blob: 785c2769f05bd3aa2f1ed0615c3430d5508a288f [file] [log] [blame]
Mauro Carvalho Chehabeebf11a2011-10-20 19:18:01 -02001/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2 *
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
5 *
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
8 *
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab <mchehab@redhat.com>
11 */
12
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/pci.h>
16#include <linux/pci_ids.h>
17#include <linux/slab.h>
18#include <linux/delay.h>
19#include <linux/edac.h>
20#include <linux/mmzone.h>
21#include <linux/edac_mce.h>
22#include <linux/smp.h>
23#include <linux/bitmap.h>
24#include <asm/processor.h>
25
26#include "edac_core.h"
27
28/* Static vars */
29static LIST_HEAD(sbridge_edac_list);
30static DEFINE_MUTEX(sbridge_edac_lock);
31static int probed;
32
33/*
34 * Alter this version for the module when modifications are made
35 */
36#define SBRIDGE_REVISION " Ver: 1.0.0 "
37#define EDAC_MOD_STR "sbridge_edac"
38
39/*
40 * Debug macros
41 */
42#define sbridge_printk(level, fmt, arg...) \
43 edac_printk(level, "sbridge", fmt, ##arg)
44
45#define sbridge_mc_printk(mci, level, fmt, arg...) \
46 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
47
48/*
49 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
50 */
51#define GET_BITFIELD(v, lo, hi) \
52 (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
53
54/*
55 * sbridge Memory Controller Registers
56 */
57
58/*
59 * FIXME: For now, let's order by device function, as it makes
60 * easier for driver's development proccess. This table should be
61 * moved to pci_id.h when submitted upstream
62 */
63#define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */
64#define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */
65#define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */
66#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */
67#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */
68#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */
69#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */
70#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */
71#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */
72#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */
73#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */
74
75 /*
76 * Currently, unused, but will be needed in the future
77 * implementations, as they hold the error counters
78 */
79#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */
80#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */
81#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */
82#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */
83
84/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
85static const u32 dram_rule[] = {
86 0x80, 0x88, 0x90, 0x98, 0xa0,
87 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
88};
89#define MAX_SAD ARRAY_SIZE(dram_rule)
90
91#define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
92#define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
93#define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
94#define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
95
96static char *get_dram_attr(u32 reg)
97{
98 switch(DRAM_ATTR(reg)) {
99 case 0:
100 return "DRAM";
101 case 1:
102 return "MMCFG";
103 case 2:
104 return "NXM";
105 default:
106 return "unknown";
107 }
108}
109
110static const u32 interleave_list[] = {
111 0x84, 0x8c, 0x94, 0x9c, 0xa4,
112 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
113};
114#define MAX_INTERLEAVE ARRAY_SIZE(interleave_list)
115
116#define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2)
117#define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5)
118#define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10)
119#define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13)
120#define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18)
121#define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21)
122#define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26)
123#define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29)
124
125static inline int sad_pkg(u32 reg, int interleave)
126{
127 switch (interleave) {
128 case 0:
129 return SAD_PKG0(reg);
130 case 1:
131 return SAD_PKG1(reg);
132 case 2:
133 return SAD_PKG2(reg);
134 case 3:
135 return SAD_PKG3(reg);
136 case 4:
137 return SAD_PKG4(reg);
138 case 5:
139 return SAD_PKG5(reg);
140 case 6:
141 return SAD_PKG6(reg);
142 case 7:
143 return SAD_PKG7(reg);
144 default:
145 return -EINVAL;
146 }
147}
148
149/* Devices 12 Function 7 */
150
151#define TOLM 0x80
152#define TOHM 0x84
153
154#define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
155#define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
156
157/* Device 13 Function 6 */
158
159#define SAD_TARGET 0xf0
160
161#define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
162
163#define SAD_CONTROL 0xf4
164
165#define NODE_ID(reg) GET_BITFIELD(reg, 0, 2)
166
167/* Device 14 function 0 */
168
169static const u32 tad_dram_rule[] = {
170 0x40, 0x44, 0x48, 0x4c,
171 0x50, 0x54, 0x58, 0x5c,
172 0x60, 0x64, 0x68, 0x6c,
173};
174#define MAX_TAD ARRAY_SIZE(tad_dram_rule)
175
176#define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
177#define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
178#define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
179#define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
180#define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
181#define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
182#define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
183
184/* Device 15, function 0 */
185
186#define MCMTR 0x7c
187
188#define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
189#define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
190#define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
191
192/* Device 15, function 1 */
193
194#define RASENABLES 0xac
195#define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
196
197/* Device 15, functions 2-5 */
198
199static const int mtr_regs[] = {
200 0x80, 0x84, 0x88,
201};
202
203#define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
204#define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
205#define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
206#define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
207#define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
208
209static const u32 tad_ch_nilv_offset[] = {
210 0x90, 0x94, 0x98, 0x9c,
211 0xa0, 0xa4, 0xa8, 0xac,
212 0xb0, 0xb4, 0xb8, 0xbc,
213};
214#define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
215#define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
216
217static const u32 rir_way_limit[] = {
218 0x108, 0x10c, 0x110, 0x114, 0x118,
219};
220#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
221
222#define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
223#define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
224#define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff)
225
226#define MAX_RIR_WAY 8
227
228static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
229 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
230 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
231 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
232 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
233 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
234};
235
236#define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
237#define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
238
239/* Device 16, functions 2-7 */
240
241/*
242 * FIXME: Implement the error count reads directly
243 */
244
245static const u32 correrrcnt[] = {
246 0x104, 0x108, 0x10c, 0x110,
247};
248
249#define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
250#define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
251#define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
252#define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
253
254static const u32 correrrthrsld[] = {
255 0x11c, 0x120, 0x124, 0x128,
256};
257
258#define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
259#define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
260
261
262/* Device 17, function 0 */
263
264#define RANK_CFG_A 0x0328
265
266#define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11)
267
268/*
269 * sbridge structs
270 */
271
272#define NUM_CHANNELS 4
273#define MAX_DIMMS 3 /* Max DIMMS per channel */
274
275struct sbridge_info {
276 u32 mcmtr;
277};
278
279struct sbridge_channel {
280 u32 ranks;
281 u32 dimms;
282};
283
284struct pci_id_descr {
285 int dev;
286 int func;
287 int dev_id;
288 int optional;
289};
290
291struct pci_id_table {
292 const struct pci_id_descr *descr;
293 int n_devs;
294};
295
296struct sbridge_dev {
297 struct list_head list;
298 u8 bus, mc;
299 u8 node_id, source_id;
300 struct pci_dev **pdev;
301 int n_devs;
302 struct mem_ctl_info *mci;
303};
304
305struct sbridge_pvt {
306 struct pci_dev *pci_ta, *pci_ddrio, *pci_ras;
307 struct pci_dev *pci_sad0, *pci_sad1, *pci_ha0;
308 struct pci_dev *pci_br;
309 struct pci_dev *pci_tad[NUM_CHANNELS];
310
311 struct sbridge_dev *sbridge_dev;
312
313 struct sbridge_info info;
314 struct sbridge_channel channel[NUM_CHANNELS];
315
316 int csrow_map[NUM_CHANNELS][MAX_DIMMS];
317
318 /* Memory type detection */
319 bool is_mirrored, is_lockstep, is_close_pg;
320
321 /* mcelog glue */
322 struct edac_mce edac_mce;
323
324 /* Fifo double buffers */
325 struct mce mce_entry[MCE_LOG_LEN];
326 struct mce mce_outentry[MCE_LOG_LEN];
327
328 /* Fifo in/out counters */
329 unsigned mce_in, mce_out;
330
331 /* Count indicator to show errors not got */
332 unsigned mce_overrun;
333
334 /* Memory description */
335 u64 tolm, tohm;
336};
337
338#define PCI_DESCR(device, function, device_id) \
339 .dev = (device), \
340 .func = (function), \
341 .dev_id = (device_id)
342
343static const struct pci_id_descr pci_dev_descr_sbridge[] = {
344 /* Processor Home Agent */
345 { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0) },
346
347 /* Memory controller */
348 { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA) },
349 { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS) },
350 { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0) },
351 { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1) },
352 { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2) },
353 { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3) },
354 { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO) },
355
356 /* System Address Decoder */
357 { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0) },
358 { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1) },
359
360 /* Broadcast Registers */
361 { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR) },
362};
363
364#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
365static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
366 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
367 {0,} /* 0 terminated list. */
368};
369
370/*
371 * pci_device_id table for which devices we are looking for
372 */
373static const struct pci_device_id sbridge_pci_tbl[] __devinitdata = {
374 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
375 {0,} /* 0 terminated list. */
376};
377
378
379/****************************************************************************
380 Anciliary status routines
381 ****************************************************************************/
382
383static inline int numrank(u32 mtr)
384{
385 int ranks = (1 << RANK_CNT_BITS(mtr));
386
387 if (ranks > 4) {
388 debugf0("Invalid number of ranks: %d (max = 4) raw value = %x (%04x)",
389 ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
390 return -EINVAL;
391 }
392
393 return ranks;
394}
395
396static inline int numrow(u32 mtr)
397{
398 int rows = (RANK_WIDTH_BITS(mtr) + 12);
399
400 if (rows < 13 || rows > 18) {
401 debugf0("Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)",
402 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
403 return -EINVAL;
404 }
405
406 return 1 << rows;
407}
408
409static inline int numcol(u32 mtr)
410{
411 int cols = (COL_WIDTH_BITS(mtr) + 10);
412
413 if (cols > 12) {
414 debugf0("Invalid number of cols: %d (max = 4) raw value = %x (%04x)",
415 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
416 return -EINVAL;
417 }
418
419 return 1 << cols;
420}
421
422static struct sbridge_dev *get_sbridge_dev(u8 bus)
423{
424 struct sbridge_dev *sbridge_dev;
425
426 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
427 if (sbridge_dev->bus == bus)
428 return sbridge_dev;
429 }
430
431 return NULL;
432}
433
434static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
435 const struct pci_id_table *table)
436{
437 struct sbridge_dev *sbridge_dev;
438
439 sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
440 if (!sbridge_dev)
441 return NULL;
442
443 sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
444 GFP_KERNEL);
445 if (!sbridge_dev->pdev) {
446 kfree(sbridge_dev);
447 return NULL;
448 }
449
450 sbridge_dev->bus = bus;
451 sbridge_dev->n_devs = table->n_devs;
452 list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
453
454 return sbridge_dev;
455}
456
457static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
458{
459 list_del(&sbridge_dev->list);
460 kfree(sbridge_dev->pdev);
461 kfree(sbridge_dev);
462}
463
464/****************************************************************************
465 Memory check routines
466 ****************************************************************************/
467static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
468 unsigned func)
469{
470 struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
471 int i;
472
473 if (!sbridge_dev)
474 return NULL;
475
476 for (i = 0; i < sbridge_dev->n_devs; i++) {
477 if (!sbridge_dev->pdev[i])
478 continue;
479
480 if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
481 PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
482 debugf1("Associated %02x.%02x.%d with %p\n",
483 bus, slot, func, sbridge_dev->pdev[i]);
484 return sbridge_dev->pdev[i];
485 }
486 }
487
488 return NULL;
489}
490
491/**
492 * sbridge_get_active_channels() - gets the number of channels and csrows
493 * bus: Device bus
494 * @channels: Number of channels that will be returned
495 * @csrows: Number of csrows found
496 *
497 * Since EDAC core needs to know in advance the number of available channels
498 * and csrows, in order to allocate memory for csrows/channels, it is needed
499 * to run two similar steps. At the first step, implemented on this function,
500 * it checks the number of csrows/channels present at one socket, identified
501 * by the associated PCI bus.
502 * this is used in order to properly allocate the size of mci components.
503 * Note: one csrow is one dimm.
504 */
505static int sbridge_get_active_channels(const u8 bus, unsigned *channels,
506 unsigned *csrows)
507{
508 struct pci_dev *pdev = NULL;
509 int i, j;
510 u32 mcmtr;
511
512 *channels = 0;
513 *csrows = 0;
514
515 pdev = get_pdev_slot_func(bus, 15, 0);
516 if (!pdev) {
517 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
518 "%2x.%02d.%d!!!\n",
519 bus, 15, 0);
520 return -ENODEV;
521 }
522
523 pci_read_config_dword(pdev, MCMTR, &mcmtr);
524 if (!IS_ECC_ENABLED(mcmtr)) {
525 sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
526 return -ENODEV;
527 }
528
529 for (i = 0; i < NUM_CHANNELS; i++) {
530 u32 mtr;
531
532 /* Device 15 functions 2 - 5 */
533 pdev = get_pdev_slot_func(bus, 15, 2 + i);
534 if (!pdev) {
535 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
536 "%2x.%02d.%d!!!\n",
537 bus, 15, 2 + i);
538 return -ENODEV;
539 }
540 (*channels)++;
541
542 for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
543 pci_read_config_dword(pdev, mtr_regs[j], &mtr);
544 debugf1("Bus#%02x channel #%d MTR%d = %x\n", bus, i, j, mtr);
545 if (IS_DIMM_PRESENT(mtr))
546 (*csrows)++;
547 }
548 }
549
550 debugf0("Number of active channels: %d, number of active dimms: %d\n",
551 *channels, *csrows);
552
553 return 0;
554}
555
556static int get_dimm_config(const struct mem_ctl_info *mci)
557{
558 struct sbridge_pvt *pvt = mci->pvt_info;
559 struct csrow_info *csr;
560 int i, j, banks, ranks, rows, cols, size, npages;
561 int csrow = 0;
562 unsigned long last_page = 0;
563 u32 reg;
564 enum edac_type mode;
565
566 pci_read_config_dword(pvt->pci_br, SAD_TARGET, &reg);
567 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
568
569 pci_read_config_dword(pvt->pci_br, SAD_CONTROL, &reg);
570 pvt->sbridge_dev->node_id = NODE_ID(reg);
571 debugf0("mc#%d: Node ID: %d, source ID: %d\n",
572 pvt->sbridge_dev->mc,
573 pvt->sbridge_dev->node_id,
574 pvt->sbridge_dev->source_id);
575
576 pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
577 if (IS_MIRROR_ENABLED(reg)) {
578 debugf0("Memory mirror is enabled\n");
579 pvt->is_mirrored = true;
580 } else {
581 debugf0("Memory mirror is disabled\n");
582 pvt->is_mirrored = false;
583 }
584
585 pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
586 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
587 debugf0("Lockstep is enabled\n");
588 mode = EDAC_S8ECD8ED;
589 pvt->is_lockstep = true;
590 } else {
591 debugf0("Lockstep is disabled\n");
592 mode = EDAC_S4ECD4ED;
593 pvt->is_lockstep = false;
594 }
595 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
596 debugf0("address map is on closed page mode\n");
597 pvt->is_close_pg = true;
598 } else {
599 debugf0("address map is on open page mode\n");
600 pvt->is_close_pg = false;
601 }
602
603 pci_read_config_dword(pvt->pci_ta, RANK_CFG_A, &reg);
604 if (IS_RDIMM_ENABLED(reg)) {
605 /* FIXME: Can also be LRDIMM */
606 debugf0("Memory is registered\n");
607 mode = MEM_RDDR3;
608 } else {
609 debugf0("Memory is unregistered\n");
610 mode = MEM_DDR3;
611 }
612
613 /* On all supported DDR3 DIMM types, there are 8 banks available */
614 banks = 8;
615
616 for (i = 0; i < NUM_CHANNELS; i++) {
617 u32 mtr;
618
619 for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
620 pci_read_config_dword(pvt->pci_tad[i],
621 mtr_regs[j], &mtr);
622 debugf4("Channel #%d MTR%d = %x\n", i, j, mtr);
623 if (IS_DIMM_PRESENT(mtr)) {
624 pvt->channel[i].dimms++;
625
626 ranks = numrank(mtr);
627 rows = numrow(mtr);
628 cols = numcol(mtr);
629
630 /* DDR3 has 8 I/O banks */
631 size = (rows * cols * banks * ranks) >> (20 - 3);
632 npages = MiB_TO_PAGES(size);
633
634 debugf0("mc#%d: channel %d, dimm %d, %d Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
635 pvt->sbridge_dev->mc, i, j,
636 size, npages,
637 banks, ranks, rows, cols);
638 csr = &mci->csrows[csrow];
639
640 csr->first_page = last_page;
641 csr->last_page = last_page + npages - 1;
642 csr->page_mask = 0UL; /* Unused */
643 csr->nr_pages = npages;
644 csr->grain = 32;
645 csr->csrow_idx = csrow;
646 csr->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
647 csr->ce_count = 0;
648 csr->ue_count = 0;
649 csr->mtype = mode;
650 csr->edac_mode = mode;
651 csr->nr_channels = 1;
652 csr->channels[0].chan_idx = i;
653 csr->channels[0].ce_count = 0;
654 pvt->csrow_map[i][j] = csrow;
655 snprintf(csr->channels[0].label,
656 sizeof(csr->channels[0].label),
657 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
658 pvt->sbridge_dev->source_id, i, j);
659 last_page += npages;
660 csrow++;
661 }
662 }
663 }
664
665 return 0;
666}
667
668static void get_memory_layout(const struct mem_ctl_info *mci)
669{
670 struct sbridge_pvt *pvt = mci->pvt_info;
671 int i, j, k, n_sads, n_tads, sad_interl;
672 u32 reg;
673 u64 limit, prv = 0;
674 u64 tmp_mb;
675 u32 rir_way;
676
677 /*
678 * Step 1) Get TOLM/TOHM ranges
679 */
680
681 /* Address range is 32:28 */
682 pci_read_config_dword(pvt->pci_sad1, TOLM,
683 &reg);
684 pvt->tolm = GET_TOLM(reg);
685 tmp_mb = (1 + pvt->tolm) >> 20;
686
687 debugf0("TOLM: %Lu.%03Lu GB (0x%016Lx)\n",
688 tmp_mb / 1000, tmp_mb % 1000, (u64)pvt->tolm);
689
690 /* Address range is already 45:25 */
691 pci_read_config_dword(pvt->pci_sad1, TOHM,
692 &reg);
693 pvt->tohm = GET_TOHM(reg);
694 tmp_mb = (1 + pvt->tohm) >> 20;
695
696 debugf0("TOHM: %Lu.%03Lu GB (0x%016Lx)",
697 tmp_mb / 1000, tmp_mb % 1000, (u64)pvt->tohm);
698
699 /*
700 * Step 2) Get SAD range and SAD Interleave list
701 * TAD registers contain the interleave wayness. However, it
702 * seems simpler to just discover it indirectly, with the
703 * algorithm bellow.
704 */
705 prv = 0;
706 for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
707 /* SAD_LIMIT Address range is 45:26 */
708 pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
709 &reg);
710 limit = SAD_LIMIT(reg);
711
712 if (!DRAM_RULE_ENABLE(reg))
713 continue;
714
715 if (limit <= prv)
716 break;
717
718 tmp_mb = (limit + 1) >> 20;
719 debugf0("SAD#%d %s up to %Lu.%03Lu GB (0x%016Lx) %s reg=0x%08x\n",
720 n_sads,
721 get_dram_attr(reg),
722 tmp_mb / 1000, tmp_mb % 1000,
723 ((u64)tmp_mb) << 20L,
724 INTERLEAVE_MODE(reg) ? "Interleave: 8:6" : "Interleave: [8:6]XOR[18:16]",
725 reg);
726 prv = limit;
727
728 pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
729 &reg);
730 sad_interl = sad_pkg(reg, 0);
731 for (j = 0; j < 8; j++) {
732 if (j > 0 && sad_interl == sad_pkg(reg, j))
733 break;
734
735 debugf0("SAD#%d, interleave #%d: %d\n",
736 n_sads, j, sad_pkg(reg, j));
737 }
738 }
739
740 /*
741 * Step 3) Get TAD range
742 */
743 prv = 0;
744 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
745 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
746 &reg);
747 limit = TAD_LIMIT(reg);
748 if (limit <= prv)
749 break;
750 tmp_mb = (limit + 1) >> 20;
751
752 debugf0("TAD#%d: up to %Lu.%03Lu GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
753 n_tads, tmp_mb / 1000, tmp_mb % 1000,
754 ((u64)tmp_mb) << 20L,
755 (u32)TAD_SOCK(reg),
756 (u32)TAD_CH(reg),
757 (u32)TAD_TGT0(reg),
758 (u32)TAD_TGT1(reg),
759 (u32)TAD_TGT2(reg),
760 (u32)TAD_TGT3(reg),
761 reg);
762 prv = tmp_mb;
763 }
764
765 /*
766 * Step 4) Get TAD offsets, per each channel
767 */
768 for (i = 0; i < NUM_CHANNELS; i++) {
769 if (!pvt->channel[i].dimms)
770 continue;
771 for (j = 0; j < n_tads; j++) {
772 pci_read_config_dword(pvt->pci_tad[i],
773 tad_ch_nilv_offset[j],
774 &reg);
775 tmp_mb = TAD_OFFSET(reg) >> 20;
776 debugf0("TAD CH#%d, offset #%d: %Lu.%03Lu GB (0x%016Lx), reg=0x%08x\n",
777 i, j,
778 tmp_mb / 1000, tmp_mb % 1000,
779 ((u64)tmp_mb) << 20L,
780 reg);
781 }
782 }
783
784 /*
785 * Step 6) Get RIR Wayness/Limit, per each channel
786 */
787 for (i = 0; i < NUM_CHANNELS; i++) {
788 if (!pvt->channel[i].dimms)
789 continue;
790 for (j = 0; j < MAX_RIR_RANGES; j++) {
791 pci_read_config_dword(pvt->pci_tad[i],
792 rir_way_limit[j],
793 &reg);
794
795 if (!IS_RIR_VALID(reg))
796 continue;
797
798 tmp_mb = RIR_LIMIT(reg) >> 20;
799 rir_way = 1 << RIR_WAY(reg);
800 debugf0("CH#%d RIR#%d, limit: %Lu.%03Lu GB (0x%016Lx), way: %d, reg=0x%08x\n",
801 i, j,
802 tmp_mb / 1000, tmp_mb % 1000,
803 ((u64)tmp_mb) << 20L,
804 rir_way,
805 reg);
806
807 for (k = 0; k < rir_way; k++) {
808 pci_read_config_dword(pvt->pci_tad[i],
809 rir_offset[j][k],
810 &reg);
811 tmp_mb = RIR_OFFSET(reg) << 6;
812
813 debugf0("CH#%d RIR#%d INTL#%d, offset %Lu.%03Lu GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
814 i, j, k,
815 tmp_mb / 1000, tmp_mb % 1000,
816 ((u64)tmp_mb) << 20L,
817 (u32)RIR_RNK_TGT(reg),
818 reg);
819 }
820 }
821 }
822}
823
824struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
825{
826 struct sbridge_dev *sbridge_dev;
827
828 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
829 if (sbridge_dev->node_id == node_id)
830 return sbridge_dev->mci;
831 }
832 return NULL;
833}
834
835static int get_memory_error_data(struct mem_ctl_info *mci,
836 u64 addr,
837 u8 *socket,
838 long *channel_mask,
839 u8 *rank,
840 char *area_type)
841{
842 struct mem_ctl_info *new_mci;
843 struct sbridge_pvt *pvt = mci->pvt_info;
844 char msg[256];
845 int n_rir, n_sads, n_tads, sad_way, sck_xch;
846 int sad_interl, idx, base_ch;
847 int interleave_mode;
848 unsigned sad_interleave[MAX_INTERLEAVE];
849 u32 reg;
850 u8 ch_way,sck_way;
851 u32 tad_offset;
852 u32 rir_way;
853 u64 ch_addr, offset, limit, prv = 0;
854
855
856 /*
857 * Step 0) Check if the address is at special memory ranges
858 * The check bellow is probably enough to fill all cases where
859 * the error is not inside a memory, except for the legacy
860 * range (e. g. VGA addresses). It is unlikely, however, that the
861 * memory controller would generate an error on that range.
862 */
863 if ((addr > (u64) pvt->tolm) && (addr < (1L << 32))) {
864 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
865 edac_mc_handle_ce_no_info(mci, msg);
866 return -EINVAL;
867 }
868 if (addr >= (u64)pvt->tohm) {
869 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
870 edac_mc_handle_ce_no_info(mci, msg);
871 return -EINVAL;
872 }
873
874 /*
875 * Step 1) Get socket
876 */
877 for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
878 pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
879 &reg);
880
881 if (!DRAM_RULE_ENABLE(reg))
882 continue;
883
884 limit = SAD_LIMIT(reg);
885 if (limit <= prv) {
886 sprintf(msg, "Can't discover the memory socket");
887 edac_mc_handle_ce_no_info(mci, msg);
888 return -EINVAL;
889 }
890 if (addr <= limit)
891 break;
892 prv = limit;
893 }
894 if (n_sads == MAX_SAD) {
895 sprintf(msg, "Can't discover the memory socket");
896 edac_mc_handle_ce_no_info(mci, msg);
897 return -EINVAL;
898 }
899 area_type = get_dram_attr(reg);
900 interleave_mode = INTERLEAVE_MODE(reg);
901
902 pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
903 &reg);
904 sad_interl = sad_pkg(reg, 0);
905 for (sad_way = 0; sad_way < 8; sad_way++) {
906 if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
907 break;
908 sad_interleave[sad_way] = sad_pkg(reg, sad_way);
909 debugf0("SAD interleave #%d: %d\n",
910 sad_way, sad_interleave[sad_way]);
911 }
912 debugf0("mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
913 pvt->sbridge_dev->mc,
914 n_sads,
915 addr,
916 limit,
917 sad_way + 7,
918 INTERLEAVE_MODE(reg) ? "" : "XOR[18:16]");
919 if (interleave_mode)
920 idx = ((addr >> 6) ^ (addr >> 16)) & 7;
921 else
922 idx = (addr >> 6) & 7;
923 switch (sad_way) {
924 case 1:
925 idx = 0;
926 break;
927 case 2:
928 idx = idx & 1;
929 break;
930 case 4:
931 idx = idx & 3;
932 break;
933 case 8:
934 break;
935 default:
936 sprintf(msg, "Can't discover socket interleave");
937 edac_mc_handle_ce_no_info(mci, msg);
938 return -EINVAL;
939 }
940 *socket = sad_interleave[idx];
941 debugf0("SAD interleave index: %d (wayness %d) = CPU socket %d\n",
942 idx, sad_way, *socket);
943
944 /*
945 * Move to the proper node structure, in order to access the
946 * right PCI registers
947 */
948 new_mci = get_mci_for_node_id(*socket);
949 if (!new_mci) {
950 sprintf(msg, "Struct for socket #%u wasn't initialized",
951 *socket);
952 edac_mc_handle_ce_no_info(mci, msg);
953 return -EINVAL;
954 }
955 mci = new_mci;
956 pvt = mci->pvt_info;
957
958 /*
959 * Step 2) Get memory channel
960 */
961 prv = 0;
962 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
963 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
964 &reg);
965 limit = TAD_LIMIT(reg);
966 if (limit <= prv) {
967 sprintf(msg, "Can't discover the memory channel");
968 edac_mc_handle_ce_no_info(mci, msg);
969 return -EINVAL;
970 }
971 if (addr <= limit)
972 break;
973 prv = limit;
974 }
975 ch_way = TAD_CH(reg) + 1;
976 sck_way = TAD_SOCK(reg) + 1;
977 /*
978 * FIXME: Is it right to always use channel 0 for offsets?
979 */
980 pci_read_config_dword(pvt->pci_tad[0],
981 tad_ch_nilv_offset[n_tads],
982 &tad_offset);
983
984 if (ch_way == 3)
985 idx = addr >> 6;
986 else
987 idx = addr >> (6 + sck_way);
988 idx = idx % ch_way;
989
990 /*
991 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
992 */
993 switch (idx) {
994 case 0:
995 base_ch = TAD_TGT0(reg);
996 break;
997 case 1:
998 base_ch = TAD_TGT1(reg);
999 break;
1000 case 2:
1001 base_ch = TAD_TGT2(reg);
1002 break;
1003 case 3:
1004 base_ch = TAD_TGT3(reg);
1005 break;
1006 default:
1007 sprintf(msg, "Can't discover the TAD target");
1008 edac_mc_handle_ce_no_info(mci, msg);
1009 return -EINVAL;
1010 }
1011 *channel_mask = 1 << base_ch;
1012
1013 if (pvt->is_mirrored) {
1014 *channel_mask |= 1 << ((base_ch + 2) % 4);
1015 switch(ch_way) {
1016 case 2:
1017 case 4:
1018 sck_xch = 1 << sck_way * (ch_way >> 1);
1019 break;
1020 default:
1021 sprintf(msg, "Invalid mirror set. Can't decode addr");
1022 edac_mc_handle_ce_no_info(mci, msg);
1023 return -EINVAL;
1024 }
1025 } else
1026 sck_xch = (1 << sck_way) * ch_way;
1027
1028 if (pvt->is_lockstep)
1029 *channel_mask |= 1 << ((base_ch + 1) % 4);
1030
1031 offset = TAD_OFFSET(tad_offset);
1032
1033 debugf0("TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1034 n_tads,
1035 addr,
1036 limit,
1037 (u32)TAD_SOCK(reg),
1038 ch_way,
1039 offset,
1040 idx,
1041 base_ch,
1042 *channel_mask);
1043
1044 /* Calculate channel address */
1045 /* Remove the TAD offset */
1046
1047 if (offset > addr) {
1048 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1049 offset, addr);
1050 edac_mc_handle_ce_no_info(mci, msg);
1051 return -EINVAL;
1052 }
1053 addr -= offset;
1054 /* Store the low bits [0:6] of the addr */
1055 ch_addr = addr & 0x7f;
1056 /* Remove socket wayness and remove 6 bits */
1057 addr >>= 6;
1058 addr /= sck_xch;
1059#if 0
1060 /* Divide by channel way */
1061 addr = addr / ch_way;
1062#endif
1063 /* Recover the last 6 bits */
1064 ch_addr |= addr << 6;
1065
1066 /*
1067 * Step 3) Decode rank
1068 */
1069 for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1070 pci_read_config_dword(pvt->pci_tad[base_ch],
1071 rir_way_limit[n_rir],
1072 &reg);
1073
1074 if (!IS_RIR_VALID(reg))
1075 continue;
1076
1077 limit = RIR_LIMIT(reg);
1078
1079 debugf0("RIR#%d, limit: %Lu.%03Lu GB (0x%016Lx), way: %d\n",
1080 n_rir,
1081 (limit >> 20) / 1000, (limit >> 20) % 1000,
1082 limit,
1083 1 << RIR_WAY(reg));
1084 if (ch_addr <= limit)
1085 break;
1086 }
1087 if (n_rir == MAX_RIR_RANGES) {
1088 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1089 ch_addr);
1090 edac_mc_handle_ce_no_info(mci, msg);
1091 return -EINVAL;
1092 }
1093 rir_way = RIR_WAY(reg);
1094 if (pvt->is_close_pg)
1095 idx = (ch_addr >> 6);
1096 else
1097 idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
1098 idx %= 1 << rir_way;
1099
1100 pci_read_config_dword(pvt->pci_tad[base_ch],
1101 rir_offset[n_rir][idx],
1102 &reg);
1103 *rank = RIR_RNK_TGT(reg);
1104
1105 debugf0("RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1106 n_rir,
1107 ch_addr,
1108 limit,
1109 rir_way,
1110 idx);
1111
1112 return 0;
1113}
1114
1115/****************************************************************************
1116 Device initialization routines: put/get, init/exit
1117 ****************************************************************************/
1118
1119/*
1120 * sbridge_put_all_devices 'put' all the devices that we have
1121 * reserved via 'get'
1122 */
1123static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1124{
1125 int i;
1126
1127 debugf0(__FILE__ ": %s()\n", __func__);
1128 for (i = 0; i < sbridge_dev->n_devs; i++) {
1129 struct pci_dev *pdev = sbridge_dev->pdev[i];
1130 if (!pdev)
1131 continue;
1132 debugf0("Removing dev %02x:%02x.%d\n",
1133 pdev->bus->number,
1134 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1135 pci_dev_put(pdev);
1136 }
1137}
1138
1139static void sbridge_put_all_devices(void)
1140{
1141 struct sbridge_dev *sbridge_dev, *tmp;
1142
1143 list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1144 sbridge_put_devices(sbridge_dev);
1145 free_sbridge_dev(sbridge_dev);
1146 }
1147}
1148
1149/*
1150 * sbridge_get_all_devices Find and perform 'get' operation on the MCH's
1151 * device/functions we want to reference for this driver
1152 *
1153 * Need to 'get' device 16 func 1 and func 2
1154 */
1155static int sbridge_get_onedevice(struct pci_dev **prev,
1156 u8 *num_mc,
1157 const struct pci_id_table *table,
1158 const unsigned devno)
1159{
1160 struct sbridge_dev *sbridge_dev;
1161 const struct pci_id_descr *dev_descr = &table->descr[devno];
1162
1163 struct pci_dev *pdev = NULL;
1164 u8 bus = 0;
1165
1166 sbridge_printk(KERN_INFO,
1167 "Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
1168 dev_descr->dev, dev_descr->func,
1169 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1170
1171 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1172 dev_descr->dev_id, *prev);
1173
1174 if (!pdev) {
1175 if (*prev) {
1176 *prev = pdev;
1177 return 0;
1178 }
1179
1180 if (dev_descr->optional)
1181 return 0;
1182
1183 if (devno == 0)
1184 return -ENODEV;
1185
1186 sbridge_printk(KERN_INFO,
1187 "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1188 dev_descr->dev, dev_descr->func,
1189 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1190
1191 /* End of list, leave */
1192 return -ENODEV;
1193 }
1194 bus = pdev->bus->number;
1195
1196 sbridge_dev = get_sbridge_dev(bus);
1197 if (!sbridge_dev) {
1198 sbridge_dev = alloc_sbridge_dev(bus, table);
1199 if (!sbridge_dev) {
1200 pci_dev_put(pdev);
1201 return -ENOMEM;
1202 }
1203 (*num_mc)++;
1204 }
1205
1206 if (sbridge_dev->pdev[devno]) {
1207 sbridge_printk(KERN_ERR,
1208 "Duplicated device for "
1209 "dev %02x:%d.%d PCI ID %04x:%04x\n",
1210 bus, dev_descr->dev, dev_descr->func,
1211 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1212 pci_dev_put(pdev);
1213 return -ENODEV;
1214 }
1215
1216 sbridge_dev->pdev[devno] = pdev;
1217
1218 /* Sanity check */
1219 if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1220 PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1221 sbridge_printk(KERN_ERR,
1222 "Device PCI ID %04x:%04x "
1223 "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
1224 PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1225 bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1226 bus, dev_descr->dev, dev_descr->func);
1227 return -ENODEV;
1228 }
1229
1230 /* Be sure that the device is enabled */
1231 if (unlikely(pci_enable_device(pdev) < 0)) {
1232 sbridge_printk(KERN_ERR,
1233 "Couldn't enable "
1234 "dev %02x:%d.%d PCI ID %04x:%04x\n",
1235 bus, dev_descr->dev, dev_descr->func,
1236 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1237 return -ENODEV;
1238 }
1239
1240 debugf0("Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
1241 bus, dev_descr->dev,
1242 dev_descr->func,
1243 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1244
1245 /*
1246 * As stated on drivers/pci/search.c, the reference count for
1247 * @from is always decremented if it is not %NULL. So, as we need
1248 * to get all devices up to null, we need to do a get for the device
1249 */
1250 pci_dev_get(pdev);
1251
1252 *prev = pdev;
1253
1254 return 0;
1255}
1256
1257static int sbridge_get_all_devices(u8 *num_mc)
1258{
1259 int i, rc;
1260 struct pci_dev *pdev = NULL;
1261 const struct pci_id_table *table = pci_dev_descr_sbridge_table;
1262
1263 while (table && table->descr) {
1264 for (i = 0; i < table->n_devs; i++) {
1265 pdev = NULL;
1266 do {
1267 rc = sbridge_get_onedevice(&pdev, num_mc,
1268 table, i);
1269 if (rc < 0) {
1270 if (i == 0) {
1271 i = table->n_devs;
1272 break;
1273 }
1274 sbridge_put_all_devices();
1275 return -ENODEV;
1276 }
1277 } while (pdev);
1278 }
1279 table++;
1280 }
1281
1282 return 0;
1283}
1284
1285static int mci_bind_devs(struct mem_ctl_info *mci,
1286 struct sbridge_dev *sbridge_dev)
1287{
1288 struct sbridge_pvt *pvt = mci->pvt_info;
1289 struct pci_dev *pdev;
1290 int i, func, slot;
1291
1292 for (i = 0; i < sbridge_dev->n_devs; i++) {
1293 pdev = sbridge_dev->pdev[i];
1294 if (!pdev)
1295 continue;
1296 slot = PCI_SLOT(pdev->devfn);
1297 func = PCI_FUNC(pdev->devfn);
1298 switch (slot) {
1299 case 12:
1300 switch (func) {
1301 case 6:
1302 pvt->pci_sad0 = pdev;
1303 break;
1304 case 7:
1305 pvt->pci_sad1 = pdev;
1306 break;
1307 default:
1308 goto error;
1309 }
1310 break;
1311 case 13:
1312 switch (func) {
1313 case 6:
1314 pvt->pci_br = pdev;
1315 break;
1316 default:
1317 goto error;
1318 }
1319 break;
1320 case 14:
1321 switch (func) {
1322 case 0:
1323 pvt->pci_ha0 = pdev;
1324 break;
1325 default:
1326 goto error;
1327 }
1328 break;
1329 case 15:
1330 switch (func) {
1331 case 0:
1332 pvt->pci_ta = pdev;
1333 break;
1334 case 1:
1335 pvt->pci_ras = pdev;
1336 break;
1337 case 2:
1338 case 3:
1339 case 4:
1340 case 5:
1341 pvt->pci_tad[func - 2] = pdev;
1342 break;
1343 default:
1344 goto error;
1345 }
1346 break;
1347 case 17:
1348 switch (func) {
1349 case 0:
1350 pvt->pci_ddrio = pdev;
1351 break;
1352 default:
1353 goto error;
1354 }
1355 break;
1356 default:
1357 goto error;
1358 }
1359
1360 debugf0("Associated PCI %02x.%02d.%d with dev = %p\n",
1361 sbridge_dev->bus,
1362 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1363 pdev);
1364 }
1365
1366 /* Check if everything were registered */
1367 if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1368 !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta ||
1369 !pvt->pci_ddrio)
1370 goto enodev;
1371
1372 for (i = 0; i < NUM_CHANNELS; i++) {
1373 if (!pvt->pci_tad[i])
1374 goto enodev;
1375 }
1376 return 0;
1377
1378enodev:
1379 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1380 return -ENODEV;
1381
1382error:
1383 sbridge_printk(KERN_ERR, "Device %d, function %d "
1384 "is out of the expected range\n",
1385 slot, func);
1386 return -EINVAL;
1387}
1388
1389/****************************************************************************
1390 Error check routines
1391 ****************************************************************************/
1392
1393/*
1394 * While Sandy Bridge has error count registers, SMI BIOS read values from
1395 * and resets the counters. So, they are not reliable for the OS to read
1396 * from them. So, we have no option but to just trust on whatever MCE is
1397 * telling us about the errors.
1398 */
1399static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1400 const struct mce *m)
1401{
1402 struct mem_ctl_info *new_mci;
1403 struct sbridge_pvt *pvt = mci->pvt_info;
1404 char *type, *optype, *msg, *recoverable_msg;
1405 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1406 bool overflow = GET_BITFIELD(m->status, 62, 62);
1407 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1408 bool recoverable = GET_BITFIELD(m->status, 56, 56);
1409 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1410 u32 mscod = GET_BITFIELD(m->status, 16, 31);
1411 u32 errcode = GET_BITFIELD(m->status, 0, 15);
1412 u32 channel = GET_BITFIELD(m->status, 0, 3);
1413 u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1414 long channel_mask, first_channel;
1415 u8 rank, socket;
1416 int csrow, rc, dimm;
1417 char *area_type = "Unknown";
1418
1419 if (ripv)
1420 type = "NON_FATAL";
1421 else
1422 type = "FATAL";
1423
1424 /*
1425 * According with Table 15-9 of the Intel Archictecture spec vol 3A,
1426 * memory errors should fit in this mask:
1427 * 000f 0000 1mmm cccc (binary)
1428 * where:
1429 * f = Correction Report Filtering Bit. If 1, subsequent errors
1430 * won't be shown
1431 * mmm = error type
1432 * cccc = channel
1433 * If the mask doesn't match, report an error to the parsing logic
1434 */
1435 if (! ((errcode & 0xef80) == 0x80)) {
1436 optype = "Can't parse: it is not a mem";
1437 } else {
1438 switch (optypenum) {
1439 case 0:
1440 optype = "generic undef request";
1441 break;
1442 case 1:
1443 optype = "memory read";
1444 break;
1445 case 2:
1446 optype = "memory write";
1447 break;
1448 case 3:
1449 optype = "addr/cmd";
1450 break;
1451 case 4:
1452 optype = "memory scrubbing";
1453 break;
1454 default:
1455 optype = "reserved";
1456 break;
1457 }
1458 }
1459
1460 rc = get_memory_error_data(mci, m->addr, &socket,
1461 &channel_mask, &rank, area_type);
1462 if (rc < 0)
1463 return;
1464 new_mci = get_mci_for_node_id(socket);
1465 if (!new_mci) {
1466 edac_mc_handle_ce_no_info(mci, "Error: socket got corrupted!");
1467 return;
1468 }
1469 mci = new_mci;
1470 pvt = mci->pvt_info;
1471
1472 first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
1473
1474 if (rank < 4)
1475 dimm = 0;
1476 else if (rank < 8)
1477 dimm = 1;
1478 else
1479 dimm = 2;
1480
1481 csrow = pvt->csrow_map[first_channel][dimm];
1482
1483 if (uncorrected_error && recoverable)
1484 recoverable_msg = " recoverable";
1485 else
1486 recoverable_msg = "";
1487
1488 /*
1489 * FIXME: What should we do with "channel" information on mcelog?
1490 * Probably, we can just discard it, as the channel information
1491 * comes from the get_memory_error_data() address decoding
1492 */
1493 msg = kasprintf(GFP_ATOMIC,
1494 "%d %s error(s): %s on %s area %s%s: cpu=%d Err=%04x:%04x (ch=%d), "
1495 "addr = 0x%08llx => socket=%d, Channel=%ld(mask=%ld), rank=%d\n",
1496 core_err_cnt,
1497 area_type,
1498 optype,
1499 type,
1500 recoverable_msg,
1501 overflow ? "OVERFLOW" : "",
1502 m->cpu,
1503 mscod, errcode,
1504 channel, /* 1111b means not specified */
1505 (long long) m->addr,
1506 socket,
1507 first_channel, /* This is the real channel on SB */
1508 channel_mask,
1509 rank);
1510
1511 debugf0("%s", msg);
1512
1513 /* Call the helper to output message */
1514 if (uncorrected_error)
1515 edac_mc_handle_fbd_ue(mci, csrow, 0, 0, msg);
1516 else
1517 edac_mc_handle_fbd_ce(mci, csrow, 0, msg);
1518
1519 kfree(msg);
1520}
1521
1522/*
1523 * sbridge_check_error Retrieve and process errors reported by the
1524 * hardware. Called by the Core module.
1525 */
1526static void sbridge_check_error(struct mem_ctl_info *mci)
1527{
1528 struct sbridge_pvt *pvt = mci->pvt_info;
1529 int i;
1530 unsigned count = 0;
1531 struct mce *m;
1532
1533 /*
1534 * MCE first step: Copy all mce errors into a temporary buffer
1535 * We use a double buffering here, to reduce the risk of
1536 * loosing an error.
1537 */
1538 smp_rmb();
1539 count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1540 % MCE_LOG_LEN;
1541 if (!count)
1542 return;
1543
1544 m = pvt->mce_outentry;
1545 if (pvt->mce_in + count > MCE_LOG_LEN) {
1546 unsigned l = MCE_LOG_LEN - pvt->mce_in;
1547
1548 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1549 smp_wmb();
1550 pvt->mce_in = 0;
1551 count -= l;
1552 m += l;
1553 }
1554 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1555 smp_wmb();
1556 pvt->mce_in += count;
1557
1558 smp_rmb();
1559 if (pvt->mce_overrun) {
1560 sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
1561 pvt->mce_overrun);
1562 smp_wmb();
1563 pvt->mce_overrun = 0;
1564 }
1565
1566 /*
1567 * MCE second step: parse errors and display
1568 */
1569 for (i = 0; i < count; i++)
1570 sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
1571}
1572
1573/*
1574 * sbridge_mce_check_error Replicates mcelog routine to get errors
1575 * This routine simply queues mcelog errors, and
1576 * return. The error itself should be handled later
1577 * by sbridge_check_error.
1578 * WARNING: As this routine should be called at NMI time, extra care should
1579 * be taken to avoid deadlocks, and to be as fast as possible.
1580 */
1581static int sbridge_mce_check_error(void *priv, struct mce *mce)
1582{
1583 struct mem_ctl_info *mci = priv;
1584 struct sbridge_pvt *pvt = mci->pvt_info;
1585
1586 /*
1587 * Just let mcelog handle it if the error is
1588 * outside the memory controller. A memory error
1589 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1590 * bit 12 has an special meaning.
1591 */
1592 if ((mce->status & 0xefff) >> 7 != 1)
1593 return 0;
1594
1595 printk("sbridge: HANDLING MCE MEMORY ERROR\n");
1596
1597 printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
1598 mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
1599 printk("TSC %llx ", mce->tsc);
1600 printk("ADDR %llx ", mce->addr);
1601 printk("MISC %llx ", mce->misc);
1602
1603 printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1604 mce->cpuvendor, mce->cpuid, mce->time,
1605 mce->socketid, mce->apicid);
1606
1607#ifdef CONFIG_SMP
1608 /* Only handle if it is the right mc controller */
1609 if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
1610 return 0;
1611#endif
1612
1613 smp_rmb();
1614 if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1615 smp_wmb();
1616 pvt->mce_overrun++;
1617 return 0;
1618 }
1619
1620 /* Copy memory error at the ringbuffer */
1621 memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1622 smp_wmb();
1623 pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1624
1625 /* Handle fatal errors immediately */
1626 if (mce->mcgstatus & 1)
1627 sbridge_check_error(mci);
1628
1629 /* Advice mcelog that the error were handled */
1630 return 1;
1631}
1632
1633/****************************************************************************
1634 EDAC register/unregister logic
1635 ****************************************************************************/
1636
1637static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
1638{
1639 struct mem_ctl_info *mci = sbridge_dev->mci;
1640 struct sbridge_pvt *pvt;
1641
1642 if (unlikely(!mci || !mci->pvt_info)) {
1643 debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
1644 __func__, &sbridge_dev->pdev[0]->dev);
1645
1646 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
1647 return;
1648 }
1649
1650 pvt = mci->pvt_info;
1651
1652 debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
1653 __func__, mci, &sbridge_dev->pdev[0]->dev);
1654
1655 /* Disable MCE NMI handler */
1656 edac_mce_unregister(&pvt->edac_mce);
1657
1658 /* Remove MC sysfs nodes */
1659 edac_mc_del_mc(mci->dev);
1660
1661 debugf1("%s: free mci struct\n", mci->ctl_name);
1662 kfree(mci->ctl_name);
1663 edac_mc_free(mci);
1664 sbridge_dev->mci = NULL;
1665}
1666
1667static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
1668{
1669 struct mem_ctl_info *mci;
1670 struct sbridge_pvt *pvt;
1671 int rc, channels, csrows;
1672
1673 /* Check the number of active and not disabled channels */
1674 rc = sbridge_get_active_channels(sbridge_dev->bus, &channels, &csrows);
1675 if (unlikely(rc < 0))
1676 return rc;
1677
1678 /* allocate a new MC control structure */
1679 mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, sbridge_dev->mc);
1680 if (unlikely(!mci))
1681 return -ENOMEM;
1682
1683 debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
1684 __func__, mci, &sbridge_dev->pdev[0]->dev);
1685
1686 pvt = mci->pvt_info;
1687 memset(pvt, 0, sizeof(*pvt));
1688
1689 /* Associate sbridge_dev and mci for future usage */
1690 pvt->sbridge_dev = sbridge_dev;
1691 sbridge_dev->mci = mci;
1692
1693 mci->mtype_cap = MEM_FLAG_DDR3;
1694 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1695 mci->edac_cap = EDAC_FLAG_NONE;
1696 mci->mod_name = "sbridge_edac.c";
1697 mci->mod_ver = SBRIDGE_REVISION;
1698 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
1699 mci->dev_name = pci_name(sbridge_dev->pdev[0]);
1700 mci->ctl_page_to_phys = NULL;
1701
1702 /* Set the function pointer to an actual operation function */
1703 mci->edac_check = sbridge_check_error;
1704
1705 /* Store pci devices at mci for faster access */
1706 rc = mci_bind_devs(mci, sbridge_dev);
1707 if (unlikely(rc < 0))
1708 goto fail0;
1709
1710 /* Get dimm basic config and the memory layout */
1711 get_dimm_config(mci);
1712 get_memory_layout(mci);
1713
1714 /* record ptr to the generic device */
1715 mci->dev = &sbridge_dev->pdev[0]->dev;
1716
1717 /* add this new MC control structure to EDAC's list of MCs */
1718 if (unlikely(edac_mc_add_mc(mci))) {
1719 debugf0("MC: " __FILE__
1720 ": %s(): failed edac_mc_add_mc()\n", __func__);
1721 rc = -EINVAL;
1722 goto fail0;
1723 }
1724
1725 /* Registers on edac_mce in order to receive memory errors */
1726 pvt->edac_mce.priv = mci;
1727 pvt->edac_mce.check_error = sbridge_mce_check_error;
1728 rc = edac_mce_register(&pvt->edac_mce);
1729 if (unlikely(rc < 0)) {
1730 debugf0("MC: " __FILE__
1731 ": %s(): failed edac_mce_register()\n", __func__);
1732 goto fail1;
1733 }
1734
1735 return 0;
1736fail1:
1737 edac_mc_del_mc(mci->dev);
1738
1739fail0:
1740 kfree(mci->ctl_name);
1741 edac_mc_free(mci);
1742 sbridge_dev->mci = NULL;
1743 return rc;
1744}
1745
1746/*
1747 * sbridge_probe Probe for ONE instance of device to see if it is
1748 * present.
1749 * return:
1750 * 0 for FOUND a device
1751 * < 0 for error code
1752 */
1753
1754static int __devinit sbridge_probe(struct pci_dev *pdev,
1755 const struct pci_device_id *id)
1756{
1757 int rc;
1758 u8 mc, num_mc = 0;
1759 struct sbridge_dev *sbridge_dev;
1760
1761 /* get the pci devices we want to reserve for our use */
1762 mutex_lock(&sbridge_edac_lock);
1763
1764 /*
1765 * All memory controllers are allocated at the first pass.
1766 */
1767 if (unlikely(probed >= 1)) {
1768 mutex_unlock(&sbridge_edac_lock);
1769 return -ENODEV;
1770 }
1771 probed++;
1772
1773 rc = sbridge_get_all_devices(&num_mc);
1774 if (unlikely(rc < 0))
1775 goto fail0;
1776 mc = 0;
1777
1778 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1779 debugf0("Registering MC#%d (%d of %d)\n", mc, mc + 1, num_mc);
1780 sbridge_dev->mc = mc++;
1781 rc = sbridge_register_mci(sbridge_dev);
1782 if (unlikely(rc < 0))
1783 goto fail1;
1784 }
1785
1786 sbridge_printk(KERN_INFO, "Driver loaded.\n");
1787
1788 mutex_unlock(&sbridge_edac_lock);
1789 return 0;
1790
1791fail1:
1792 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1793 sbridge_unregister_mci(sbridge_dev);
1794
1795 sbridge_put_all_devices();
1796fail0:
1797 mutex_unlock(&sbridge_edac_lock);
1798 return rc;
1799}
1800
1801/*
1802 * sbridge_remove destructor for one instance of device
1803 *
1804 */
1805static void __devexit sbridge_remove(struct pci_dev *pdev)
1806{
1807 struct sbridge_dev *sbridge_dev;
1808
1809 debugf0(__FILE__ ": %s()\n", __func__);
1810
1811 /*
1812 * we have a trouble here: pdev value for removal will be wrong, since
1813 * it will point to the X58 register used to detect that the machine
1814 * is a Nehalem or upper design. However, due to the way several PCI
1815 * devices are grouped together to provide MC functionality, we need
1816 * to use a different method for releasing the devices
1817 */
1818
1819 mutex_lock(&sbridge_edac_lock);
1820
1821 if (unlikely(!probed)) {
1822 mutex_unlock(&sbridge_edac_lock);
1823 return;
1824 }
1825
1826 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1827 sbridge_unregister_mci(sbridge_dev);
1828
1829 /* Release PCI resources */
1830 sbridge_put_all_devices();
1831
1832 probed--;
1833
1834 mutex_unlock(&sbridge_edac_lock);
1835}
1836
1837MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
1838
1839/*
1840 * sbridge_driver pci_driver structure for this module
1841 *
1842 */
1843static struct pci_driver sbridge_driver = {
1844 .name = "sbridge_edac",
1845 .probe = sbridge_probe,
1846 .remove = __devexit_p(sbridge_remove),
1847 .id_table = sbridge_pci_tbl,
1848};
1849
1850/*
1851 * sbridge_init Module entry function
1852 * Try to initialize this module for its devices
1853 */
1854static int __init sbridge_init(void)
1855{
1856 int pci_rc;
1857
1858 debugf2("MC: " __FILE__ ": %s()\n", __func__);
1859
1860 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1861 opstate_init();
1862
1863 pci_rc = pci_register_driver(&sbridge_driver);
1864
1865 if (pci_rc >= 0)
1866 return 0;
1867
1868 sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
1869 pci_rc);
1870
1871 return pci_rc;
1872}
1873
1874/*
1875 * sbridge_exit() Module exit function
1876 * Unregister the driver
1877 */
1878static void __exit sbridge_exit(void)
1879{
1880 debugf2("MC: " __FILE__ ": %s()\n", __func__);
1881 pci_unregister_driver(&sbridge_driver);
1882}
1883
1884module_init(sbridge_init);
1885module_exit(sbridge_exit);
1886
1887module_param(edac_op_state, int, 0444);
1888MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1889
1890MODULE_LICENSE("GPL");
1891MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1892MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1893MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
1894 SBRIDGE_REVISION);