blob: bbe067ec7de1c380429147e836c86be5f1c54f65 [file] [log] [blame]
Daniel Drakee85d0912006-06-02 17:11:32 +01001/* zd_mac.c
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 */
17
18#include <linux/netdevice.h>
19#include <linux/etherdevice.h>
20#include <linux/wireless.h>
21#include <linux/usb.h>
22#include <linux/jiffies.h>
23#include <net/ieee80211_radiotap.h>
24
25#include "zd_def.h"
26#include "zd_chip.h"
27#include "zd_mac.h"
28#include "zd_ieee80211.h"
29#include "zd_netdev.h"
30#include "zd_rf.h"
31#include "zd_util.h"
32
33static void ieee_init(struct ieee80211_device *ieee);
34static void softmac_init(struct ieee80211softmac_device *sm);
35
36int zd_mac_init(struct zd_mac *mac,
37 struct net_device *netdev,
38 struct usb_interface *intf)
39{
40 struct ieee80211_device *ieee = zd_netdev_ieee80211(netdev);
41
42 memset(mac, 0, sizeof(*mac));
43 spin_lock_init(&mac->lock);
44 mac->netdev = netdev;
45
46 ieee_init(ieee);
47 softmac_init(ieee80211_priv(netdev));
48 zd_chip_init(&mac->chip, netdev, intf);
49 return 0;
50}
51
52static int reset_channel(struct zd_mac *mac)
53{
54 int r;
55 unsigned long flags;
56 const struct channel_range *range;
57
58 spin_lock_irqsave(&mac->lock, flags);
59 range = zd_channel_range(mac->regdomain);
60 if (!range->start) {
61 r = -EINVAL;
62 goto out;
63 }
64 mac->requested_channel = range->start;
65 r = 0;
66out:
67 spin_unlock_irqrestore(&mac->lock, flags);
68 return r;
69}
70
71int zd_mac_init_hw(struct zd_mac *mac, u8 device_type)
72{
73 int r;
74 struct zd_chip *chip = &mac->chip;
75 u8 addr[ETH_ALEN];
76 u8 default_regdomain;
77
78 r = zd_chip_enable_int(chip);
79 if (r)
80 goto out;
81 r = zd_chip_init_hw(chip, device_type);
82 if (r)
83 goto disable_int;
84
85 zd_get_e2p_mac_addr(chip, addr);
86 r = zd_write_mac_addr(chip, addr);
87 if (r)
88 goto disable_int;
89 ZD_ASSERT(!irqs_disabled());
90 spin_lock_irq(&mac->lock);
91 memcpy(mac->netdev->dev_addr, addr, ETH_ALEN);
92 spin_unlock_irq(&mac->lock);
93
94 r = zd_read_regdomain(chip, &default_regdomain);
95 if (r)
96 goto disable_int;
97 if (!zd_regdomain_supported(default_regdomain)) {
98 dev_dbg_f(zd_mac_dev(mac),
99 "Regulatory Domain %#04x is not supported.\n",
100 default_regdomain);
101 r = -EINVAL;
102 goto disable_int;
103 }
104 spin_lock_irq(&mac->lock);
105 mac->regdomain = mac->default_regdomain = default_regdomain;
106 spin_unlock_irq(&mac->lock);
107 r = reset_channel(mac);
108 if (r)
109 goto disable_int;
110
111 r = zd_set_encryption_type(chip, NO_WEP);
112 if (r)
113 goto disable_int;
114
115 r = zd_geo_init(zd_mac_to_ieee80211(mac), mac->regdomain);
116 if (r)
117 goto disable_int;
118
119 r = 0;
120disable_int:
121 zd_chip_disable_int(chip);
122out:
123 return r;
124}
125
126void zd_mac_clear(struct zd_mac *mac)
127{
128 /* Aquire the lock. */
129 spin_lock(&mac->lock);
130 spin_unlock(&mac->lock);
131 zd_chip_clear(&mac->chip);
132 memset(mac, 0, sizeof(*mac));
133}
134
135static int reset_mode(struct zd_mac *mac)
136{
137 struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
138 struct zd_ioreq32 ioreqs[3] = {
139 { CR_RX_FILTER, RX_FILTER_BEACON|RX_FILTER_PROBE_RESPONSE|
140 RX_FILTER_AUTH|RX_FILTER_ASSOC_RESPONSE },
141 { CR_SNIFFER_ON, 0U },
142 { CR_ENCRYPTION_TYPE, NO_WEP },
143 };
144
145 if (ieee->iw_mode == IW_MODE_MONITOR) {
146 ioreqs[0].value = 0xffffffff;
147 ioreqs[1].value = 0x1;
148 ioreqs[2].value = ENC_SNIFFER;
149 }
150
151 return zd_iowrite32a(&mac->chip, ioreqs, 3);
152}
153
154int zd_mac_open(struct net_device *netdev)
155{
156 struct zd_mac *mac = zd_netdev_mac(netdev);
157 struct zd_chip *chip = &mac->chip;
158 int r;
159
160 r = zd_chip_enable_int(chip);
161 if (r < 0)
162 goto out;
163
164 r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
165 if (r < 0)
166 goto disable_int;
167 r = reset_mode(mac);
168 if (r)
169 goto disable_int;
170 r = zd_chip_switch_radio_on(chip);
171 if (r < 0)
172 goto disable_int;
173 r = zd_chip_set_channel(chip, mac->requested_channel);
174 if (r < 0)
175 goto disable_radio;
176 r = zd_chip_enable_rx(chip);
177 if (r < 0)
178 goto disable_radio;
179 r = zd_chip_enable_hwint(chip);
180 if (r < 0)
181 goto disable_rx;
182
183 ieee80211softmac_start(netdev);
184 return 0;
185disable_rx:
186 zd_chip_disable_rx(chip);
187disable_radio:
188 zd_chip_switch_radio_off(chip);
189disable_int:
190 zd_chip_disable_int(chip);
191out:
192 return r;
193}
194
195int zd_mac_stop(struct net_device *netdev)
196{
197 struct zd_mac *mac = zd_netdev_mac(netdev);
198 struct zd_chip *chip = &mac->chip;
199
200 /*
201 * The order here deliberately is a little different from the open()
202 * method, since we need to make sure there is no opportunity for RX
203 * frames to be processed by softmac after we have stopped it.
204 */
205
206 zd_chip_disable_rx(chip);
207 ieee80211softmac_stop(netdev);
208
209 zd_chip_disable_hwint(chip);
210 zd_chip_switch_radio_off(chip);
211 zd_chip_disable_int(chip);
212
213 return 0;
214}
215
216int zd_mac_set_mac_address(struct net_device *netdev, void *p)
217{
218 int r;
219 unsigned long flags;
220 struct sockaddr *addr = p;
221 struct zd_mac *mac = zd_netdev_mac(netdev);
222 struct zd_chip *chip = &mac->chip;
223
224 if (!is_valid_ether_addr(addr->sa_data))
225 return -EADDRNOTAVAIL;
226
227 dev_dbg_f(zd_mac_dev(mac),
228 "Setting MAC to " MAC_FMT "\n", MAC_ARG(addr->sa_data));
229
230 r = zd_write_mac_addr(chip, addr->sa_data);
231 if (r)
232 return r;
233
234 spin_lock_irqsave(&mac->lock, flags);
235 memcpy(netdev->dev_addr, addr->sa_data, ETH_ALEN);
236 spin_unlock_irqrestore(&mac->lock, flags);
237
238 return 0;
239}
240
241int zd_mac_set_regdomain(struct zd_mac *mac, u8 regdomain)
242{
243 int r;
244 u8 channel;
245
246 ZD_ASSERT(!irqs_disabled());
247 spin_lock_irq(&mac->lock);
248 if (regdomain == 0) {
249 regdomain = mac->default_regdomain;
250 }
251 if (!zd_regdomain_supported(regdomain)) {
252 spin_unlock_irq(&mac->lock);
253 return -EINVAL;
254 }
255 mac->regdomain = regdomain;
256 channel = mac->requested_channel;
257 spin_unlock_irq(&mac->lock);
258
259 r = zd_geo_init(zd_mac_to_ieee80211(mac), regdomain);
260 if (r)
261 return r;
262 if (!zd_regdomain_supports_channel(regdomain, channel)) {
263 r = reset_channel(mac);
264 if (r)
265 return r;
266 }
267
268 return 0;
269}
270
271u8 zd_mac_get_regdomain(struct zd_mac *mac)
272{
273 unsigned long flags;
274 u8 regdomain;
275
276 spin_lock_irqsave(&mac->lock, flags);
277 regdomain = mac->regdomain;
278 spin_unlock_irqrestore(&mac->lock, flags);
279 return regdomain;
280}
281
282static void set_channel(struct net_device *netdev, u8 channel)
283{
284 struct zd_mac *mac = zd_netdev_mac(netdev);
285
286 dev_dbg_f(zd_mac_dev(mac), "channel %d\n", channel);
287
288 zd_chip_set_channel(&mac->chip, channel);
289}
290
291/* TODO: Should not work in Managed mode. */
292int zd_mac_request_channel(struct zd_mac *mac, u8 channel)
293{
294 unsigned long lock_flags;
295 struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
296
297 if (ieee->iw_mode == IW_MODE_INFRA)
298 return -EPERM;
299
300 spin_lock_irqsave(&mac->lock, lock_flags);
301 if (!zd_regdomain_supports_channel(mac->regdomain, channel)) {
302 spin_unlock_irqrestore(&mac->lock, lock_flags);
303 return -EINVAL;
304 }
305 mac->requested_channel = channel;
306 spin_unlock_irqrestore(&mac->lock, lock_flags);
307 if (netif_running(mac->netdev))
308 return zd_chip_set_channel(&mac->chip, channel);
309 else
310 return 0;
311}
312
313int zd_mac_get_channel(struct zd_mac *mac, u8 *channel, u8 *flags)
314{
315 struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
316
317 *channel = zd_chip_get_channel(&mac->chip);
318 if (ieee->iw_mode != IW_MODE_INFRA) {
319 spin_lock_irq(&mac->lock);
320 *flags = *channel == mac->requested_channel ?
321 MAC_FIXED_CHANNEL : 0;
322 spin_unlock(&mac->lock);
323 } else {
324 *flags = 0;
325 }
326 dev_dbg_f(zd_mac_dev(mac), "channel %u flags %u\n", *channel, *flags);
327 return 0;
328}
329
330/* If wrong rate is given, we are falling back to the slowest rate: 1MBit/s */
331static u8 cs_typed_rate(u8 cs_rate)
332{
333 static const u8 typed_rates[16] = {
334 [ZD_CS_CCK_RATE_1M] = ZD_CS_CCK|ZD_CS_CCK_RATE_1M,
335 [ZD_CS_CCK_RATE_2M] = ZD_CS_CCK|ZD_CS_CCK_RATE_2M,
336 [ZD_CS_CCK_RATE_5_5M] = ZD_CS_CCK|ZD_CS_CCK_RATE_5_5M,
337 [ZD_CS_CCK_RATE_11M] = ZD_CS_CCK|ZD_CS_CCK_RATE_11M,
338 [ZD_OFDM_RATE_6M] = ZD_CS_OFDM|ZD_OFDM_RATE_6M,
339 [ZD_OFDM_RATE_9M] = ZD_CS_OFDM|ZD_OFDM_RATE_9M,
340 [ZD_OFDM_RATE_12M] = ZD_CS_OFDM|ZD_OFDM_RATE_12M,
341 [ZD_OFDM_RATE_18M] = ZD_CS_OFDM|ZD_OFDM_RATE_18M,
342 [ZD_OFDM_RATE_24M] = ZD_CS_OFDM|ZD_OFDM_RATE_24M,
343 [ZD_OFDM_RATE_36M] = ZD_CS_OFDM|ZD_OFDM_RATE_36M,
344 [ZD_OFDM_RATE_48M] = ZD_CS_OFDM|ZD_OFDM_RATE_48M,
345 [ZD_OFDM_RATE_54M] = ZD_CS_OFDM|ZD_OFDM_RATE_54M,
346 };
347
348 ZD_ASSERT(ZD_CS_RATE_MASK == 0x0f);
349 return typed_rates[cs_rate & ZD_CS_RATE_MASK];
350}
351
352/* Fallback to lowest rate, if rate is unknown. */
353static u8 rate_to_cs_rate(u8 rate)
354{
355 switch (rate) {
356 case IEEE80211_CCK_RATE_2MB:
357 return ZD_CS_CCK_RATE_2M;
358 case IEEE80211_CCK_RATE_5MB:
359 return ZD_CS_CCK_RATE_5_5M;
360 case IEEE80211_CCK_RATE_11MB:
361 return ZD_CS_CCK_RATE_11M;
362 case IEEE80211_OFDM_RATE_6MB:
363 return ZD_OFDM_RATE_6M;
364 case IEEE80211_OFDM_RATE_9MB:
365 return ZD_OFDM_RATE_9M;
366 case IEEE80211_OFDM_RATE_12MB:
367 return ZD_OFDM_RATE_12M;
368 case IEEE80211_OFDM_RATE_18MB:
369 return ZD_OFDM_RATE_18M;
370 case IEEE80211_OFDM_RATE_24MB:
371 return ZD_OFDM_RATE_24M;
372 case IEEE80211_OFDM_RATE_36MB:
373 return ZD_OFDM_RATE_36M;
374 case IEEE80211_OFDM_RATE_48MB:
375 return ZD_OFDM_RATE_48M;
376 case IEEE80211_OFDM_RATE_54MB:
377 return ZD_OFDM_RATE_54M;
378 }
379 return ZD_CS_CCK_RATE_1M;
380}
381
382int zd_mac_set_mode(struct zd_mac *mac, u32 mode)
383{
384 struct ieee80211_device *ieee;
385
386 switch (mode) {
387 case IW_MODE_AUTO:
388 case IW_MODE_ADHOC:
389 case IW_MODE_INFRA:
390 mac->netdev->type = ARPHRD_ETHER;
391 break;
392 case IW_MODE_MONITOR:
393 mac->netdev->type = ARPHRD_IEEE80211_RADIOTAP;
394 break;
395 default:
396 dev_dbg_f(zd_mac_dev(mac), "wrong mode %u\n", mode);
397 return -EINVAL;
398 }
399
400 ieee = zd_mac_to_ieee80211(mac);
401 ZD_ASSERT(!irqs_disabled());
402 spin_lock_irq(&ieee->lock);
403 ieee->iw_mode = mode;
404 spin_unlock_irq(&ieee->lock);
405
406 if (netif_running(mac->netdev))
407 return reset_mode(mac);
408
409 return 0;
410}
411
412int zd_mac_get_mode(struct zd_mac *mac, u32 *mode)
413{
414 unsigned long flags;
415 struct ieee80211_device *ieee;
416
417 ieee = zd_mac_to_ieee80211(mac);
418 spin_lock_irqsave(&ieee->lock, flags);
419 *mode = ieee->iw_mode;
420 spin_unlock_irqrestore(&ieee->lock, flags);
421 return 0;
422}
423
424int zd_mac_get_range(struct zd_mac *mac, struct iw_range *range)
425{
426 int i;
427 const struct channel_range *channel_range;
428 u8 regdomain;
429
430 memset(range, 0, sizeof(*range));
431
432 /* FIXME: Not so important and depends on the mode. For 802.11g
433 * usually this value is used. It seems to be that Bit/s number is
434 * given here.
435 */
436 range->throughput = 27 * 1000 * 1000;
437
438 range->max_qual.qual = 100;
439 range->max_qual.level = 100;
440
441 /* FIXME: Needs still to be tuned. */
442 range->avg_qual.qual = 71;
443 range->avg_qual.level = 80;
444
445 /* FIXME: depends on standard? */
446 range->min_rts = 256;
447 range->max_rts = 2346;
448
449 range->min_frag = MIN_FRAG_THRESHOLD;
450 range->max_frag = MAX_FRAG_THRESHOLD;
451
452 range->max_encoding_tokens = WEP_KEYS;
453 range->num_encoding_sizes = 2;
454 range->encoding_size[0] = 5;
455 range->encoding_size[1] = WEP_KEY_LEN;
456
457 range->we_version_compiled = WIRELESS_EXT;
458 range->we_version_source = 20;
459
460 ZD_ASSERT(!irqs_disabled());
461 spin_lock_irq(&mac->lock);
462 regdomain = mac->regdomain;
463 spin_unlock_irq(&mac->lock);
464 channel_range = zd_channel_range(regdomain);
465
466 range->num_channels = channel_range->end - channel_range->start;
467 range->old_num_channels = range->num_channels;
468 range->num_frequency = range->num_channels;
469 range->old_num_frequency = range->num_frequency;
470
471 for (i = 0; i < range->num_frequency; i++) {
472 struct iw_freq *freq = &range->freq[i];
473 freq->i = channel_range->start + i;
474 zd_channel_to_freq(freq, freq->i);
475 }
476
477 return 0;
478}
479
480static int zd_calc_tx_length_us(u8 *service, u8 cs_rate, u16 tx_length)
481{
482 static const u8 rate_divisor[] = {
483 [ZD_CS_CCK_RATE_1M] = 1,
484 [ZD_CS_CCK_RATE_2M] = 2,
485 [ZD_CS_CCK_RATE_5_5M] = 11, /* bits must be doubled */
486 [ZD_CS_CCK_RATE_11M] = 11,
487 [ZD_OFDM_RATE_6M] = 6,
488 [ZD_OFDM_RATE_9M] = 9,
489 [ZD_OFDM_RATE_12M] = 12,
490 [ZD_OFDM_RATE_18M] = 18,
491 [ZD_OFDM_RATE_24M] = 24,
492 [ZD_OFDM_RATE_36M] = 36,
493 [ZD_OFDM_RATE_48M] = 48,
494 [ZD_OFDM_RATE_54M] = 54,
495 };
496
497 u32 bits = (u32)tx_length * 8;
498 u32 divisor;
499
500 divisor = rate_divisor[cs_rate];
501 if (divisor == 0)
502 return -EINVAL;
503
504 switch (cs_rate) {
505 case ZD_CS_CCK_RATE_5_5M:
506 bits = (2*bits) + 10; /* round up to the next integer */
507 break;
508 case ZD_CS_CCK_RATE_11M:
509 if (service) {
510 u32 t = bits % 11;
511 *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
512 if (0 < t && t <= 3) {
513 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
514 }
515 }
516 bits += 10; /* round up to the next integer */
517 break;
518 }
519
520 return bits/divisor;
521}
522
523enum {
524 R2M_SHORT_PREAMBLE = 0x01,
525 R2M_11A = 0x02,
526};
527
528static u8 cs_rate_to_modulation(u8 cs_rate, int flags)
529{
530 u8 modulation;
531
532 modulation = cs_typed_rate(cs_rate);
533 if (flags & R2M_SHORT_PREAMBLE) {
534 switch (ZD_CS_RATE(modulation)) {
535 case ZD_CS_CCK_RATE_2M:
536 case ZD_CS_CCK_RATE_5_5M:
537 case ZD_CS_CCK_RATE_11M:
538 modulation |= ZD_CS_CCK_PREA_SHORT;
539 return modulation;
540 }
541 }
542 if (flags & R2M_11A) {
543 if (ZD_CS_TYPE(modulation) == ZD_CS_OFDM)
544 modulation |= ZD_CS_OFDM_MODE_11A;
545 }
546 return modulation;
547}
548
549static void cs_set_modulation(struct zd_mac *mac, struct zd_ctrlset *cs,
550 struct ieee80211_hdr_4addr *hdr)
551{
552 struct ieee80211softmac_device *softmac = ieee80211_priv(mac->netdev);
553 u16 ftype = WLAN_FC_GET_TYPE(le16_to_cpu(hdr->frame_ctl));
554 u8 rate, cs_rate;
555 int is_mgt = (ftype == IEEE80211_FTYPE_MGMT) != 0;
556
557 /* FIXME: 802.11a? short preamble? */
558 rate = ieee80211softmac_suggest_txrate(softmac,
559 is_multicast_ether_addr(hdr->addr1), is_mgt);
560
561 cs_rate = rate_to_cs_rate(rate);
562 cs->modulation = cs_rate_to_modulation(cs_rate, 0);
563}
564
565static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
566 struct ieee80211_hdr_4addr *header)
567{
568 unsigned int tx_length = le16_to_cpu(cs->tx_length);
569 u16 fctl = le16_to_cpu(header->frame_ctl);
570 u16 ftype = WLAN_FC_GET_TYPE(fctl);
571 u16 stype = WLAN_FC_GET_STYPE(fctl);
572
573 /*
574 * CONTROL:
575 * - start at 0x00
576 * - if fragment 0, enable bit 0
577 * - if backoff needed, enable bit 0
578 * - if burst (backoff not needed) disable bit 0
579 * - if multicast, enable bit 1
580 * - if PS-POLL frame, enable bit 2
581 * - if in INDEPENDENT_BSS mode and zd1205_DestPowerSave, then enable
582 * bit 4 (FIXME: wtf)
583 * - if frag_len > RTS threshold, set bit 5 as long if it isnt
584 * multicast or mgt
585 * - if bit 5 is set, and we are in OFDM mode, unset bit 5 and set bit
586 * 7
587 */
588
589 cs->control = 0;
590
591 /* First fragment */
592 if (WLAN_GET_SEQ_FRAG(le16_to_cpu(header->seq_ctl)) == 0)
593 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
594
595 /* Multicast */
596 if (is_multicast_ether_addr(header->addr1))
597 cs->control |= ZD_CS_MULTICAST;
598
599 /* PS-POLL */
600 if (stype == IEEE80211_STYPE_PSPOLL)
601 cs->control |= ZD_CS_PS_POLL_FRAME;
602
603 if (!is_multicast_ether_addr(header->addr1) &&
604 ftype != IEEE80211_FTYPE_MGMT &&
605 tx_length > zd_netdev_ieee80211(mac->netdev)->rts)
606 {
607 /* FIXME: check the logic */
608 if (ZD_CS_TYPE(cs->modulation) == ZD_CS_OFDM) {
609 /* 802.11g */
610 cs->control |= ZD_CS_SELF_CTS;
611 } else { /* 802.11b */
612 cs->control |= ZD_CS_RTS;
613 }
614 }
615
616 /* FIXME: Management frame? */
617}
618
619static int fill_ctrlset(struct zd_mac *mac,
620 struct ieee80211_txb *txb,
621 int frag_num)
622{
623 int r;
624 struct sk_buff *skb = txb->fragments[frag_num];
625 struct ieee80211_hdr_4addr *hdr =
626 (struct ieee80211_hdr_4addr *) skb->data;
627 unsigned int frag_len = skb->len + IEEE80211_FCS_LEN;
628 unsigned int next_frag_len;
629 unsigned int packet_length;
630 struct zd_ctrlset *cs = (struct zd_ctrlset *)
631 skb_push(skb, sizeof(struct zd_ctrlset));
632
633 if (frag_num+1 < txb->nr_frags) {
634 next_frag_len = txb->fragments[frag_num+1]->len +
635 IEEE80211_FCS_LEN;
636 } else {
637 next_frag_len = 0;
638 }
639 ZD_ASSERT(frag_len <= 0xffff);
640 ZD_ASSERT(next_frag_len <= 0xffff);
641
642 cs_set_modulation(mac, cs, hdr);
643
644 cs->tx_length = cpu_to_le16(frag_len);
645
646 cs_set_control(mac, cs, hdr);
647
648 packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
649 ZD_ASSERT(packet_length <= 0xffff);
650 /* ZD1211B: Computing the length difference this way, gives us
651 * flexibility to compute the packet length.
652 */
653 cs->packet_length = cpu_to_le16(mac->chip.is_zd1211b ?
654 packet_length - frag_len : packet_length);
655
656 /*
657 * CURRENT LENGTH:
658 * - transmit frame length in microseconds
659 * - seems to be derived from frame length
660 * - see Cal_Us_Service() in zdinlinef.h
661 * - if macp->bTxBurstEnable is enabled, then multiply by 4
662 * - bTxBurstEnable is never set in the vendor driver
663 *
664 * SERVICE:
665 * - "for PLCP configuration"
666 * - always 0 except in some situations at 802.11b 11M
667 * - see line 53 of zdinlinef.h
668 */
669 cs->service = 0;
670 r = zd_calc_tx_length_us(&cs->service, ZD_CS_RATE(cs->modulation),
671 le16_to_cpu(cs->tx_length));
672 if (r < 0)
673 return r;
674 cs->current_length = cpu_to_le16(r);
675
676 if (next_frag_len == 0) {
677 cs->next_frame_length = 0;
678 } else {
679 r = zd_calc_tx_length_us(NULL, ZD_CS_RATE(cs->modulation),
680 next_frag_len);
681 if (r < 0)
682 return r;
683 cs->next_frame_length = cpu_to_le16(r);
684 }
685
686 return 0;
687}
688
689static int zd_mac_tx(struct zd_mac *mac, struct ieee80211_txb *txb, int pri)
690{
691 int i, r;
692
693 for (i = 0; i < txb->nr_frags; i++) {
694 struct sk_buff *skb = txb->fragments[i];
695
696 r = fill_ctrlset(mac, txb, i);
697 if (r)
698 return r;
699 r = zd_usb_tx(&mac->chip.usb, skb->data, skb->len);
700 if (r)
701 return r;
702 }
703
704 /* FIXME: shouldn't this be handled by the upper layers? */
705 mac->netdev->trans_start = jiffies;
706
707 ieee80211_txb_free(txb);
708 return 0;
709}
710
711struct zd_rt_hdr {
712 struct ieee80211_radiotap_header rt_hdr;
713 u8 rt_flags;
714 u16 rt_channel;
715 u16 rt_chbitmask;
716 u16 rt_rate;
717};
718
719static void fill_rt_header(void *buffer, struct zd_mac *mac,
720 const struct ieee80211_rx_stats *stats,
721 const struct rx_status *status)
722{
723 struct zd_rt_hdr *hdr = buffer;
724
725 hdr->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
726 hdr->rt_hdr.it_pad = 0;
727 hdr->rt_hdr.it_len = cpu_to_le16(sizeof(struct zd_rt_hdr));
728 hdr->rt_hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
729 (1 << IEEE80211_RADIOTAP_CHANNEL) |
730 (1 << IEEE80211_RADIOTAP_RATE));
731
732 hdr->rt_flags = 0;
733 if (status->decryption_type & (ZD_RX_WEP64|ZD_RX_WEP128|ZD_RX_WEP256))
734 hdr->rt_flags |= IEEE80211_RADIOTAP_F_WEP;
735
736 /* FIXME: 802.11a */
737 hdr->rt_channel = cpu_to_le16(ieee80211chan2mhz(
738 _zd_chip_get_channel(&mac->chip)));
739 hdr->rt_chbitmask = cpu_to_le16(IEEE80211_CHAN_2GHZ |
740 ((status->frame_status & ZD_RX_FRAME_MODULATION_MASK) ==
741 ZD_RX_OFDM ? IEEE80211_CHAN_OFDM : IEEE80211_CHAN_CCK));
742
743 hdr->rt_rate = stats->rate / 5;
744}
745
746/* Returns 1 if the data packet is for us and 0 otherwise. */
747static int is_data_packet_for_us(struct ieee80211_device *ieee,
748 struct ieee80211_hdr_4addr *hdr)
749{
750 struct net_device *netdev = ieee->dev;
751 u16 fc = le16_to_cpu(hdr->frame_ctl);
752
753 ZD_ASSERT(WLAN_FC_GET_TYPE(fc) == IEEE80211_FTYPE_DATA);
754
755 switch (ieee->iw_mode) {
756 case IW_MODE_ADHOC:
757 if ((fc & (IEEE80211_FCTL_TODS|IEEE80211_FCTL_FROMDS)) != 0 ||
758 memcmp(hdr->addr3, ieee->bssid, ETH_ALEN) != 0)
759 return 0;
760 break;
761 case IW_MODE_AUTO:
762 case IW_MODE_INFRA:
763 if ((fc & (IEEE80211_FCTL_TODS|IEEE80211_FCTL_FROMDS)) !=
764 IEEE80211_FCTL_FROMDS ||
765 memcmp(hdr->addr2, ieee->bssid, ETH_ALEN) != 0)
766 return 0;
767 break;
768 default:
769 ZD_ASSERT(ieee->iw_mode != IW_MODE_MONITOR);
770 return 0;
771 }
772
773 return memcmp(hdr->addr1, netdev->dev_addr, ETH_ALEN) == 0 ||
774 is_multicast_ether_addr(hdr->addr1) ||
775 (netdev->flags & IFF_PROMISC);
776}
777
778/* Filters receiving packets. If it returns 1 send it to ieee80211_rx, if 0
779 * return. If an error is detected -EINVAL is returned. ieee80211_rx_mgt() is
780 * called here.
781 *
782 * It has been based on ieee80211_rx_any.
783 */
784static int filter_rx(struct ieee80211_device *ieee,
785 const u8 *buffer, unsigned int length,
786 struct ieee80211_rx_stats *stats)
787{
788 struct ieee80211_hdr_4addr *hdr;
789 u16 fc;
790
791 if (ieee->iw_mode == IW_MODE_MONITOR)
792 return 1;
793
794 hdr = (struct ieee80211_hdr_4addr *)buffer;
795 fc = le16_to_cpu(hdr->frame_ctl);
796 if ((fc & IEEE80211_FCTL_VERS) != 0)
797 return -EINVAL;
798
799 switch (WLAN_FC_GET_TYPE(fc)) {
800 case IEEE80211_FTYPE_MGMT:
801 if (length < sizeof(struct ieee80211_hdr_3addr))
802 return -EINVAL;
803 ieee80211_rx_mgt(ieee, hdr, stats);
804 return 0;
805 case IEEE80211_FTYPE_CTL:
806 /* Ignore invalid short buffers */
807 return 0;
808 case IEEE80211_FTYPE_DATA:
809 if (length < sizeof(struct ieee80211_hdr_3addr))
810 return -EINVAL;
811 return is_data_packet_for_us(ieee, hdr);
812 }
813
814 return -EINVAL;
815}
816
817static void update_qual_rssi(struct zd_mac *mac, u8 qual_percent, u8 rssi)
818{
819 unsigned long flags;
820
821 spin_lock_irqsave(&mac->lock, flags);
822 mac->qual_average = (7 * mac->qual_average + qual_percent) / 8;
823 mac->rssi_average = (7 * mac->rssi_average + rssi) / 8;
824 spin_unlock_irqrestore(&mac->lock, flags);
825}
826
827static int fill_rx_stats(struct ieee80211_rx_stats *stats,
828 const struct rx_status **pstatus,
829 struct zd_mac *mac,
830 const u8 *buffer, unsigned int length)
831{
832 const struct rx_status *status;
833
834 *pstatus = status = zd_tail(buffer, length, sizeof(struct rx_status));
835 if (status->frame_status & ZD_RX_ERROR) {
836 /* FIXME: update? */
837 return -EINVAL;
838 }
839 memset(stats, 0, sizeof(struct ieee80211_rx_stats));
840 stats->len = length - (ZD_PLCP_HEADER_SIZE + IEEE80211_FCS_LEN +
841 + sizeof(struct rx_status));
842 /* FIXME: 802.11a */
843 stats->freq = IEEE80211_24GHZ_BAND;
844 stats->received_channel = _zd_chip_get_channel(&mac->chip);
845 stats->rssi = zd_rx_strength_percent(status->signal_strength);
846 stats->signal = zd_rx_qual_percent(buffer,
847 length - sizeof(struct rx_status),
848 status);
849 stats->mask = IEEE80211_STATMASK_RSSI | IEEE80211_STATMASK_SIGNAL;
850 stats->rate = zd_rx_rate(buffer, status);
851 if (stats->rate)
852 stats->mask |= IEEE80211_STATMASK_RATE;
853
854 update_qual_rssi(mac, stats->signal, stats->rssi);
855 return 0;
856}
857
858int zd_mac_rx(struct zd_mac *mac, const u8 *buffer, unsigned int length)
859{
860 int r;
861 struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
862 struct ieee80211_rx_stats stats;
863 const struct rx_status *status;
864 struct sk_buff *skb;
865
866 if (length < ZD_PLCP_HEADER_SIZE + IEEE80211_1ADDR_LEN +
867 IEEE80211_FCS_LEN + sizeof(struct rx_status))
868 return -EINVAL;
869
870 r = fill_rx_stats(&stats, &status, mac, buffer, length);
871 if (r)
872 return r;
873
874 length -= ZD_PLCP_HEADER_SIZE+IEEE80211_FCS_LEN+
875 sizeof(struct rx_status);
876 buffer += ZD_PLCP_HEADER_SIZE;
877
878 r = filter_rx(ieee, buffer, length, &stats);
879 if (r <= 0)
880 return r;
881
882 skb = dev_alloc_skb(sizeof(struct zd_rt_hdr) + length);
883 if (!skb)
884 return -ENOMEM;
885 if (ieee->iw_mode == IW_MODE_MONITOR)
886 fill_rt_header(skb_put(skb, sizeof(struct zd_rt_hdr)), mac,
887 &stats, status);
888 memcpy(skb_put(skb, length), buffer, length);
889
890 r = ieee80211_rx(ieee, skb, &stats);
891 if (!r) {
892 ZD_ASSERT(in_irq());
893 dev_kfree_skb_irq(skb);
894 }
895 return 0;
896}
897
898static int netdev_tx(struct ieee80211_txb *txb, struct net_device *netdev,
899 int pri)
900{
901 return zd_mac_tx(zd_netdev_mac(netdev), txb, pri);
902}
903
904static void set_security(struct net_device *netdev,
905 struct ieee80211_security *sec)
906{
907 struct ieee80211_device *ieee = zd_netdev_ieee80211(netdev);
908 struct ieee80211_security *secinfo = &ieee->sec;
909 int keyidx;
910
911 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)), "\n");
912
913 for (keyidx = 0; keyidx<WEP_KEYS; keyidx++)
914 if (sec->flags & (1<<keyidx)) {
915 secinfo->encode_alg[keyidx] = sec->encode_alg[keyidx];
916 secinfo->key_sizes[keyidx] = sec->key_sizes[keyidx];
917 memcpy(secinfo->keys[keyidx], sec->keys[keyidx],
918 SCM_KEY_LEN);
919 }
920
921 if (sec->flags & SEC_ACTIVE_KEY) {
922 secinfo->active_key = sec->active_key;
923 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
924 " .active_key = %d\n", sec->active_key);
925 }
926 if (sec->flags & SEC_UNICAST_GROUP) {
927 secinfo->unicast_uses_group = sec->unicast_uses_group;
928 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
929 " .unicast_uses_group = %d\n",
930 sec->unicast_uses_group);
931 }
932 if (sec->flags & SEC_LEVEL) {
933 secinfo->level = sec->level;
934 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
935 " .level = %d\n", sec->level);
936 }
937 if (sec->flags & SEC_ENABLED) {
938 secinfo->enabled = sec->enabled;
939 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
940 " .enabled = %d\n", sec->enabled);
941 }
942 if (sec->flags & SEC_ENCRYPT) {
943 secinfo->encrypt = sec->encrypt;
944 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
945 " .encrypt = %d\n", sec->encrypt);
946 }
947 if (sec->flags & SEC_AUTH_MODE) {
948 secinfo->auth_mode = sec->auth_mode;
949 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
950 " .auth_mode = %d\n", sec->auth_mode);
951 }
952}
953
954static void ieee_init(struct ieee80211_device *ieee)
955{
956 ieee->mode = IEEE_B | IEEE_G;
957 ieee->freq_band = IEEE80211_24GHZ_BAND;
958 ieee->modulation = IEEE80211_OFDM_MODULATION | IEEE80211_CCK_MODULATION;
959 ieee->tx_headroom = sizeof(struct zd_ctrlset);
960 ieee->set_security = set_security;
961 ieee->hard_start_xmit = netdev_tx;
962
963 /* Software encryption/decryption for now */
964 ieee->host_build_iv = 0;
965 ieee->host_encrypt = 1;
966 ieee->host_decrypt = 1;
967
968 /* FIXME: default to managed mode, until ieee80211 and zd1211rw can
969 * correctly support AUTO */
970 ieee->iw_mode = IW_MODE_INFRA;
971}
972
973static void softmac_init(struct ieee80211softmac_device *sm)
974{
975 sm->set_channel = set_channel;
976}
977
978struct iw_statistics *zd_mac_get_wireless_stats(struct net_device *ndev)
979{
980 struct zd_mac *mac = zd_netdev_mac(ndev);
981 struct iw_statistics *iw_stats = &mac->iw_stats;
982
983 memset(iw_stats, 0, sizeof(struct iw_statistics));
984 /* We are not setting the status, because ieee->state is not updated
985 * at all and this driver doesn't track authentication state.
986 */
987 spin_lock_irq(&mac->lock);
988 iw_stats->qual.qual = mac->qual_average;
989 iw_stats->qual.level = mac->rssi_average;
990 iw_stats->qual.updated = IW_QUAL_QUAL_UPDATED|IW_QUAL_LEVEL_UPDATED|
991 IW_QUAL_NOISE_INVALID;
992 spin_unlock_irq(&mac->lock);
993 /* TODO: update counter */
994 return iw_stats;
995}
996
997#ifdef DEBUG
998static const char* decryption_types[] = {
999 [ZD_RX_NO_WEP] = "none",
1000 [ZD_RX_WEP64] = "WEP64",
1001 [ZD_RX_TKIP] = "TKIP",
1002 [ZD_RX_AES] = "AES",
1003 [ZD_RX_WEP128] = "WEP128",
1004 [ZD_RX_WEP256] = "WEP256",
1005};
1006
1007static const char *decryption_type_string(u8 type)
1008{
1009 const char *s;
1010
1011 if (type < ARRAY_SIZE(decryption_types)) {
1012 s = decryption_types[type];
1013 } else {
1014 s = NULL;
1015 }
1016 return s ? s : "unknown";
1017}
1018
1019static int is_ofdm(u8 frame_status)
1020{
1021 return (frame_status & ZD_RX_OFDM);
1022}
1023
1024void zd_dump_rx_status(const struct rx_status *status)
1025{
1026 const char* modulation;
1027 u8 quality;
1028
1029 if (is_ofdm(status->frame_status)) {
1030 modulation = "ofdm";
1031 quality = status->signal_quality_ofdm;
1032 } else {
1033 modulation = "cck";
1034 quality = status->signal_quality_cck;
1035 }
1036 pr_debug("rx status %s strength %#04x qual %#04x decryption %s\n",
1037 modulation, status->signal_strength, quality,
1038 decryption_type_string(status->decryption_type));
1039 if (status->frame_status & ZD_RX_ERROR) {
1040 pr_debug("rx error %s%s%s%s%s%s\n",
1041 (status->frame_status & ZD_RX_TIMEOUT_ERROR) ?
1042 "timeout " : "",
1043 (status->frame_status & ZD_RX_FIFO_OVERRUN_ERROR) ?
1044 "fifo " : "",
1045 (status->frame_status & ZD_RX_DECRYPTION_ERROR) ?
1046 "decryption " : "",
1047 (status->frame_status & ZD_RX_CRC32_ERROR) ?
1048 "crc32 " : "",
1049 (status->frame_status & ZD_RX_NO_ADDR1_MATCH_ERROR) ?
1050 "addr1 " : "",
1051 (status->frame_status & ZD_RX_CRC16_ERROR) ?
1052 "crc16" : "");
1053 }
1054}
1055#endif /* DEBUG */