which has been the
1104 * @c->gc_lnum just before the power cut happened. During the regular
1105 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1106 * one but GC can grab it. But at this moment this single empty LEB is
1107 * not marked as taken, so if we run commit - what happens? Right, the
1108 * commit will grab it and write the index there. Remember that the
1109 * index always expands as long as there is free space, and it only
1110 * starts consolidating when we run out of space.
1111 *
1112 * IOW, if we run commit now, we might not be able to find a free LEB
1113 * after this.
1114 */
1115 lnum = ubifs_find_free_leb_for_idx(c);
1116 if (lnum < 0) {
1117 dbg_err("could not find an empty LEB");
1118 dbg_dump_lprops(c);
1119 dbg_dump_budg(c, &c->bi);
1120 return lnum;
1121 }
1122
1123 /* Reset the index flag */
1124 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1125 LPROPS_INDEX, 0);
1126 if (err)
1127 return err;
1128
1129 c->gc_lnum = lnum;
1130 dbg_rcvry("found empty LEB %d, run commit", lnum);
1131
1132 return ubifs_run_commit(c);
1133}
1134
1135/**
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001136 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1137 * @c: UBIFS file-system description object
1138 *
1139 * Out-of-place garbage collection requires always one empty LEB with which to
1140 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1141 * written to the master node on unmounting. In the case of an unclean unmount
1142 * the value of gc_lnum recorded in the master node is out of date and cannot
1143 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1144 * However, there may not be enough empty space, in which case it must be
1145 * possible to GC the dirtiest LEB into the GC head LEB.
1146 *
1147 * This function also runs the commit which causes the TNC updates from
1148 * size-recovery and orphans to be written to the flash. That is important to
1149 * ensure correct replay order for subsequent mounts.
1150 *
1151 * This function returns %0 on success and a negative error code on failure.
1152 */
1153int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1154{
1155 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1156 struct ubifs_lprops lp;
Artem Bityutskiyfe79c052011-04-29 16:35:46 +03001157 int err;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001158
Artem Bityutskiyc839e292011-05-13 12:26:54 +03001159 dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1160
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001161 c->gc_lnum = -1;
Artem Bityutskiyc839e292011-05-13 12:26:54 +03001162 if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
Artem Bityutskiy44744212011-04-27 14:52:35 +03001163 return grab_empty_leb(c);
Artem Bityutskiyfe79c052011-04-29 16:35:46 +03001164
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001165 err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1166 if (err) {
Artem Bityutskiyfe79c052011-04-29 16:35:46 +03001167 if (err != -ENOSPC)
1168 return err;
1169
1170 dbg_rcvry("could not find a dirty LEB");
1171 return grab_empty_leb(c);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001172 }
Artem Bityutskiy2405f592011-04-26 09:49:32 +03001173
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001174 ubifs_assert(!(lp.flags & LPROPS_INDEX));
Artem Bityutskiybcdca3e2011-04-26 10:07:50 +03001175 ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
Artem Bityutskiy2405f592011-04-26 09:49:32 +03001176
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001177 /*
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001178 * We run the commit before garbage collection otherwise subsequent
1179 * mounts will see the GC and orphan deletion in a different order.
1180 */
1181 dbg_rcvry("committing");
1182 err = ubifs_run_commit(c);
1183 if (err)
1184 return err;
Artem Bityutskiyfe79c052011-04-29 16:35:46 +03001185
1186 dbg_rcvry("GC'ing LEB %d", lp.lnum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001187 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1188 err = ubifs_garbage_collect_leb(c, &lp);
1189 if (err >= 0) {
1190 int err2 = ubifs_wbuf_sync_nolock(wbuf);
1191
1192 if (err2)
1193 err = err2;
1194 }
1195 mutex_unlock(&wbuf->io_mutex);
1196 if (err < 0) {
1197 dbg_err("GC failed, error %d", err);
1198 if (err == -EAGAIN)
1199 err = -EINVAL;
1200 return err;
1201 }
Artem Bityutskiyfe79c052011-04-29 16:35:46 +03001202
1203 ubifs_assert(err == LEB_RETAINED);
1204 if (err != LEB_RETAINED)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001205 return -EINVAL;
Artem Bityutskiyfe79c052011-04-29 16:35:46 +03001206
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001207 err = ubifs_leb_unmap(c, c->gc_lnum);
1208 if (err)
1209 return err;
Artem Bityutskiyfe79c052011-04-29 16:35:46 +03001210
1211 dbg_rcvry("allocated LEB %d for GC", lp.lnum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001212 return 0;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001213}
1214
1215/**
1216 * struct size_entry - inode size information for recovery.
1217 * @rb: link in the RB-tree of sizes
1218 * @inum: inode number
1219 * @i_size: size on inode
1220 * @d_size: maximum size based on data nodes
1221 * @exists: indicates whether the inode exists
1222 * @inode: inode if pinned in memory awaiting rw mode to fix it
1223 */
1224struct size_entry {
1225 struct rb_node rb;
1226 ino_t inum;
1227 loff_t i_size;
1228 loff_t d_size;
1229 int exists;
1230 struct inode *inode;
1231};
1232
1233/**
1234 * add_ino - add an entry to the size tree.
1235 * @c: UBIFS file-system description object
1236 * @inum: inode number
1237 * @i_size: size on inode
1238 * @d_size: maximum size based on data nodes
1239 * @exists: indicates whether the inode exists
1240 */
1241static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1242 loff_t d_size, int exists)
1243{
1244 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1245 struct size_entry *e;
1246
1247 while (*p) {
1248 parent = *p;
1249 e = rb_entry(parent, struct size_entry, rb);
1250 if (inum < e->inum)
1251 p = &(*p)->rb_left;
1252 else
1253 p = &(*p)->rb_right;
1254 }
1255
1256 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1257 if (!e)
1258 return -ENOMEM;
1259
1260 e->inum = inum;
1261 e->i_size = i_size;
1262 e->d_size = d_size;
1263 e->exists = exists;
1264
1265 rb_link_node(&e->rb, parent, p);
1266 rb_insert_color(&e->rb, &c->size_tree);
1267
1268 return 0;
1269}
1270
1271/**
1272 * find_ino - find an entry on the size tree.
1273 * @c: UBIFS file-system description object
1274 * @inum: inode number
1275 */
1276static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1277{
1278 struct rb_node *p = c->size_tree.rb_node;
1279 struct size_entry *e;
1280
1281 while (p) {
1282 e = rb_entry(p, struct size_entry, rb);
1283 if (inum < e->inum)
1284 p = p->rb_left;
1285 else if (inum > e->inum)
1286 p = p->rb_right;
1287 else
1288 return e;
1289 }
1290 return NULL;
1291}
1292
1293/**
1294 * remove_ino - remove an entry from the size tree.
1295 * @c: UBIFS file-system description object
1296 * @inum: inode number
1297 */
1298static void remove_ino(struct ubifs_info *c, ino_t inum)
1299{
1300 struct size_entry *e = find_ino(c, inum);
1301
1302 if (!e)
1303 return;
1304 rb_erase(&e->rb, &c->size_tree);
1305 kfree(e);
1306}
1307
1308/**
1309 * ubifs_destroy_size_tree - free resources related to the size tree.
1310 * @c: UBIFS file-system description object
1311 */
1312void ubifs_destroy_size_tree(struct ubifs_info *c)
1313{
1314 struct rb_node *this = c->size_tree.rb_node;
1315 struct size_entry *e;
1316
1317 while (this) {
1318 if (this->rb_left) {
1319 this = this->rb_left;
1320 continue;
1321 } else if (this->rb_right) {
1322 this = this->rb_right;
1323 continue;
1324 }
1325 e = rb_entry(this, struct size_entry, rb);
1326 if (e->inode)
1327 iput(e->inode);
1328 this = rb_parent(this);
1329 if (this) {
1330 if (this->rb_left == &e->rb)
1331 this->rb_left = NULL;
1332 else
1333 this->rb_right = NULL;
1334 }
1335 kfree(e);
1336 }
1337 c->size_tree = RB_ROOT;
1338}
1339
1340/**
1341 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1342 * @c: UBIFS file-system description object
1343 * @key: node key
1344 * @deletion: node is for a deletion
1345 * @new_size: inode size
1346 *
1347 * This function has two purposes:
1348 * 1) to ensure there are no data nodes that fall outside the inode size
1349 * 2) to ensure there are no data nodes for inodes that do not exist
1350 * To accomplish those purposes, a rb-tree is constructed containing an entry
1351 * for each inode number in the journal that has not been deleted, and recording
1352 * the size from the inode node, the maximum size of any data node (also altered
1353 * by truncations) and a flag indicating a inode number for which no inode node
1354 * was present in the journal.
1355 *
1356 * Note that there is still the possibility that there are data nodes that have
1357 * been committed that are beyond the inode size, however the only way to find
1358 * them would be to scan the entire index. Alternatively, some provision could
1359 * be made to record the size of inodes at the start of commit, which would seem
1360 * very cumbersome for a scenario that is quite unlikely and the only negative
1361 * consequence of which is wasted space.
1362 *
1363 * This functions returns %0 on success and a negative error code on failure.
1364 */
1365int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1366 int deletion, loff_t new_size)
1367{
1368 ino_t inum = key_inum(c, key);
1369 struct size_entry *e;
1370 int err;
1371
1372 switch (key_type(c, key)) {
1373 case UBIFS_INO_KEY:
1374 if (deletion)
1375 remove_ino(c, inum);
1376 else {
1377 e = find_ino(c, inum);
1378 if (e) {
1379 e->i_size = new_size;
1380 e->exists = 1;
1381 } else {
1382 err = add_ino(c, inum, new_size, 0, 1);
1383 if (err)
1384 return err;
1385 }
1386 }
1387 break;
1388 case UBIFS_DATA_KEY:
1389 e = find_ino(c, inum);
1390 if (e) {
1391 if (new_size > e->d_size)
1392 e->d_size = new_size;
1393 } else {
1394 err = add_ino(c, inum, 0, new_size, 0);
1395 if (err)
1396 return err;
1397 }
1398 break;
1399 case UBIFS_TRUN_KEY:
1400 e = find_ino(c, inum);
1401 if (e)
1402 e->d_size = new_size;
1403 break;
1404 }
1405 return 0;
1406}
1407
1408/**
1409 * fix_size_in_place - fix inode size in place on flash.
1410 * @c: UBIFS file-system description object
1411 * @e: inode size information for recovery
1412 */
1413static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1414{
1415 struct ubifs_ino_node *ino = c->sbuf;
1416 unsigned char *p;
1417 union ubifs_key key;
1418 int err, lnum, offs, len;
1419 loff_t i_size;
1420 uint32_t crc;
1421
1422 /* Locate the inode node LEB number and offset */
1423 ino_key_init(c, &key, e->inum);
1424 err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1425 if (err)
1426 goto out;
1427 /*
1428 * If the size recorded on the inode node is greater than the size that
1429 * was calculated from nodes in the journal then don't change the inode.
1430 */
1431 i_size = le64_to_cpu(ino->size);
1432 if (i_size >= e->d_size)
1433 return 0;
1434 /* Read the LEB */
1435 err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size);
1436 if (err)
1437 goto out;
1438 /* Change the size field and recalculate the CRC */
1439 ino = c->sbuf + offs;
1440 ino->size = cpu_to_le64(e->d_size);
1441 len = le32_to_cpu(ino->ch.len);
1442 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1443 ino->ch.crc = cpu_to_le32(crc);
1444 /* Work out where data in the LEB ends and free space begins */
1445 p = c->sbuf;
1446 len = c->leb_size - 1;
1447 while (p[len] == 0xff)
1448 len -= 1;
1449 len = ALIGN(len + 1, c->min_io_size);
1450 /* Atomically write the fixed LEB back again */
1451 err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN);
1452 if (err)
1453 goto out;
Artem Bityutskiy69f8a752011-05-02 21:51:17 +03001454 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001455 (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001456 return 0;
1457
1458out:
1459 ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001460 (unsigned long)e->inum, e->i_size, e->d_size, err);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001461 return err;
1462}
1463
1464/**
1465 * ubifs_recover_size - recover inode size.
1466 * @c: UBIFS file-system description object
1467 *
1468 * This function attempts to fix inode size discrepancies identified by the
1469 * 'ubifs_recover_size_accum()' function.
1470 *
1471 * This functions returns %0 on success and a negative error code on failure.
1472 */
1473int ubifs_recover_size(struct ubifs_info *c)
1474{
1475 struct rb_node *this = rb_first(&c->size_tree);
1476
1477 while (this) {
1478 struct size_entry *e;
1479 int err;
1480
1481 e = rb_entry(this, struct size_entry, rb);
1482 if (!e->exists) {
1483 union ubifs_key key;
1484
1485 ino_key_init(c, &key, e->inum);
1486 err = ubifs_tnc_lookup(c, &key, c->sbuf);
1487 if (err && err != -ENOENT)
1488 return err;
1489 if (err == -ENOENT) {
1490 /* Remove data nodes that have no inode */
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001491 dbg_rcvry("removing ino %lu",
1492 (unsigned long)e->inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001493 err = ubifs_tnc_remove_ino(c, e->inum);
1494 if (err)
1495 return err;
1496 } else {
1497 struct ubifs_ino_node *ino = c->sbuf;
1498
1499 e->exists = 1;
1500 e->i_size = le64_to_cpu(ino->size);
1501 }
1502 }
Artem Bityutskiy69f8a752011-05-02 21:51:17 +03001503
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001504 if (e->exists && e->i_size < e->d_size) {
Artem Bityutskiy69f8a752011-05-02 21:51:17 +03001505 if (c->ro_mount) {
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001506 /* Fix the inode size and pin it in memory */
1507 struct inode *inode;
Artem Bityutskiyc1f1f912011-05-05 14:16:32 +03001508 struct ubifs_inode *ui;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001509
Artem Bityutskiy69f8a752011-05-02 21:51:17 +03001510 ubifs_assert(!e->inode);
1511
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001512 inode = ubifs_iget(c->vfs_sb, e->inum);
1513 if (IS_ERR(inode))
1514 return PTR_ERR(inode);
Artem Bityutskiyc1f1f912011-05-05 14:16:32 +03001515
1516 ui = ubifs_inode(inode);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001517 if (inode->i_size < e->d_size) {
1518 dbg_rcvry("ino %lu size %lld -> %lld",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001519 (unsigned long)e->inum,
Artem Bityutskiy4c954522011-05-02 21:43:54 +03001520 inode->i_size, e->d_size);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001521 inode->i_size = e->d_size;
Artem Bityutskiyc1f1f912011-05-05 14:16:32 +03001522 ui->ui_size = e->d_size;
1523 ui->synced_i_size = e->d_size;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001524 e->inode = inode;
1525 this = rb_next(this);
1526 continue;
1527 }
1528 iput(inode);
1529 } else {
1530 /* Fix the size in place */
1531 err = fix_size_in_place(c, e);
1532 if (err)
1533 return err;
1534 if (e->inode)
1535 iput(e->inode);
1536 }
1537 }
Artem Bityutskiy69f8a752011-05-02 21:51:17 +03001538
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001539 this = rb_next(this);
1540 rb_erase(&e->rb, &c->size_tree);
1541 kfree(e);
1542 }
Artem Bityutskiy69f8a752011-05-02 21:51:17 +03001543
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001544 return 0;
1545}