blob: ac45d6224e416d0018c73de512763e2ec3996af9 [file] [log] [blame]
Ilya Lesokhine8f69792018-04-30 10:16:16 +03001/* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2 *
3 * This software is available to you under a choice of one of two
4 * licenses. You may choose to be licensed under the terms of the GNU
5 * General Public License (GPL) Version 2, available from the file
6 * COPYING in the main directory of this source tree, or the
7 * OpenIB.org BSD license below:
8 *
9 * Redistribution and use in source and binary forms, with or
10 * without modification, are permitted provided that the following
11 * conditions are met:
12 *
13 * - Redistributions of source code must retain the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer.
16 *
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31
32#include <crypto/aead.h>
33#include <linux/highmem.h>
34#include <linux/module.h>
35#include <linux/netdevice.h>
36#include <net/dst.h>
37#include <net/inet_connection_sock.h>
38#include <net/tcp.h>
39#include <net/tls.h>
40
41/* device_offload_lock is used to synchronize tls_dev_add
42 * against NETDEV_DOWN notifications.
43 */
44static DECLARE_RWSEM(device_offload_lock);
45
46static void tls_device_gc_task(struct work_struct *work);
47
48static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
49static LIST_HEAD(tls_device_gc_list);
50static LIST_HEAD(tls_device_list);
51static DEFINE_SPINLOCK(tls_device_lock);
52
53static void tls_device_free_ctx(struct tls_context *ctx)
54{
55 struct tls_offload_context *offload_ctx = tls_offload_ctx(ctx);
56
57 kfree(offload_ctx);
58 kfree(ctx);
59}
60
61static void tls_device_gc_task(struct work_struct *work)
62{
63 struct tls_context *ctx, *tmp;
64 unsigned long flags;
65 LIST_HEAD(gc_list);
66
67 spin_lock_irqsave(&tls_device_lock, flags);
68 list_splice_init(&tls_device_gc_list, &gc_list);
69 spin_unlock_irqrestore(&tls_device_lock, flags);
70
71 list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
72 struct net_device *netdev = ctx->netdev;
73
74 if (netdev) {
75 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
76 TLS_OFFLOAD_CTX_DIR_TX);
77 dev_put(netdev);
78 }
79
80 list_del(&ctx->list);
81 tls_device_free_ctx(ctx);
82 }
83}
84
85static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
86{
87 unsigned long flags;
88
89 spin_lock_irqsave(&tls_device_lock, flags);
90 list_move_tail(&ctx->list, &tls_device_gc_list);
91
92 /* schedule_work inside the spinlock
93 * to make sure tls_device_down waits for that work.
94 */
95 schedule_work(&tls_device_gc_work);
96
97 spin_unlock_irqrestore(&tls_device_lock, flags);
98}
99
100/* We assume that the socket is already connected */
101static struct net_device *get_netdev_for_sock(struct sock *sk)
102{
103 struct dst_entry *dst = sk_dst_get(sk);
104 struct net_device *netdev = NULL;
105
106 if (likely(dst)) {
107 netdev = dst->dev;
108 dev_hold(netdev);
109 }
110
111 dst_release(dst);
112
113 return netdev;
114}
115
116static void destroy_record(struct tls_record_info *record)
117{
118 int nr_frags = record->num_frags;
119 skb_frag_t *frag;
120
121 while (nr_frags-- > 0) {
122 frag = &record->frags[nr_frags];
123 __skb_frag_unref(frag);
124 }
125 kfree(record);
126}
127
128static void delete_all_records(struct tls_offload_context *offload_ctx)
129{
130 struct tls_record_info *info, *temp;
131
132 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
133 list_del(&info->list);
134 destroy_record(info);
135 }
136
137 offload_ctx->retransmit_hint = NULL;
138}
139
140static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
141{
142 struct tls_context *tls_ctx = tls_get_ctx(sk);
143 struct tls_record_info *info, *temp;
144 struct tls_offload_context *ctx;
145 u64 deleted_records = 0;
146 unsigned long flags;
147
148 if (!tls_ctx)
149 return;
150
151 ctx = tls_offload_ctx(tls_ctx);
152
153 spin_lock_irqsave(&ctx->lock, flags);
154 info = ctx->retransmit_hint;
155 if (info && !before(acked_seq, info->end_seq)) {
156 ctx->retransmit_hint = NULL;
157 list_del(&info->list);
158 destroy_record(info);
159 deleted_records++;
160 }
161
162 list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
163 if (before(acked_seq, info->end_seq))
164 break;
165 list_del(&info->list);
166
167 destroy_record(info);
168 deleted_records++;
169 }
170
171 ctx->unacked_record_sn += deleted_records;
172 spin_unlock_irqrestore(&ctx->lock, flags);
173}
174
175/* At this point, there should be no references on this
176 * socket and no in-flight SKBs associated with this
177 * socket, so it is safe to free all the resources.
178 */
179void tls_device_sk_destruct(struct sock *sk)
180{
181 struct tls_context *tls_ctx = tls_get_ctx(sk);
182 struct tls_offload_context *ctx = tls_offload_ctx(tls_ctx);
183
184 if (ctx->open_record)
185 destroy_record(ctx->open_record);
186
187 delete_all_records(ctx);
188 crypto_free_aead(ctx->aead_send);
189 ctx->sk_destruct(sk);
190 clean_acked_data_disable(inet_csk(sk));
191
192 if (refcount_dec_and_test(&tls_ctx->refcount))
193 tls_device_queue_ctx_destruction(tls_ctx);
194}
195EXPORT_SYMBOL(tls_device_sk_destruct);
196
197static void tls_append_frag(struct tls_record_info *record,
198 struct page_frag *pfrag,
199 int size)
200{
201 skb_frag_t *frag;
202
203 frag = &record->frags[record->num_frags - 1];
204 if (frag->page.p == pfrag->page &&
205 frag->page_offset + frag->size == pfrag->offset) {
206 frag->size += size;
207 } else {
208 ++frag;
209 frag->page.p = pfrag->page;
210 frag->page_offset = pfrag->offset;
211 frag->size = size;
212 ++record->num_frags;
213 get_page(pfrag->page);
214 }
215
216 pfrag->offset += size;
217 record->len += size;
218}
219
220static int tls_push_record(struct sock *sk,
221 struct tls_context *ctx,
222 struct tls_offload_context *offload_ctx,
223 struct tls_record_info *record,
224 struct page_frag *pfrag,
225 int flags,
226 unsigned char record_type)
227{
228 struct tcp_sock *tp = tcp_sk(sk);
229 struct page_frag dummy_tag_frag;
230 skb_frag_t *frag;
231 int i;
232
233 /* fill prepend */
234 frag = &record->frags[0];
235 tls_fill_prepend(ctx,
236 skb_frag_address(frag),
237 record->len - ctx->tx.prepend_size,
238 record_type);
239
240 /* HW doesn't care about the data in the tag, because it fills it. */
241 dummy_tag_frag.page = skb_frag_page(frag);
242 dummy_tag_frag.offset = 0;
243
244 tls_append_frag(record, &dummy_tag_frag, ctx->tx.tag_size);
245 record->end_seq = tp->write_seq + record->len;
246 spin_lock_irq(&offload_ctx->lock);
247 list_add_tail(&record->list, &offload_ctx->records_list);
248 spin_unlock_irq(&offload_ctx->lock);
249 offload_ctx->open_record = NULL;
250 set_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
251 tls_advance_record_sn(sk, &ctx->tx);
252
253 for (i = 0; i < record->num_frags; i++) {
254 frag = &record->frags[i];
255 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
256 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
257 frag->size, frag->page_offset);
258 sk_mem_charge(sk, frag->size);
259 get_page(skb_frag_page(frag));
260 }
261 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
262
263 /* all ready, send */
264 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
265}
266
267static int tls_create_new_record(struct tls_offload_context *offload_ctx,
268 struct page_frag *pfrag,
269 size_t prepend_size)
270{
271 struct tls_record_info *record;
272 skb_frag_t *frag;
273
274 record = kmalloc(sizeof(*record), GFP_KERNEL);
275 if (!record)
276 return -ENOMEM;
277
278 frag = &record->frags[0];
279 __skb_frag_set_page(frag, pfrag->page);
280 frag->page_offset = pfrag->offset;
281 skb_frag_size_set(frag, prepend_size);
282
283 get_page(pfrag->page);
284 pfrag->offset += prepend_size;
285
286 record->num_frags = 1;
287 record->len = prepend_size;
288 offload_ctx->open_record = record;
289 return 0;
290}
291
292static int tls_do_allocation(struct sock *sk,
293 struct tls_offload_context *offload_ctx,
294 struct page_frag *pfrag,
295 size_t prepend_size)
296{
297 int ret;
298
299 if (!offload_ctx->open_record) {
300 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
301 sk->sk_allocation))) {
302 sk->sk_prot->enter_memory_pressure(sk);
303 sk_stream_moderate_sndbuf(sk);
304 return -ENOMEM;
305 }
306
307 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
308 if (ret)
309 return ret;
310
311 if (pfrag->size > pfrag->offset)
312 return 0;
313 }
314
315 if (!sk_page_frag_refill(sk, pfrag))
316 return -ENOMEM;
317
318 return 0;
319}
320
321static int tls_push_data(struct sock *sk,
322 struct iov_iter *msg_iter,
323 size_t size, int flags,
324 unsigned char record_type)
325{
326 struct tls_context *tls_ctx = tls_get_ctx(sk);
327 struct tls_offload_context *ctx = tls_offload_ctx(tls_ctx);
328 int tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
329 int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
330 struct tls_record_info *record = ctx->open_record;
331 struct page_frag *pfrag;
332 size_t orig_size = size;
333 u32 max_open_record_len;
334 int copy, rc = 0;
335 bool done = false;
336 long timeo;
337
338 if (flags &
339 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
340 return -ENOTSUPP;
341
342 if (sk->sk_err)
343 return -sk->sk_err;
344
345 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
346 rc = tls_complete_pending_work(sk, tls_ctx, flags, &timeo);
347 if (rc < 0)
348 return rc;
349
350 pfrag = sk_page_frag(sk);
351
352 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
353 * we need to leave room for an authentication tag.
354 */
355 max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
356 tls_ctx->tx.prepend_size;
357 do {
358 rc = tls_do_allocation(sk, ctx, pfrag,
359 tls_ctx->tx.prepend_size);
360 if (rc) {
361 rc = sk_stream_wait_memory(sk, &timeo);
362 if (!rc)
363 continue;
364
365 record = ctx->open_record;
366 if (!record)
367 break;
368handle_error:
369 if (record_type != TLS_RECORD_TYPE_DATA) {
370 /* avoid sending partial
371 * record with type !=
372 * application_data
373 */
374 size = orig_size;
375 destroy_record(record);
376 ctx->open_record = NULL;
377 } else if (record->len > tls_ctx->tx.prepend_size) {
378 goto last_record;
379 }
380
381 break;
382 }
383
384 record = ctx->open_record;
385 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
386 copy = min_t(size_t, copy, (max_open_record_len - record->len));
387
388 if (copy_from_iter_nocache(page_address(pfrag->page) +
389 pfrag->offset,
390 copy, msg_iter) != copy) {
391 rc = -EFAULT;
392 goto handle_error;
393 }
394 tls_append_frag(record, pfrag, copy);
395
396 size -= copy;
397 if (!size) {
398last_record:
399 tls_push_record_flags = flags;
400 if (more) {
401 tls_ctx->pending_open_record_frags =
402 record->num_frags;
403 break;
404 }
405
406 done = true;
407 }
408
409 if (done || record->len >= max_open_record_len ||
410 (record->num_frags >= MAX_SKB_FRAGS - 1)) {
411 rc = tls_push_record(sk,
412 tls_ctx,
413 ctx,
414 record,
415 pfrag,
416 tls_push_record_flags,
417 record_type);
418 if (rc < 0)
419 break;
420 }
421 } while (!done);
422
423 if (orig_size - size > 0)
424 rc = orig_size - size;
425
426 return rc;
427}
428
429int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
430{
431 unsigned char record_type = TLS_RECORD_TYPE_DATA;
432 int rc;
433
434 lock_sock(sk);
435
436 if (unlikely(msg->msg_controllen)) {
437 rc = tls_proccess_cmsg(sk, msg, &record_type);
438 if (rc)
439 goto out;
440 }
441
442 rc = tls_push_data(sk, &msg->msg_iter, size,
443 msg->msg_flags, record_type);
444
445out:
446 release_sock(sk);
447 return rc;
448}
449
450int tls_device_sendpage(struct sock *sk, struct page *page,
451 int offset, size_t size, int flags)
452{
453 struct iov_iter msg_iter;
454 char *kaddr = kmap(page);
455 struct kvec iov;
456 int rc;
457
458 if (flags & MSG_SENDPAGE_NOTLAST)
459 flags |= MSG_MORE;
460
461 lock_sock(sk);
462
463 if (flags & MSG_OOB) {
464 rc = -ENOTSUPP;
465 goto out;
466 }
467
468 iov.iov_base = kaddr + offset;
469 iov.iov_len = size;
470 iov_iter_kvec(&msg_iter, WRITE | ITER_KVEC, &iov, 1, size);
471 rc = tls_push_data(sk, &msg_iter, size,
472 flags, TLS_RECORD_TYPE_DATA);
473 kunmap(page);
474
475out:
476 release_sock(sk);
477 return rc;
478}
479
480struct tls_record_info *tls_get_record(struct tls_offload_context *context,
481 u32 seq, u64 *p_record_sn)
482{
483 u64 record_sn = context->hint_record_sn;
484 struct tls_record_info *info;
485
486 info = context->retransmit_hint;
487 if (!info ||
488 before(seq, info->end_seq - info->len)) {
489 /* if retransmit_hint is irrelevant start
490 * from the beggining of the list
491 */
492 info = list_first_entry(&context->records_list,
493 struct tls_record_info, list);
494 record_sn = context->unacked_record_sn;
495 }
496
497 list_for_each_entry_from(info, &context->records_list, list) {
498 if (before(seq, info->end_seq)) {
499 if (!context->retransmit_hint ||
500 after(info->end_seq,
501 context->retransmit_hint->end_seq)) {
502 context->hint_record_sn = record_sn;
503 context->retransmit_hint = info;
504 }
505 *p_record_sn = record_sn;
506 return info;
507 }
508 record_sn++;
509 }
510
511 return NULL;
512}
513EXPORT_SYMBOL(tls_get_record);
514
515static int tls_device_push_pending_record(struct sock *sk, int flags)
516{
517 struct iov_iter msg_iter;
518
519 iov_iter_kvec(&msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
520 return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
521}
522
523int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
524{
525 u16 nonce_size, tag_size, iv_size, rec_seq_size;
526 struct tls_record_info *start_marker_record;
527 struct tls_offload_context *offload_ctx;
528 struct tls_crypto_info *crypto_info;
529 struct net_device *netdev;
530 char *iv, *rec_seq;
531 struct sk_buff *skb;
532 int rc = -EINVAL;
533 __be64 rcd_sn;
534
535 if (!ctx)
536 goto out;
537
538 if (ctx->priv_ctx_tx) {
539 rc = -EEXIST;
540 goto out;
541 }
542
543 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
544 if (!start_marker_record) {
545 rc = -ENOMEM;
546 goto out;
547 }
548
549 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE, GFP_KERNEL);
550 if (!offload_ctx) {
551 rc = -ENOMEM;
552 goto free_marker_record;
553 }
554
555 crypto_info = &ctx->crypto_send;
556 switch (crypto_info->cipher_type) {
557 case TLS_CIPHER_AES_GCM_128:
558 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
559 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
560 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
561 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
562 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
563 rec_seq =
564 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
565 break;
566 default:
567 rc = -EINVAL;
568 goto free_offload_ctx;
569 }
570
571 ctx->tx.prepend_size = TLS_HEADER_SIZE + nonce_size;
572 ctx->tx.tag_size = tag_size;
573 ctx->tx.overhead_size = ctx->tx.prepend_size + ctx->tx.tag_size;
574 ctx->tx.iv_size = iv_size;
575 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
576 GFP_KERNEL);
577 if (!ctx->tx.iv) {
578 rc = -ENOMEM;
579 goto free_offload_ctx;
580 }
581
582 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
583
584 ctx->tx.rec_seq_size = rec_seq_size;
585 ctx->tx.rec_seq = kmalloc(rec_seq_size, GFP_KERNEL);
586 if (!ctx->tx.rec_seq) {
587 rc = -ENOMEM;
588 goto free_iv;
589 }
590 memcpy(ctx->tx.rec_seq, rec_seq, rec_seq_size);
591
592 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
593 if (rc)
594 goto free_rec_seq;
595
596 /* start at rec_seq - 1 to account for the start marker record */
597 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
598 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
599
600 start_marker_record->end_seq = tcp_sk(sk)->write_seq;
601 start_marker_record->len = 0;
602 start_marker_record->num_frags = 0;
603
604 INIT_LIST_HEAD(&offload_ctx->records_list);
605 list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
606 spin_lock_init(&offload_ctx->lock);
607
608 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
609 ctx->push_pending_record = tls_device_push_pending_record;
610 offload_ctx->sk_destruct = sk->sk_destruct;
611
612 /* TLS offload is greatly simplified if we don't send
613 * SKBs where only part of the payload needs to be encrypted.
614 * So mark the last skb in the write queue as end of record.
615 */
616 skb = tcp_write_queue_tail(sk);
617 if (skb)
618 TCP_SKB_CB(skb)->eor = 1;
619
620 refcount_set(&ctx->refcount, 1);
621
622 /* We support starting offload on multiple sockets
623 * concurrently, so we only need a read lock here.
624 * This lock must precede get_netdev_for_sock to prevent races between
625 * NETDEV_DOWN and setsockopt.
626 */
627 down_read(&device_offload_lock);
628 netdev = get_netdev_for_sock(sk);
629 if (!netdev) {
630 pr_err_ratelimited("%s: netdev not found\n", __func__);
631 rc = -EINVAL;
632 goto release_lock;
633 }
634
635 if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
636 rc = -ENOTSUPP;
637 goto release_netdev;
638 }
639
640 /* Avoid offloading if the device is down
641 * We don't want to offload new flows after
642 * the NETDEV_DOWN event
643 */
644 if (!(netdev->flags & IFF_UP)) {
645 rc = -EINVAL;
646 goto release_netdev;
647 }
648
649 ctx->priv_ctx_tx = offload_ctx;
650 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
651 &ctx->crypto_send,
652 tcp_sk(sk)->write_seq);
653 if (rc)
654 goto release_netdev;
655
656 ctx->netdev = netdev;
657
658 spin_lock_irq(&tls_device_lock);
659 list_add_tail(&ctx->list, &tls_device_list);
660 spin_unlock_irq(&tls_device_lock);
661
662 sk->sk_validate_xmit_skb = tls_validate_xmit_skb;
663 /* following this assignment tls_is_sk_tx_device_offloaded
664 * will return true and the context might be accessed
665 * by the netdev's xmit function.
666 */
667 smp_store_release(&sk->sk_destruct,
668 &tls_device_sk_destruct);
669 up_read(&device_offload_lock);
670 goto out;
671
672release_netdev:
673 dev_put(netdev);
674release_lock:
675 up_read(&device_offload_lock);
676 clean_acked_data_disable(inet_csk(sk));
677 crypto_free_aead(offload_ctx->aead_send);
678free_rec_seq:
679 kfree(ctx->tx.rec_seq);
680free_iv:
681 kfree(ctx->tx.iv);
682free_offload_ctx:
683 kfree(offload_ctx);
684 ctx->priv_ctx_tx = NULL;
685free_marker_record:
686 kfree(start_marker_record);
687out:
688 return rc;
689}
690
691static int tls_device_down(struct net_device *netdev)
692{
693 struct tls_context *ctx, *tmp;
694 unsigned long flags;
695 LIST_HEAD(list);
696
697 /* Request a write lock to block new offload attempts */
698 down_write(&device_offload_lock);
699
700 spin_lock_irqsave(&tls_device_lock, flags);
701 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
702 if (ctx->netdev != netdev ||
703 !refcount_inc_not_zero(&ctx->refcount))
704 continue;
705
706 list_move(&ctx->list, &list);
707 }
708 spin_unlock_irqrestore(&tls_device_lock, flags);
709
710 list_for_each_entry_safe(ctx, tmp, &list, list) {
711 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
712 TLS_OFFLOAD_CTX_DIR_TX);
713 ctx->netdev = NULL;
714 dev_put(netdev);
715 list_del_init(&ctx->list);
716
717 if (refcount_dec_and_test(&ctx->refcount))
718 tls_device_free_ctx(ctx);
719 }
720
721 up_write(&device_offload_lock);
722
723 flush_work(&tls_device_gc_work);
724
725 return NOTIFY_DONE;
726}
727
728static int tls_dev_event(struct notifier_block *this, unsigned long event,
729 void *ptr)
730{
731 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
732
733 if (!(dev->features & NETIF_F_HW_TLS_TX))
734 return NOTIFY_DONE;
735
736 switch (event) {
737 case NETDEV_REGISTER:
738 case NETDEV_FEAT_CHANGE:
739 if (dev->tlsdev_ops &&
740 dev->tlsdev_ops->tls_dev_add &&
741 dev->tlsdev_ops->tls_dev_del)
742 return NOTIFY_DONE;
743 else
744 return NOTIFY_BAD;
745 case NETDEV_DOWN:
746 return tls_device_down(dev);
747 }
748 return NOTIFY_DONE;
749}
750
751static struct notifier_block tls_dev_notifier = {
752 .notifier_call = tls_dev_event,
753};
754
755void __init tls_device_init(void)
756{
757 register_netdevice_notifier(&tls_dev_notifier);
758}
759
760void __exit tls_device_cleanup(void)
761{
762 unregister_netdevice_notifier(&tls_dev_notifier);
763 flush_work(&tls_device_gc_work);
764}