blob: 497fd908a4c40c4d9b7119fad7a1f9d044e8c739 [file] [log] [blame]
Thomas Gleixner2874c5f2019-05-27 08:55:01 +02001/* SPDX-License-Identifier: GPL-2.0-or-later */
Jonas Bonn61e85e32011-06-04 11:06:11 +03002/*
3 * OpenRISC Linux
4 *
5 * Linux architectural port borrowing liberally from similar works of
6 * others. All original copyrights apply as per the original source
7 * declaration.
8 *
9 * OpenRISC implementation:
10 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
11 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
12 * et al.
Jonas Bonn61e85e32011-06-04 11:06:11 +030013 */
14
15/* or32 pgtable.h - macros and functions to manipulate page tables
16 *
17 * Based on:
18 * include/asm-cris/pgtable.h
19 */
20
21#ifndef __ASM_OPENRISC_PGTABLE_H
22#define __ASM_OPENRISC_PGTABLE_H
23
Kirill A. Shutemov9849a562017-03-09 17:24:05 +030024#define __ARCH_USE_5LEVEL_HACK
Jonas Bonn61e85e32011-06-04 11:06:11 +030025#include <asm-generic/pgtable-nopmd.h>
26
27#ifndef __ASSEMBLY__
28#include <asm/mmu.h>
29#include <asm/fixmap.h>
30
31/*
32 * The Linux memory management assumes a three-level page table setup. On
33 * or32, we use that, but "fold" the mid level into the top-level page
34 * table. Since the MMU TLB is software loaded through an interrupt, it
35 * supports any page table structure, so we could have used a three-level
36 * setup, but for the amounts of memory we normally use, a two-level is
37 * probably more efficient.
38 *
39 * This file contains the functions and defines necessary to modify and use
40 * the or32 page table tree.
41 */
42
43extern void paging_init(void);
44
45/* Certain architectures need to do special things when pte's
46 * within a page table are directly modified. Thus, the following
47 * hook is made available.
48 */
49#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
50#define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
51/*
52 * (pmds are folded into pgds so this doesn't get actually called,
53 * but the define is needed for a generic inline function.)
54 */
55#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
56
57#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2))
58#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
59#define PGDIR_MASK (~(PGDIR_SIZE-1))
60
61/*
62 * entries per page directory level: we use a two-level, so
63 * we don't really have any PMD directory physically.
64 * pointers are 4 bytes so we can use the page size and
65 * divide it by 4 (shift by 2).
66 */
67#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2))
68
Stefan Kristianssonf4770602014-01-11 00:17:38 +020069#define PTRS_PER_PGD (1UL << (32-PGDIR_SHIFT))
Jonas Bonn61e85e32011-06-04 11:06:11 +030070
71/* calculate how many PGD entries a user-level program can use
72 * the first mappable virtual address is 0
73 * (TASK_SIZE is the maximum virtual address space)
74 */
75
76#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
Kirill A. Shutemovd016bf72015-02-11 15:26:41 -080077#define FIRST_USER_ADDRESS 0UL
Jonas Bonn61e85e32011-06-04 11:06:11 +030078
79/*
80 * Kernels own virtual memory area.
81 */
82
83/*
84 * The size and location of the vmalloc area are chosen so that modules
85 * placed in this area aren't more than a 28-bit signed offset from any
86 * kernel functions that they may need. This greatly simplifies handling
87 * of the relocations for l.j and l.jal instructions as we don't need to
88 * introduce any trampolines for reaching "distant" code.
89 *
90 * 64 MB of vmalloc area is comparable to what's available on other arches.
91 */
92
Stefan Kristiansson8e6d08e2014-05-11 21:49:34 +030093#define VMALLOC_START (PAGE_OFFSET-0x04000000UL)
Jonas Bonn61e85e32011-06-04 11:06:11 +030094#define VMALLOC_END (PAGE_OFFSET)
95#define VMALLOC_VMADDR(x) ((unsigned long)(x))
96
97/* Define some higher level generic page attributes.
98 *
99 * If you change _PAGE_CI definition be sure to change it in
100 * io.h for ioremap_nocache() too.
101 */
102
103/*
104 * An OR32 PTE looks like this:
105 *
106 * | 31 ... 10 | 9 | 8 ... 6 | 5 | 4 | 3 | 2 | 1 | 0 |
107 * Phys pg.num L PP Index D A WOM WBC CI CC
108 *
109 * L : link
110 * PPI: Page protection index
111 * D : Dirty
112 * A : Accessed
113 * WOM: Weakly ordered memory
114 * WBC: Write-back cache
115 * CI : Cache inhibit
116 * CC : Cache coherent
117 *
118 * The protection bits below should correspond to the layout of the actual
119 * PTE as per above
120 */
121
122#define _PAGE_CC 0x001 /* software: pte contains a translation */
123#define _PAGE_CI 0x002 /* cache inhibit */
124#define _PAGE_WBC 0x004 /* write back cache */
Jonas Bonn61e85e32011-06-04 11:06:11 +0300125#define _PAGE_WOM 0x008 /* weakly ordered memory */
126
127#define _PAGE_A 0x010 /* accessed */
128#define _PAGE_D 0x020 /* dirty */
129#define _PAGE_URE 0x040 /* user read enable */
130#define _PAGE_UWE 0x080 /* user write enable */
131
132#define _PAGE_SRE 0x100 /* superuser read enable */
133#define _PAGE_SWE 0x200 /* superuser write enable */
134#define _PAGE_EXEC 0x400 /* software: page is executable */
135#define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */
136
137/* 0x001 is cache coherency bit, which should always be set to
138 * 1 - for SMP (when we support it)
139 * 0 - otherwise
140 *
141 * we just reuse this bit in software for _PAGE_PRESENT and
142 * force it to 0 when loading it into TLB.
143 */
144#define _PAGE_PRESENT _PAGE_CC
145#define _PAGE_USER _PAGE_URE
146#define _PAGE_WRITE (_PAGE_UWE | _PAGE_SWE)
147#define _PAGE_DIRTY _PAGE_D
148#define _PAGE_ACCESSED _PAGE_A
149#define _PAGE_NO_CACHE _PAGE_CI
150#define _PAGE_SHARED _PAGE_U_SHARED
151#define _PAGE_READ (_PAGE_URE | _PAGE_SRE)
152
153#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
154#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
155#define _PAGE_ALL (_PAGE_PRESENT | _PAGE_ACCESSED)
156#define _KERNPG_TABLE \
157 (_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY)
158
159#define PAGE_NONE __pgprot(_PAGE_ALL)
160#define PAGE_READONLY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
161#define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
162#define PAGE_SHARED \
163 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
164 | _PAGE_SHARED)
165#define PAGE_SHARED_X \
166 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
167 | _PAGE_SHARED | _PAGE_EXEC)
168#define PAGE_COPY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
169#define PAGE_COPY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
170
171#define PAGE_KERNEL \
172 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
173 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
174#define PAGE_KERNEL_RO \
175 __pgprot(_PAGE_ALL | _PAGE_SRE \
176 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
177#define PAGE_KERNEL_NOCACHE \
178 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
179 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI)
180
181#define __P000 PAGE_NONE
182#define __P001 PAGE_READONLY_X
183#define __P010 PAGE_COPY
184#define __P011 PAGE_COPY_X
185#define __P100 PAGE_READONLY
186#define __P101 PAGE_READONLY_X
187#define __P110 PAGE_COPY
188#define __P111 PAGE_COPY_X
189
190#define __S000 PAGE_NONE
191#define __S001 PAGE_READONLY_X
192#define __S010 PAGE_SHARED
193#define __S011 PAGE_SHARED_X
194#define __S100 PAGE_READONLY
195#define __S101 PAGE_READONLY_X
196#define __S110 PAGE_SHARED
197#define __S111 PAGE_SHARED_X
198
199/* zero page used for uninitialized stuff */
200extern unsigned long empty_zero_page[2048];
201#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
202
203/* number of bits that fit into a memory pointer */
204#define BITS_PER_PTR (8*sizeof(unsigned long))
205
206/* to align the pointer to a pointer address */
207#define PTR_MASK (~(sizeof(void *)-1))
208
209/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
210/* 64-bit machines, beware! SRB. */
211#define SIZEOF_PTR_LOG2 2
212
213/* to find an entry in a page-table */
214#define PAGE_PTR(address) \
215((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
216
217/* to set the page-dir */
218#define SET_PAGE_DIR(tsk, pgdir)
219
220#define pte_none(x) (!pte_val(x))
221#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
222#define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0)
223
224#define pmd_none(x) (!pmd_val(x))
225#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE)
226#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
227#define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
228
229/*
230 * The following only work if pte_present() is true.
231 * Undefined behaviour if not..
232 */
233
234static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
235static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
236static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
237static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
238static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
Jonas Bonn61e85e32011-06-04 11:06:11 +0300239static inline int pte_special(pte_t pte) { return 0; }
240static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
241
242static inline pte_t pte_wrprotect(pte_t pte)
243{
244 pte_val(pte) &= ~(_PAGE_WRITE);
245 return pte;
246}
247
248static inline pte_t pte_rdprotect(pte_t pte)
249{
250 pte_val(pte) &= ~(_PAGE_READ);
251 return pte;
252}
253
254static inline pte_t pte_exprotect(pte_t pte)
255{
256 pte_val(pte) &= ~(_PAGE_EXEC);
257 return pte;
258}
259
260static inline pte_t pte_mkclean(pte_t pte)
261{
262 pte_val(pte) &= ~(_PAGE_DIRTY);
263 return pte;
264}
265
266static inline pte_t pte_mkold(pte_t pte)
267{
268 pte_val(pte) &= ~(_PAGE_ACCESSED);
269 return pte;
270}
271
272static inline pte_t pte_mkwrite(pte_t pte)
273{
274 pte_val(pte) |= _PAGE_WRITE;
275 return pte;
276}
277
278static inline pte_t pte_mkread(pte_t pte)
279{
280 pte_val(pte) |= _PAGE_READ;
281 return pte;
282}
283
284static inline pte_t pte_mkexec(pte_t pte)
285{
286 pte_val(pte) |= _PAGE_EXEC;
287 return pte;
288}
289
290static inline pte_t pte_mkdirty(pte_t pte)
291{
292 pte_val(pte) |= _PAGE_DIRTY;
293 return pte;
294}
295
296static inline pte_t pte_mkyoung(pte_t pte)
297{
298 pte_val(pte) |= _PAGE_ACCESSED;
299 return pte;
300}
301
302/*
303 * Conversion functions: convert a page and protection to a page entry,
304 * and a page entry and page directory to the page they refer to.
305 */
306
307/* What actually goes as arguments to the various functions is less than
308 * obvious, but a rule of thumb is that struct page's goes as struct page *,
309 * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
310 * addresses (the 0xc0xxxxxx's) goes as void *'s.
311 */
312
313static inline pte_t __mk_pte(void *page, pgprot_t pgprot)
314{
315 pte_t pte;
316 /* the PTE needs a physical address */
317 pte_val(pte) = __pa(page) | pgprot_val(pgprot);
318 return pte;
319}
320
321#define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
322
323#define mk_pte_phys(physpage, pgprot) \
324({ \
325 pte_t __pte; \
326 \
327 pte_val(__pte) = (physpage) + pgprot_val(pgprot); \
328 __pte; \
329})
330
331static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
332{
333 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
334 return pte;
335}
336
337
338/*
339 * pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval
340 * __pte_page(pte_val) refers to the "virtual" DRAM interval
341 * pte_pagenr refers to the page-number counted starting from the virtual
342 * DRAM start
343 */
344
345static inline unsigned long __pte_page(pte_t pte)
346{
347 /* the PTE contains a physical address */
348 return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
349}
350
351#define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
352
353/* permanent address of a page */
354
355#define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
356#define pte_page(pte) (mem_map+pte_pagenr(pte))
357
358/*
359 * only the pte's themselves need to point to physical DRAM (see above)
360 * the pagetable links are purely handled within the kernel SW and thus
361 * don't need the __pa and __va transformations.
362 */
363static inline void pmd_set(pmd_t *pmdp, pte_t *ptep)
364{
365 pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep;
366}
367
368#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
369#define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
370
371/* to find an entry in a page-table-directory. */
372#define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
373
374#define __pgd_offset(address) pgd_index(address)
375
376#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
377
378/* to find an entry in a kernel page-table-directory */
379#define pgd_offset_k(address) pgd_offset(&init_mm, address)
380
381#define __pmd_offset(address) \
382 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
383
384/*
385 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
386 *
387 * this macro returns the index of the entry in the pte page which would
388 * control the given virtual address
389 */
390#define __pte_offset(address) \
391 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
392#define pte_offset_kernel(dir, address) \
393 ((pte_t *) pmd_page_kernel(*(dir)) + __pte_offset(address))
394#define pte_offset_map(dir, address) \
395 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
396#define pte_offset_map_nested(dir, address) \
397 pte_offset_map(dir, address)
398
399#define pte_unmap(pte) do { } while (0)
400#define pte_unmap_nested(pte) do { } while (0)
401#define pte_pfn(x) ((unsigned long)(((x).pte)) >> PAGE_SHIFT)
402#define pfn_pte(pfn, prot) __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot))
403
404#define pte_ERROR(e) \
405 printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \
406 __FILE__, __LINE__, &(e), pte_val(e))
407#define pgd_ERROR(e) \
408 printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \
409 __FILE__, __LINE__, &(e), pgd_val(e))
410
411extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
412
Tobias Klauser56ce2f22017-09-08 10:25:08 +0200413struct vm_area_struct;
414
Jan Henrik Weinstock4ee93d82015-11-04 17:26:10 +0100415static inline void update_tlb(struct vm_area_struct *vma,
416 unsigned long address, pte_t *pte)
417{
418}
419
420extern void update_cache(struct vm_area_struct *vma,
421 unsigned long address, pte_t *pte);
422
Jonas Bonn61e85e32011-06-04 11:06:11 +0300423static inline void update_mmu_cache(struct vm_area_struct *vma,
424 unsigned long address, pte_t *pte)
425{
Jan Henrik Weinstock4ee93d82015-11-04 17:26:10 +0100426 update_tlb(vma, address, pte);
427 update_cache(vma, address, pte);
Jonas Bonn61e85e32011-06-04 11:06:11 +0300428}
429
430/* __PHX__ FIXME, SWAP, this probably doesn't work */
431
432/* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
433/* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
434
435#define __swp_type(x) (((x).val >> 5) & 0x7f)
436#define __swp_offset(x) ((x).val >> 12)
437#define __swp_entry(type, offset) \
438 ((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
439#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
440#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
441
Jonas Bonn61e85e32011-06-04 11:06:11 +0300442#define kern_addr_valid(addr) (1)
443
Jonas Bonn61e85e32011-06-04 11:06:11 +0300444#include <asm-generic/pgtable.h>
445
446/*
447 * No page table caches to initialise
448 */
449#define pgtable_cache_init() do { } while (0)
Jonas Bonn61e85e32011-06-04 11:06:11 +0300450
451typedef pte_t *pte_addr_t;
452
453#endif /* __ASSEMBLY__ */
454#endif /* __ASM_OPENRISC_PGTABLE_H */