Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Device driver for the thermostats & fan controller of the |
| 3 | * Apple G5 "PowerMac7,2" desktop machines. |
| 4 | * |
| 5 | * (c) Copyright IBM Corp. 2003-2004 |
| 6 | * |
| 7 | * Maintained by: Benjamin Herrenschmidt |
| 8 | * <benh@kernel.crashing.org> |
| 9 | * |
| 10 | * |
| 11 | * The algorithm used is the PID control algorithm, used the same |
| 12 | * way the published Darwin code does, using the same values that |
| 13 | * are present in the Darwin 7.0 snapshot property lists. |
| 14 | * |
| 15 | * As far as the CPUs control loops are concerned, I use the |
| 16 | * calibration & PID constants provided by the EEPROM, |
| 17 | * I do _not_ embed any value from the property lists, as the ones |
| 18 | * provided by Darwin 7.0 seem to always have an older version that |
| 19 | * what I've seen on the actual computers. |
| 20 | * It would be interesting to verify that though. Darwin has a |
| 21 | * version code of 1.0.0d11 for all control loops it seems, while |
| 22 | * so far, the machines EEPROMs contain a dataset versioned 1.0.0f |
| 23 | * |
| 24 | * Darwin doesn't provide source to all parts, some missing |
| 25 | * bits like the AppleFCU driver or the actual scale of some |
| 26 | * of the values returned by sensors had to be "guessed" some |
| 27 | * way... or based on what Open Firmware does. |
| 28 | * |
| 29 | * I didn't yet figure out how to get the slots power consumption |
| 30 | * out of the FCU, so that part has not been implemented yet and |
| 31 | * the slots fan is set to a fixed 50% PWM, hoping this value is |
| 32 | * safe enough ... |
| 33 | * |
| 34 | * Note: I have observed strange oscillations of the CPU control |
| 35 | * loop on a dual G5 here. When idle, the CPU exhaust fan tend to |
| 36 | * oscillates slowly (over several minutes) between the minimum |
| 37 | * of 300RPMs and approx. 1000 RPMs. I don't know what is causing |
| 38 | * this, it could be some incorrect constant or an error in the |
| 39 | * way I ported the algorithm, or it could be just normal. I |
| 40 | * don't have full understanding on the way Apple tweaked the PID |
| 41 | * algorithm for the CPU control, it is definitely not a standard |
| 42 | * implementation... |
| 43 | * |
| 44 | * TODO: - Check MPU structure version/signature |
| 45 | * - Add things like /sbin/overtemp for non-critical |
| 46 | * overtemp conditions so userland can take some policy |
| 47 | * decisions, like slewing down CPUs |
| 48 | * - Deal with fan and i2c failures in a better way |
| 49 | * - Maybe do a generic PID based on params used for |
| 50 | * U3 and Drives ? Definitely need to factor code a bit |
| 51 | * bettter... also make sensor detection more robust using |
| 52 | * the device-tree to probe for them |
| 53 | * - Figure out how to get the slots consumption and set the |
| 54 | * slots fan accordingly |
| 55 | * |
| 56 | * History: |
| 57 | * |
| 58 | * Nov. 13, 2003 : 0.5 |
| 59 | * - First release |
| 60 | * |
| 61 | * Nov. 14, 2003 : 0.6 |
| 62 | * - Read fan speed from FCU, low level fan routines now deal |
| 63 | * with errors & check fan status, though higher level don't |
| 64 | * do much. |
| 65 | * - Move a bunch of definitions to .h file |
| 66 | * |
| 67 | * Nov. 18, 2003 : 0.7 |
| 68 | * - Fix build on ppc64 kernel |
| 69 | * - Move back statics definitions to .c file |
| 70 | * - Avoid calling schedule_timeout with a negative number |
| 71 | * |
| 72 | * Dec. 18, 2003 : 0.8 |
| 73 | * - Fix typo when reading back fan speed on 2 CPU machines |
| 74 | * |
| 75 | * Mar. 11, 2004 : 0.9 |
| 76 | * - Rework code accessing the ADC chips, make it more robust and |
| 77 | * closer to the chip spec. Also make sure it is configured properly, |
| 78 | * I've seen yet unexplained cases where on startup, I would have stale |
| 79 | * values in the configuration register |
| 80 | * - Switch back to use of target fan speed for PID, thus lowering |
| 81 | * pressure on i2c |
| 82 | * |
| 83 | * Oct. 20, 2004 : 1.1 |
| 84 | * - Add device-tree lookup for fan IDs, should detect liquid cooling |
| 85 | * pumps when present |
| 86 | * - Enable driver for PowerMac7,3 machines |
| 87 | * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does |
| 88 | * - Add new CPU cooling algorithm for machines with liquid cooling |
| 89 | * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree |
| 90 | * - Fix a signed/unsigned compare issue in some PID loops |
| 91 | * |
| 92 | * Mar. 10, 2005 : 1.2 |
| 93 | * - Add basic support for Xserve G5 |
| 94 | * - Retreive pumps min/max from EEPROM image in device-tree (broken) |
| 95 | * - Use min/max macros here or there |
| 96 | * - Latest darwin updated U3H min fan speed to 20% PWM |
| 97 | * |
| 98 | */ |
| 99 | |
| 100 | #include <linux/config.h> |
| 101 | #include <linux/types.h> |
| 102 | #include <linux/module.h> |
| 103 | #include <linux/errno.h> |
| 104 | #include <linux/kernel.h> |
| 105 | #include <linux/delay.h> |
| 106 | #include <linux/sched.h> |
| 107 | #include <linux/i2c.h> |
| 108 | #include <linux/slab.h> |
| 109 | #include <linux/init.h> |
| 110 | #include <linux/spinlock.h> |
| 111 | #include <linux/smp_lock.h> |
| 112 | #include <linux/wait.h> |
| 113 | #include <linux/reboot.h> |
| 114 | #include <linux/kmod.h> |
| 115 | #include <linux/i2c.h> |
| 116 | #include <linux/i2c-dev.h> |
| 117 | #include <asm/prom.h> |
| 118 | #include <asm/machdep.h> |
| 119 | #include <asm/io.h> |
| 120 | #include <asm/system.h> |
| 121 | #include <asm/sections.h> |
| 122 | #include <asm/of_device.h> |
| 123 | |
| 124 | #include "therm_pm72.h" |
| 125 | |
| 126 | #define VERSION "1.2b2" |
| 127 | |
| 128 | #undef DEBUG |
| 129 | |
| 130 | #ifdef DEBUG |
| 131 | #define DBG(args...) printk(args) |
| 132 | #else |
| 133 | #define DBG(args...) do { } while(0) |
| 134 | #endif |
| 135 | |
| 136 | |
| 137 | /* |
| 138 | * Driver statics |
| 139 | */ |
| 140 | |
| 141 | static struct of_device * of_dev; |
| 142 | static struct i2c_adapter * u3_0; |
| 143 | static struct i2c_adapter * u3_1; |
| 144 | static struct i2c_adapter * k2; |
| 145 | static struct i2c_client * fcu; |
| 146 | static struct cpu_pid_state cpu_state[2]; |
| 147 | static struct basckside_pid_params backside_params; |
| 148 | static struct backside_pid_state backside_state; |
| 149 | static struct drives_pid_state drives_state; |
| 150 | static struct dimm_pid_state dimms_state; |
| 151 | static int state; |
| 152 | static int cpu_count; |
| 153 | static int cpu_pid_type; |
| 154 | static pid_t ctrl_task; |
| 155 | static struct completion ctrl_complete; |
| 156 | static int critical_state; |
| 157 | static int rackmac; |
| 158 | static s32 dimm_output_clamp; |
| 159 | |
| 160 | static DECLARE_MUTEX(driver_lock); |
| 161 | |
| 162 | /* |
| 163 | * We have 3 types of CPU PID control. One is "split" old style control |
| 164 | * for intake & exhaust fans, the other is "combined" control for both |
| 165 | * CPUs that also deals with the pumps when present. To be "compatible" |
| 166 | * with OS X at this point, we only use "COMBINED" on the machines that |
| 167 | * are identified as having the pumps (though that identification is at |
| 168 | * least dodgy). Ultimately, we could probably switch completely to this |
| 169 | * algorithm provided we hack it to deal with the UP case |
| 170 | */ |
| 171 | #define CPU_PID_TYPE_SPLIT 0 |
| 172 | #define CPU_PID_TYPE_COMBINED 1 |
| 173 | #define CPU_PID_TYPE_RACKMAC 2 |
| 174 | |
| 175 | /* |
| 176 | * This table describes all fans in the FCU. The "id" and "type" values |
| 177 | * are defaults valid for all earlier machines. Newer machines will |
| 178 | * eventually override the table content based on the device-tree |
| 179 | */ |
| 180 | struct fcu_fan_table |
| 181 | { |
| 182 | char* loc; /* location code */ |
| 183 | int type; /* 0 = rpm, 1 = pwm, 2 = pump */ |
| 184 | int id; /* id or -1 */ |
| 185 | }; |
| 186 | |
| 187 | #define FCU_FAN_RPM 0 |
| 188 | #define FCU_FAN_PWM 1 |
| 189 | |
| 190 | #define FCU_FAN_ABSENT_ID -1 |
| 191 | |
| 192 | #define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans) |
| 193 | |
| 194 | struct fcu_fan_table fcu_fans[] = { |
| 195 | [BACKSIDE_FAN_PWM_INDEX] = { |
| 196 | .loc = "BACKSIDE,SYS CTRLR FAN", |
| 197 | .type = FCU_FAN_PWM, |
| 198 | .id = BACKSIDE_FAN_PWM_DEFAULT_ID, |
| 199 | }, |
| 200 | [DRIVES_FAN_RPM_INDEX] = { |
| 201 | .loc = "DRIVE BAY", |
| 202 | .type = FCU_FAN_RPM, |
| 203 | .id = DRIVES_FAN_RPM_DEFAULT_ID, |
| 204 | }, |
| 205 | [SLOTS_FAN_PWM_INDEX] = { |
| 206 | .loc = "SLOT,PCI FAN", |
| 207 | .type = FCU_FAN_PWM, |
| 208 | .id = SLOTS_FAN_PWM_DEFAULT_ID, |
| 209 | }, |
| 210 | [CPUA_INTAKE_FAN_RPM_INDEX] = { |
| 211 | .loc = "CPU A INTAKE", |
| 212 | .type = FCU_FAN_RPM, |
| 213 | .id = CPUA_INTAKE_FAN_RPM_DEFAULT_ID, |
| 214 | }, |
| 215 | [CPUA_EXHAUST_FAN_RPM_INDEX] = { |
| 216 | .loc = "CPU A EXHAUST", |
| 217 | .type = FCU_FAN_RPM, |
| 218 | .id = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID, |
| 219 | }, |
| 220 | [CPUB_INTAKE_FAN_RPM_INDEX] = { |
| 221 | .loc = "CPU B INTAKE", |
| 222 | .type = FCU_FAN_RPM, |
| 223 | .id = CPUB_INTAKE_FAN_RPM_DEFAULT_ID, |
| 224 | }, |
| 225 | [CPUB_EXHAUST_FAN_RPM_INDEX] = { |
| 226 | .loc = "CPU B EXHAUST", |
| 227 | .type = FCU_FAN_RPM, |
| 228 | .id = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID, |
| 229 | }, |
| 230 | /* pumps aren't present by default, have to be looked up in the |
| 231 | * device-tree |
| 232 | */ |
| 233 | [CPUA_PUMP_RPM_INDEX] = { |
| 234 | .loc = "CPU A PUMP", |
| 235 | .type = FCU_FAN_RPM, |
| 236 | .id = FCU_FAN_ABSENT_ID, |
| 237 | }, |
| 238 | [CPUB_PUMP_RPM_INDEX] = { |
| 239 | .loc = "CPU B PUMP", |
| 240 | .type = FCU_FAN_RPM, |
| 241 | .id = FCU_FAN_ABSENT_ID, |
| 242 | }, |
| 243 | /* Xserve fans */ |
| 244 | [CPU_A1_FAN_RPM_INDEX] = { |
| 245 | .loc = "CPU A 1", |
| 246 | .type = FCU_FAN_RPM, |
| 247 | .id = FCU_FAN_ABSENT_ID, |
| 248 | }, |
| 249 | [CPU_A2_FAN_RPM_INDEX] = { |
| 250 | .loc = "CPU A 2", |
| 251 | .type = FCU_FAN_RPM, |
| 252 | .id = FCU_FAN_ABSENT_ID, |
| 253 | }, |
| 254 | [CPU_A3_FAN_RPM_INDEX] = { |
| 255 | .loc = "CPU A 3", |
| 256 | .type = FCU_FAN_RPM, |
| 257 | .id = FCU_FAN_ABSENT_ID, |
| 258 | }, |
| 259 | [CPU_B1_FAN_RPM_INDEX] = { |
| 260 | .loc = "CPU B 1", |
| 261 | .type = FCU_FAN_RPM, |
| 262 | .id = FCU_FAN_ABSENT_ID, |
| 263 | }, |
| 264 | [CPU_B2_FAN_RPM_INDEX] = { |
| 265 | .loc = "CPU B 2", |
| 266 | .type = FCU_FAN_RPM, |
| 267 | .id = FCU_FAN_ABSENT_ID, |
| 268 | }, |
| 269 | [CPU_B3_FAN_RPM_INDEX] = { |
| 270 | .loc = "CPU B 3", |
| 271 | .type = FCU_FAN_RPM, |
| 272 | .id = FCU_FAN_ABSENT_ID, |
| 273 | }, |
| 274 | }; |
| 275 | |
| 276 | /* |
| 277 | * i2c_driver structure to attach to the host i2c controller |
| 278 | */ |
| 279 | |
| 280 | static int therm_pm72_attach(struct i2c_adapter *adapter); |
| 281 | static int therm_pm72_detach(struct i2c_adapter *adapter); |
| 282 | |
| 283 | static struct i2c_driver therm_pm72_driver = |
| 284 | { |
| 285 | .owner = THIS_MODULE, |
| 286 | .name = "therm_pm72", |
| 287 | .flags = I2C_DF_NOTIFY, |
| 288 | .attach_adapter = therm_pm72_attach, |
| 289 | .detach_adapter = therm_pm72_detach, |
| 290 | }; |
| 291 | |
| 292 | /* |
| 293 | * Utility function to create an i2c_client structure and |
| 294 | * attach it to one of u3 adapters |
| 295 | */ |
| 296 | static struct i2c_client *attach_i2c_chip(int id, const char *name) |
| 297 | { |
| 298 | struct i2c_client *clt; |
| 299 | struct i2c_adapter *adap; |
| 300 | |
| 301 | if (id & 0x200) |
| 302 | adap = k2; |
| 303 | else if (id & 0x100) |
| 304 | adap = u3_1; |
| 305 | else |
| 306 | adap = u3_0; |
| 307 | if (adap == NULL) |
| 308 | return NULL; |
| 309 | |
| 310 | clt = kmalloc(sizeof(struct i2c_client), GFP_KERNEL); |
| 311 | if (clt == NULL) |
| 312 | return NULL; |
| 313 | memset(clt, 0, sizeof(struct i2c_client)); |
| 314 | |
| 315 | clt->addr = (id >> 1) & 0x7f; |
| 316 | clt->adapter = adap; |
| 317 | clt->driver = &therm_pm72_driver; |
| 318 | strncpy(clt->name, name, I2C_NAME_SIZE-1); |
| 319 | |
| 320 | if (i2c_attach_client(clt)) { |
| 321 | printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id); |
| 322 | kfree(clt); |
| 323 | return NULL; |
| 324 | } |
| 325 | return clt; |
| 326 | } |
| 327 | |
| 328 | /* |
| 329 | * Utility function to get rid of the i2c_client structure |
| 330 | * (will also detach from the adapter hopepfully) |
| 331 | */ |
| 332 | static void detach_i2c_chip(struct i2c_client *clt) |
| 333 | { |
| 334 | i2c_detach_client(clt); |
| 335 | kfree(clt); |
| 336 | } |
| 337 | |
| 338 | /* |
| 339 | * Here are the i2c chip access wrappers |
| 340 | */ |
| 341 | |
| 342 | static void initialize_adc(struct cpu_pid_state *state) |
| 343 | { |
| 344 | int rc; |
| 345 | u8 buf[2]; |
| 346 | |
| 347 | /* Read ADC the configuration register and cache it. We |
| 348 | * also make sure Config2 contains proper values, I've seen |
| 349 | * cases where we got stale grabage in there, thus preventing |
| 350 | * proper reading of conv. values |
| 351 | */ |
| 352 | |
| 353 | /* Clear Config2 */ |
| 354 | buf[0] = 5; |
| 355 | buf[1] = 0; |
| 356 | i2c_master_send(state->monitor, buf, 2); |
| 357 | |
| 358 | /* Read & cache Config1 */ |
| 359 | buf[0] = 1; |
| 360 | rc = i2c_master_send(state->monitor, buf, 1); |
| 361 | if (rc > 0) { |
| 362 | rc = i2c_master_recv(state->monitor, buf, 1); |
| 363 | if (rc > 0) { |
| 364 | state->adc_config = buf[0]; |
| 365 | DBG("ADC config reg: %02x\n", state->adc_config); |
| 366 | /* Disable shutdown mode */ |
| 367 | state->adc_config &= 0xfe; |
| 368 | buf[0] = 1; |
| 369 | buf[1] = state->adc_config; |
| 370 | rc = i2c_master_send(state->monitor, buf, 2); |
| 371 | } |
| 372 | } |
| 373 | if (rc <= 0) |
| 374 | printk(KERN_ERR "therm_pm72: Error reading ADC config" |
| 375 | " register !\n"); |
| 376 | } |
| 377 | |
| 378 | static int read_smon_adc(struct cpu_pid_state *state, int chan) |
| 379 | { |
| 380 | int rc, data, tries = 0; |
| 381 | u8 buf[2]; |
| 382 | |
| 383 | for (;;) { |
| 384 | /* Set channel */ |
| 385 | buf[0] = 1; |
| 386 | buf[1] = (state->adc_config & 0x1f) | (chan << 5); |
| 387 | rc = i2c_master_send(state->monitor, buf, 2); |
| 388 | if (rc <= 0) |
| 389 | goto error; |
| 390 | /* Wait for convertion */ |
| 391 | msleep(1); |
| 392 | /* Switch to data register */ |
| 393 | buf[0] = 4; |
| 394 | rc = i2c_master_send(state->monitor, buf, 1); |
| 395 | if (rc <= 0) |
| 396 | goto error; |
| 397 | /* Read result */ |
| 398 | rc = i2c_master_recv(state->monitor, buf, 2); |
| 399 | if (rc < 0) |
| 400 | goto error; |
| 401 | data = ((u16)buf[0]) << 8 | (u16)buf[1]; |
| 402 | return data >> 6; |
| 403 | error: |
| 404 | DBG("Error reading ADC, retrying...\n"); |
| 405 | if (++tries > 10) { |
| 406 | printk(KERN_ERR "therm_pm72: Error reading ADC !\n"); |
| 407 | return -1; |
| 408 | } |
| 409 | msleep(10); |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | static int read_lm87_reg(struct i2c_client * chip, int reg) |
| 414 | { |
| 415 | int rc, tries = 0; |
| 416 | u8 buf; |
| 417 | |
| 418 | for (;;) { |
| 419 | /* Set address */ |
| 420 | buf = (u8)reg; |
| 421 | rc = i2c_master_send(chip, &buf, 1); |
| 422 | if (rc <= 0) |
| 423 | goto error; |
| 424 | rc = i2c_master_recv(chip, &buf, 1); |
| 425 | if (rc <= 0) |
| 426 | goto error; |
| 427 | return (int)buf; |
| 428 | error: |
| 429 | DBG("Error reading LM87, retrying...\n"); |
| 430 | if (++tries > 10) { |
| 431 | printk(KERN_ERR "therm_pm72: Error reading LM87 !\n"); |
| 432 | return -1; |
| 433 | } |
| 434 | msleep(10); |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | static int fan_read_reg(int reg, unsigned char *buf, int nb) |
| 439 | { |
| 440 | int tries, nr, nw; |
| 441 | |
| 442 | buf[0] = reg; |
| 443 | tries = 0; |
| 444 | for (;;) { |
| 445 | nw = i2c_master_send(fcu, buf, 1); |
| 446 | if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100) |
| 447 | break; |
| 448 | msleep(10); |
| 449 | ++tries; |
| 450 | } |
| 451 | if (nw <= 0) { |
| 452 | printk(KERN_ERR "Failure writing address to FCU: %d", nw); |
| 453 | return -EIO; |
| 454 | } |
| 455 | tries = 0; |
| 456 | for (;;) { |
| 457 | nr = i2c_master_recv(fcu, buf, nb); |
| 458 | if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100) |
| 459 | break; |
| 460 | msleep(10); |
| 461 | ++tries; |
| 462 | } |
| 463 | if (nr <= 0) |
| 464 | printk(KERN_ERR "Failure reading data from FCU: %d", nw); |
| 465 | return nr; |
| 466 | } |
| 467 | |
| 468 | static int fan_write_reg(int reg, const unsigned char *ptr, int nb) |
| 469 | { |
| 470 | int tries, nw; |
| 471 | unsigned char buf[16]; |
| 472 | |
| 473 | buf[0] = reg; |
| 474 | memcpy(buf+1, ptr, nb); |
| 475 | ++nb; |
| 476 | tries = 0; |
| 477 | for (;;) { |
| 478 | nw = i2c_master_send(fcu, buf, nb); |
| 479 | if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100) |
| 480 | break; |
| 481 | msleep(10); |
| 482 | ++tries; |
| 483 | } |
| 484 | if (nw < 0) |
| 485 | printk(KERN_ERR "Failure writing to FCU: %d", nw); |
| 486 | return nw; |
| 487 | } |
| 488 | |
| 489 | static int start_fcu(void) |
| 490 | { |
| 491 | unsigned char buf = 0xff; |
| 492 | int rc; |
| 493 | |
| 494 | rc = fan_write_reg(0xe, &buf, 1); |
| 495 | if (rc < 0) |
| 496 | return -EIO; |
| 497 | rc = fan_write_reg(0x2e, &buf, 1); |
| 498 | if (rc < 0) |
| 499 | return -EIO; |
| 500 | return 0; |
| 501 | } |
| 502 | |
| 503 | static int set_rpm_fan(int fan_index, int rpm) |
| 504 | { |
| 505 | unsigned char buf[2]; |
| 506 | int rc, id; |
| 507 | |
| 508 | if (fcu_fans[fan_index].type != FCU_FAN_RPM) |
| 509 | return -EINVAL; |
| 510 | id = fcu_fans[fan_index].id; |
| 511 | if (id == FCU_FAN_ABSENT_ID) |
| 512 | return -EINVAL; |
| 513 | |
| 514 | if (rpm < 300) |
| 515 | rpm = 300; |
| 516 | else if (rpm > 8191) |
| 517 | rpm = 8191; |
| 518 | buf[0] = rpm >> 5; |
| 519 | buf[1] = rpm << 3; |
| 520 | rc = fan_write_reg(0x10 + (id * 2), buf, 2); |
| 521 | if (rc < 0) |
| 522 | return -EIO; |
| 523 | return 0; |
| 524 | } |
| 525 | |
| 526 | static int get_rpm_fan(int fan_index, int programmed) |
| 527 | { |
| 528 | unsigned char failure; |
| 529 | unsigned char active; |
| 530 | unsigned char buf[2]; |
| 531 | int rc, id, reg_base; |
| 532 | |
| 533 | if (fcu_fans[fan_index].type != FCU_FAN_RPM) |
| 534 | return -EINVAL; |
| 535 | id = fcu_fans[fan_index].id; |
| 536 | if (id == FCU_FAN_ABSENT_ID) |
| 537 | return -EINVAL; |
| 538 | |
| 539 | rc = fan_read_reg(0xb, &failure, 1); |
| 540 | if (rc != 1) |
| 541 | return -EIO; |
| 542 | if ((failure & (1 << id)) != 0) |
| 543 | return -EFAULT; |
| 544 | rc = fan_read_reg(0xd, &active, 1); |
| 545 | if (rc != 1) |
| 546 | return -EIO; |
| 547 | if ((active & (1 << id)) == 0) |
| 548 | return -ENXIO; |
| 549 | |
| 550 | /* Programmed value or real current speed */ |
| 551 | reg_base = programmed ? 0x10 : 0x11; |
| 552 | rc = fan_read_reg(reg_base + (id * 2), buf, 2); |
| 553 | if (rc != 2) |
| 554 | return -EIO; |
| 555 | |
| 556 | return (buf[0] << 5) | buf[1] >> 3; |
| 557 | } |
| 558 | |
| 559 | static int set_pwm_fan(int fan_index, int pwm) |
| 560 | { |
| 561 | unsigned char buf[2]; |
| 562 | int rc, id; |
| 563 | |
| 564 | if (fcu_fans[fan_index].type != FCU_FAN_PWM) |
| 565 | return -EINVAL; |
| 566 | id = fcu_fans[fan_index].id; |
| 567 | if (id == FCU_FAN_ABSENT_ID) |
| 568 | return -EINVAL; |
| 569 | |
| 570 | if (pwm < 10) |
| 571 | pwm = 10; |
| 572 | else if (pwm > 100) |
| 573 | pwm = 100; |
| 574 | pwm = (pwm * 2559) / 1000; |
| 575 | buf[0] = pwm; |
| 576 | rc = fan_write_reg(0x30 + (id * 2), buf, 1); |
| 577 | if (rc < 0) |
| 578 | return rc; |
| 579 | return 0; |
| 580 | } |
| 581 | |
| 582 | static int get_pwm_fan(int fan_index) |
| 583 | { |
| 584 | unsigned char failure; |
| 585 | unsigned char active; |
| 586 | unsigned char buf[2]; |
| 587 | int rc, id; |
| 588 | |
| 589 | if (fcu_fans[fan_index].type != FCU_FAN_PWM) |
| 590 | return -EINVAL; |
| 591 | id = fcu_fans[fan_index].id; |
| 592 | if (id == FCU_FAN_ABSENT_ID) |
| 593 | return -EINVAL; |
| 594 | |
| 595 | rc = fan_read_reg(0x2b, &failure, 1); |
| 596 | if (rc != 1) |
| 597 | return -EIO; |
| 598 | if ((failure & (1 << id)) != 0) |
| 599 | return -EFAULT; |
| 600 | rc = fan_read_reg(0x2d, &active, 1); |
| 601 | if (rc != 1) |
| 602 | return -EIO; |
| 603 | if ((active & (1 << id)) == 0) |
| 604 | return -ENXIO; |
| 605 | |
| 606 | /* Programmed value or real current speed */ |
| 607 | rc = fan_read_reg(0x30 + (id * 2), buf, 1); |
| 608 | if (rc != 1) |
| 609 | return -EIO; |
| 610 | |
| 611 | return (buf[0] * 1000) / 2559; |
| 612 | } |
| 613 | |
| 614 | /* |
| 615 | * Utility routine to read the CPU calibration EEPROM data |
| 616 | * from the device-tree |
| 617 | */ |
| 618 | static int read_eeprom(int cpu, struct mpu_data *out) |
| 619 | { |
| 620 | struct device_node *np; |
| 621 | char nodename[64]; |
| 622 | u8 *data; |
| 623 | int len; |
| 624 | |
| 625 | /* prom.c routine for finding a node by path is a bit brain dead |
| 626 | * and requires exact @xxx unit numbers. This is a bit ugly but |
| 627 | * will work for these machines |
| 628 | */ |
| 629 | sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0); |
| 630 | np = of_find_node_by_path(nodename); |
| 631 | if (np == NULL) { |
| 632 | printk(KERN_ERR "therm_pm72: Failed to retreive cpuid node from device-tree\n"); |
| 633 | return -ENODEV; |
| 634 | } |
| 635 | data = (u8 *)get_property(np, "cpuid", &len); |
| 636 | if (data == NULL) { |
| 637 | printk(KERN_ERR "therm_pm72: Failed to retreive cpuid property from device-tree\n"); |
| 638 | of_node_put(np); |
| 639 | return -ENODEV; |
| 640 | } |
| 641 | memcpy(out, data, sizeof(struct mpu_data)); |
| 642 | of_node_put(np); |
| 643 | |
| 644 | return 0; |
| 645 | } |
| 646 | |
| 647 | static void fetch_cpu_pumps_minmax(void) |
| 648 | { |
| 649 | struct cpu_pid_state *state0 = &cpu_state[0]; |
| 650 | struct cpu_pid_state *state1 = &cpu_state[1]; |
| 651 | u16 pump_min = 0, pump_max = 0xffff; |
| 652 | u16 tmp[4]; |
| 653 | |
| 654 | /* Try to fetch pumps min/max infos from eeprom */ |
| 655 | |
| 656 | memcpy(&tmp, &state0->mpu.processor_part_num, 8); |
| 657 | if (tmp[0] != 0xffff && tmp[1] != 0xffff) { |
| 658 | pump_min = max(pump_min, tmp[0]); |
| 659 | pump_max = min(pump_max, tmp[1]); |
| 660 | } |
| 661 | if (tmp[2] != 0xffff && tmp[3] != 0xffff) { |
| 662 | pump_min = max(pump_min, tmp[2]); |
| 663 | pump_max = min(pump_max, tmp[3]); |
| 664 | } |
| 665 | |
| 666 | /* Double check the values, this _IS_ needed as the EEPROM on |
| 667 | * some dual 2.5Ghz G5s seem, at least, to have both min & max |
| 668 | * same to the same value ... (grrrr) |
| 669 | */ |
| 670 | if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) { |
| 671 | pump_min = CPU_PUMP_OUTPUT_MIN; |
| 672 | pump_max = CPU_PUMP_OUTPUT_MAX; |
| 673 | } |
| 674 | |
| 675 | state0->pump_min = state1->pump_min = pump_min; |
| 676 | state0->pump_max = state1->pump_max = pump_max; |
| 677 | } |
| 678 | |
| 679 | /* |
| 680 | * Now, unfortunately, sysfs doesn't give us a nice void * we could |
| 681 | * pass around to the attribute functions, so we don't really have |
| 682 | * choice but implement a bunch of them... |
| 683 | * |
| 684 | * That sucks a bit, we take the lock because FIX32TOPRINT evaluates |
| 685 | * the input twice... I accept patches :) |
| 686 | */ |
| 687 | #define BUILD_SHOW_FUNC_FIX(name, data) \ |
Yani Ioannou | e404e27 | 2005-05-17 06:42:58 -0400 | [diff] [blame^] | 688 | static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 689 | { \ |
| 690 | ssize_t r; \ |
| 691 | down(&driver_lock); \ |
| 692 | r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \ |
| 693 | up(&driver_lock); \ |
| 694 | return r; \ |
| 695 | } |
| 696 | #define BUILD_SHOW_FUNC_INT(name, data) \ |
Yani Ioannou | e404e27 | 2005-05-17 06:42:58 -0400 | [diff] [blame^] | 697 | static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 698 | { \ |
| 699 | return sprintf(buf, "%d", data); \ |
| 700 | } |
| 701 | |
| 702 | BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp) |
| 703 | BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage) |
| 704 | BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a) |
| 705 | BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm) |
| 706 | BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm) |
| 707 | |
| 708 | BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp) |
| 709 | BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage) |
| 710 | BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a) |
| 711 | BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm) |
| 712 | BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm) |
| 713 | |
| 714 | BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp) |
| 715 | BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm) |
| 716 | |
| 717 | BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp) |
| 718 | BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm) |
| 719 | |
| 720 | BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp) |
| 721 | |
| 722 | static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL); |
| 723 | static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL); |
| 724 | static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL); |
| 725 | static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL); |
| 726 | static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL); |
| 727 | |
| 728 | static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL); |
| 729 | static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL); |
| 730 | static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL); |
| 731 | static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL); |
| 732 | static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL); |
| 733 | |
| 734 | static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL); |
| 735 | static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL); |
| 736 | |
| 737 | static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL); |
| 738 | static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL); |
| 739 | |
| 740 | static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL); |
| 741 | |
| 742 | /* |
| 743 | * CPUs fans control loop |
| 744 | */ |
| 745 | |
| 746 | static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power) |
| 747 | { |
| 748 | s32 ltemp, volts, amps; |
| 749 | int index, rc = 0; |
| 750 | |
| 751 | /* Default (in case of error) */ |
| 752 | *temp = state->cur_temp; |
| 753 | *power = state->cur_power; |
| 754 | |
| 755 | if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) |
| 756 | index = (state->index == 0) ? |
| 757 | CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX; |
| 758 | else |
| 759 | index = (state->index == 0) ? |
| 760 | CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX; |
| 761 | |
| 762 | /* Read current fan status */ |
| 763 | rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED); |
| 764 | if (rc < 0) { |
| 765 | /* XXX What do we do now ? Nothing for now, keep old value, but |
| 766 | * return error upstream |
| 767 | */ |
| 768 | DBG(" cpu %d, fan reading error !\n", state->index); |
| 769 | } else { |
| 770 | state->rpm = rc; |
| 771 | DBG(" cpu %d, exhaust RPM: %d\n", state->index, state->rpm); |
| 772 | } |
| 773 | |
| 774 | /* Get some sensor readings and scale it */ |
| 775 | ltemp = read_smon_adc(state, 1); |
| 776 | if (ltemp == -1) { |
| 777 | /* XXX What do we do now ? */ |
| 778 | state->overtemp++; |
| 779 | if (rc == 0) |
| 780 | rc = -EIO; |
| 781 | DBG(" cpu %d, temp reading error !\n", state->index); |
| 782 | } else { |
| 783 | /* Fixup temperature according to diode calibration |
| 784 | */ |
| 785 | DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n", |
| 786 | state->index, |
| 787 | ltemp, state->mpu.mdiode, state->mpu.bdiode); |
| 788 | *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2; |
| 789 | state->last_temp = *temp; |
| 790 | DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp))); |
| 791 | } |
| 792 | |
| 793 | /* |
| 794 | * Read voltage & current and calculate power |
| 795 | */ |
| 796 | volts = read_smon_adc(state, 3); |
| 797 | amps = read_smon_adc(state, 4); |
| 798 | |
| 799 | /* Scale voltage and current raw sensor values according to fixed scales |
| 800 | * obtained in Darwin and calculate power from I and V |
| 801 | */ |
| 802 | volts *= ADC_CPU_VOLTAGE_SCALE; |
| 803 | amps *= ADC_CPU_CURRENT_SCALE; |
| 804 | *power = (((u64)volts) * ((u64)amps)) >> 16; |
| 805 | state->voltage = volts; |
| 806 | state->current_a = amps; |
| 807 | state->last_power = *power; |
| 808 | |
| 809 | DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n", |
| 810 | state->index, FIX32TOPRINT(state->current_a), |
| 811 | FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power)); |
| 812 | |
| 813 | return 0; |
| 814 | } |
| 815 | |
| 816 | static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power) |
| 817 | { |
| 818 | s32 power_target, integral, derivative, proportional, adj_in_target, sval; |
| 819 | s64 integ_p, deriv_p, prop_p, sum; |
| 820 | int i; |
| 821 | |
| 822 | /* Calculate power target value (could be done once for all) |
| 823 | * and convert to a 16.16 fp number |
| 824 | */ |
| 825 | power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16; |
| 826 | DBG(" power target: %d.%03d, error: %d.%03d\n", |
| 827 | FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power)); |
| 828 | |
| 829 | /* Store temperature and power in history array */ |
| 830 | state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE; |
| 831 | state->temp_history[state->cur_temp] = temp; |
| 832 | state->cur_power = (state->cur_power + 1) % state->count_power; |
| 833 | state->power_history[state->cur_power] = power; |
| 834 | state->error_history[state->cur_power] = power_target - power; |
| 835 | |
| 836 | /* If first loop, fill the history table */ |
| 837 | if (state->first) { |
| 838 | for (i = 0; i < (state->count_power - 1); i++) { |
| 839 | state->cur_power = (state->cur_power + 1) % state->count_power; |
| 840 | state->power_history[state->cur_power] = power; |
| 841 | state->error_history[state->cur_power] = power_target - power; |
| 842 | } |
| 843 | for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) { |
| 844 | state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE; |
| 845 | state->temp_history[state->cur_temp] = temp; |
| 846 | } |
| 847 | state->first = 0; |
| 848 | } |
| 849 | |
| 850 | /* Calculate the integral term normally based on the "power" values */ |
| 851 | sum = 0; |
| 852 | integral = 0; |
| 853 | for (i = 0; i < state->count_power; i++) |
| 854 | integral += state->error_history[i]; |
| 855 | integral *= CPU_PID_INTERVAL; |
| 856 | DBG(" integral: %08x\n", integral); |
| 857 | |
| 858 | /* Calculate the adjusted input (sense value). |
| 859 | * G_r is 12.20 |
| 860 | * integ is 16.16 |
| 861 | * so the result is 28.36 |
| 862 | * |
| 863 | * input target is mpu.ttarget, input max is mpu.tmax |
| 864 | */ |
| 865 | integ_p = ((s64)state->mpu.pid_gr) * (s64)integral; |
| 866 | DBG(" integ_p: %d\n", (int)(integ_p >> 36)); |
| 867 | sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff); |
| 868 | adj_in_target = (state->mpu.ttarget << 16); |
| 869 | if (adj_in_target > sval) |
| 870 | adj_in_target = sval; |
| 871 | DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target), |
| 872 | state->mpu.ttarget); |
| 873 | |
| 874 | /* Calculate the derivative term */ |
| 875 | derivative = state->temp_history[state->cur_temp] - |
| 876 | state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1) |
| 877 | % CPU_TEMP_HISTORY_SIZE]; |
| 878 | derivative /= CPU_PID_INTERVAL; |
| 879 | deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative; |
| 880 | DBG(" deriv_p: %d\n", (int)(deriv_p >> 36)); |
| 881 | sum += deriv_p; |
| 882 | |
| 883 | /* Calculate the proportional term */ |
| 884 | proportional = temp - adj_in_target; |
| 885 | prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional; |
| 886 | DBG(" prop_p: %d\n", (int)(prop_p >> 36)); |
| 887 | sum += prop_p; |
| 888 | |
| 889 | /* Scale sum */ |
| 890 | sum >>= 36; |
| 891 | |
| 892 | DBG(" sum: %d\n", (int)sum); |
| 893 | state->rpm += (s32)sum; |
| 894 | } |
| 895 | |
| 896 | static void do_monitor_cpu_combined(void) |
| 897 | { |
| 898 | struct cpu_pid_state *state0 = &cpu_state[0]; |
| 899 | struct cpu_pid_state *state1 = &cpu_state[1]; |
| 900 | s32 temp0, power0, temp1, power1; |
| 901 | s32 temp_combi, power_combi; |
| 902 | int rc, intake, pump; |
| 903 | |
| 904 | rc = do_read_one_cpu_values(state0, &temp0, &power0); |
| 905 | if (rc < 0) { |
| 906 | /* XXX What do we do now ? */ |
| 907 | } |
| 908 | state1->overtemp = 0; |
| 909 | rc = do_read_one_cpu_values(state1, &temp1, &power1); |
| 910 | if (rc < 0) { |
| 911 | /* XXX What do we do now ? */ |
| 912 | } |
| 913 | if (state1->overtemp) |
| 914 | state0->overtemp++; |
| 915 | |
| 916 | temp_combi = max(temp0, temp1); |
| 917 | power_combi = max(power0, power1); |
| 918 | |
| 919 | /* Check tmax, increment overtemp if we are there. At tmax+8, we go |
| 920 | * full blown immediately and try to trigger a shutdown |
| 921 | */ |
| 922 | if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) { |
| 923 | printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n", |
| 924 | temp_combi >> 16); |
| 925 | state0->overtemp = CPU_MAX_OVERTEMP; |
| 926 | } else if (temp_combi > (state0->mpu.tmax << 16)) |
| 927 | state0->overtemp++; |
| 928 | else |
| 929 | state0->overtemp = 0; |
| 930 | if (state0->overtemp >= CPU_MAX_OVERTEMP) |
| 931 | critical_state = 1; |
| 932 | if (state0->overtemp > 0) { |
| 933 | state0->rpm = state0->mpu.rmaxn_exhaust_fan; |
| 934 | state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan; |
| 935 | pump = state0->pump_min; |
| 936 | goto do_set_fans; |
| 937 | } |
| 938 | |
| 939 | /* Do the PID */ |
| 940 | do_cpu_pid(state0, temp_combi, power_combi); |
| 941 | |
| 942 | /* Range check */ |
| 943 | state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan); |
| 944 | state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan); |
| 945 | |
| 946 | /* Calculate intake fan speed */ |
| 947 | intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16; |
| 948 | intake = max(intake, (int)state0->mpu.rminn_intake_fan); |
| 949 | intake = min(intake, (int)state0->mpu.rmaxn_intake_fan); |
| 950 | state0->intake_rpm = intake; |
| 951 | |
| 952 | /* Calculate pump speed */ |
| 953 | pump = (state0->rpm * state0->pump_max) / |
| 954 | state0->mpu.rmaxn_exhaust_fan; |
| 955 | pump = min(pump, state0->pump_max); |
| 956 | pump = max(pump, state0->pump_min); |
| 957 | |
| 958 | do_set_fans: |
| 959 | /* We copy values from state 0 to state 1 for /sysfs */ |
| 960 | state1->rpm = state0->rpm; |
| 961 | state1->intake_rpm = state0->intake_rpm; |
| 962 | |
| 963 | DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n", |
| 964 | state1->index, (int)state1->rpm, intake, pump, state1->overtemp); |
| 965 | |
| 966 | /* We should check for errors, shouldn't we ? But then, what |
| 967 | * do we do once the error occurs ? For FCU notified fan |
| 968 | * failures (-EFAULT) we probably want to notify userland |
| 969 | * some way... |
| 970 | */ |
| 971 | set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake); |
| 972 | set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm); |
| 973 | set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake); |
| 974 | set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm); |
| 975 | |
| 976 | if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) |
| 977 | set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump); |
| 978 | if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) |
| 979 | set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump); |
| 980 | } |
| 981 | |
| 982 | static void do_monitor_cpu_split(struct cpu_pid_state *state) |
| 983 | { |
| 984 | s32 temp, power; |
| 985 | int rc, intake; |
| 986 | |
| 987 | /* Read current fan status */ |
| 988 | rc = do_read_one_cpu_values(state, &temp, &power); |
| 989 | if (rc < 0) { |
| 990 | /* XXX What do we do now ? */ |
| 991 | } |
| 992 | |
| 993 | /* Check tmax, increment overtemp if we are there. At tmax+8, we go |
| 994 | * full blown immediately and try to trigger a shutdown |
| 995 | */ |
| 996 | if (temp >= ((state->mpu.tmax + 8) << 16)) { |
| 997 | printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum" |
| 998 | " (%d) !\n", |
| 999 | state->index, temp >> 16); |
| 1000 | state->overtemp = CPU_MAX_OVERTEMP; |
| 1001 | } else if (temp > (state->mpu.tmax << 16)) |
| 1002 | state->overtemp++; |
| 1003 | else |
| 1004 | state->overtemp = 0; |
| 1005 | if (state->overtemp >= CPU_MAX_OVERTEMP) |
| 1006 | critical_state = 1; |
| 1007 | if (state->overtemp > 0) { |
| 1008 | state->rpm = state->mpu.rmaxn_exhaust_fan; |
| 1009 | state->intake_rpm = intake = state->mpu.rmaxn_intake_fan; |
| 1010 | goto do_set_fans; |
| 1011 | } |
| 1012 | |
| 1013 | /* Do the PID */ |
| 1014 | do_cpu_pid(state, temp, power); |
| 1015 | |
| 1016 | /* Range check */ |
| 1017 | state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan); |
| 1018 | state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan); |
| 1019 | |
| 1020 | /* Calculate intake fan */ |
| 1021 | intake = (state->rpm * CPU_INTAKE_SCALE) >> 16; |
| 1022 | intake = max(intake, (int)state->mpu.rminn_intake_fan); |
| 1023 | intake = min(intake, (int)state->mpu.rmaxn_intake_fan); |
| 1024 | state->intake_rpm = intake; |
| 1025 | |
| 1026 | do_set_fans: |
| 1027 | DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n", |
| 1028 | state->index, (int)state->rpm, intake, state->overtemp); |
| 1029 | |
| 1030 | /* We should check for errors, shouldn't we ? But then, what |
| 1031 | * do we do once the error occurs ? For FCU notified fan |
| 1032 | * failures (-EFAULT) we probably want to notify userland |
| 1033 | * some way... |
| 1034 | */ |
| 1035 | if (state->index == 0) { |
| 1036 | set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake); |
| 1037 | set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm); |
| 1038 | } else { |
| 1039 | set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake); |
| 1040 | set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm); |
| 1041 | } |
| 1042 | } |
| 1043 | |
| 1044 | static void do_monitor_cpu_rack(struct cpu_pid_state *state) |
| 1045 | { |
| 1046 | s32 temp, power, fan_min; |
| 1047 | int rc; |
| 1048 | |
| 1049 | /* Read current fan status */ |
| 1050 | rc = do_read_one_cpu_values(state, &temp, &power); |
| 1051 | if (rc < 0) { |
| 1052 | /* XXX What do we do now ? */ |
| 1053 | } |
| 1054 | |
| 1055 | /* Check tmax, increment overtemp if we are there. At tmax+8, we go |
| 1056 | * full blown immediately and try to trigger a shutdown |
| 1057 | */ |
| 1058 | if (temp >= ((state->mpu.tmax + 8) << 16)) { |
| 1059 | printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum" |
| 1060 | " (%d) !\n", |
| 1061 | state->index, temp >> 16); |
| 1062 | state->overtemp = CPU_MAX_OVERTEMP; |
| 1063 | } else if (temp > (state->mpu.tmax << 16)) |
| 1064 | state->overtemp++; |
| 1065 | else |
| 1066 | state->overtemp = 0; |
| 1067 | if (state->overtemp >= CPU_MAX_OVERTEMP) |
| 1068 | critical_state = 1; |
| 1069 | if (state->overtemp > 0) { |
| 1070 | state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan; |
| 1071 | goto do_set_fans; |
| 1072 | } |
| 1073 | |
| 1074 | /* Do the PID */ |
| 1075 | do_cpu_pid(state, temp, power); |
| 1076 | |
| 1077 | /* Check clamp from dimms */ |
| 1078 | fan_min = dimm_output_clamp; |
| 1079 | fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan); |
| 1080 | |
| 1081 | state->rpm = max(state->rpm, (int)fan_min); |
| 1082 | state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan); |
| 1083 | state->intake_rpm = state->rpm; |
| 1084 | |
| 1085 | do_set_fans: |
| 1086 | DBG("** CPU %d RPM: %d overtemp: %d\n", |
| 1087 | state->index, (int)state->rpm, state->overtemp); |
| 1088 | |
| 1089 | /* We should check for errors, shouldn't we ? But then, what |
| 1090 | * do we do once the error occurs ? For FCU notified fan |
| 1091 | * failures (-EFAULT) we probably want to notify userland |
| 1092 | * some way... |
| 1093 | */ |
| 1094 | if (state->index == 0) { |
| 1095 | set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm); |
| 1096 | set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm); |
| 1097 | set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm); |
| 1098 | } else { |
| 1099 | set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm); |
| 1100 | set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm); |
| 1101 | set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm); |
| 1102 | } |
| 1103 | } |
| 1104 | |
| 1105 | /* |
| 1106 | * Initialize the state structure for one CPU control loop |
| 1107 | */ |
| 1108 | static int init_cpu_state(struct cpu_pid_state *state, int index) |
| 1109 | { |
| 1110 | state->index = index; |
| 1111 | state->first = 1; |
| 1112 | state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000; |
| 1113 | state->overtemp = 0; |
| 1114 | state->adc_config = 0x00; |
| 1115 | |
| 1116 | |
| 1117 | if (index == 0) |
| 1118 | state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor"); |
| 1119 | else if (index == 1) |
| 1120 | state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor"); |
| 1121 | if (state->monitor == NULL) |
| 1122 | goto fail; |
| 1123 | |
| 1124 | if (read_eeprom(index, &state->mpu)) |
| 1125 | goto fail; |
| 1126 | |
| 1127 | state->count_power = state->mpu.tguardband; |
| 1128 | if (state->count_power > CPU_POWER_HISTORY_SIZE) { |
| 1129 | printk(KERN_WARNING "Warning ! too many power history slots\n"); |
| 1130 | state->count_power = CPU_POWER_HISTORY_SIZE; |
| 1131 | } |
| 1132 | DBG("CPU %d Using %d power history entries\n", index, state->count_power); |
| 1133 | |
| 1134 | if (index == 0) { |
| 1135 | device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature); |
| 1136 | device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage); |
| 1137 | device_create_file(&of_dev->dev, &dev_attr_cpu0_current); |
| 1138 | device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm); |
| 1139 | device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm); |
| 1140 | } else { |
| 1141 | device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature); |
| 1142 | device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage); |
| 1143 | device_create_file(&of_dev->dev, &dev_attr_cpu1_current); |
| 1144 | device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm); |
| 1145 | device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm); |
| 1146 | } |
| 1147 | |
| 1148 | return 0; |
| 1149 | fail: |
| 1150 | if (state->monitor) |
| 1151 | detach_i2c_chip(state->monitor); |
| 1152 | state->monitor = NULL; |
| 1153 | |
| 1154 | return -ENODEV; |
| 1155 | } |
| 1156 | |
| 1157 | /* |
| 1158 | * Dispose of the state data for one CPU control loop |
| 1159 | */ |
| 1160 | static void dispose_cpu_state(struct cpu_pid_state *state) |
| 1161 | { |
| 1162 | if (state->monitor == NULL) |
| 1163 | return; |
| 1164 | |
| 1165 | if (state->index == 0) { |
| 1166 | device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature); |
| 1167 | device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage); |
| 1168 | device_remove_file(&of_dev->dev, &dev_attr_cpu0_current); |
| 1169 | device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm); |
| 1170 | device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm); |
| 1171 | } else { |
| 1172 | device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature); |
| 1173 | device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage); |
| 1174 | device_remove_file(&of_dev->dev, &dev_attr_cpu1_current); |
| 1175 | device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm); |
| 1176 | device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm); |
| 1177 | } |
| 1178 | |
| 1179 | detach_i2c_chip(state->monitor); |
| 1180 | state->monitor = NULL; |
| 1181 | } |
| 1182 | |
| 1183 | /* |
| 1184 | * Motherboard backside & U3 heatsink fan control loop |
| 1185 | */ |
| 1186 | static void do_monitor_backside(struct backside_pid_state *state) |
| 1187 | { |
| 1188 | s32 temp, integral, derivative, fan_min; |
| 1189 | s64 integ_p, deriv_p, prop_p, sum; |
| 1190 | int i, rc; |
| 1191 | |
| 1192 | if (--state->ticks != 0) |
| 1193 | return; |
| 1194 | state->ticks = backside_params.interval; |
| 1195 | |
| 1196 | DBG("backside:\n"); |
| 1197 | |
| 1198 | /* Check fan status */ |
| 1199 | rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX); |
| 1200 | if (rc < 0) { |
| 1201 | printk(KERN_WARNING "Error %d reading backside fan !\n", rc); |
| 1202 | /* XXX What do we do now ? */ |
| 1203 | } else |
| 1204 | state->pwm = rc; |
| 1205 | DBG(" current pwm: %d\n", state->pwm); |
| 1206 | |
| 1207 | /* Get some sensor readings */ |
| 1208 | temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16; |
| 1209 | state->last_temp = temp; |
| 1210 | DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp), |
| 1211 | FIX32TOPRINT(backside_params.input_target)); |
| 1212 | |
| 1213 | /* Store temperature and error in history array */ |
| 1214 | state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE; |
| 1215 | state->sample_history[state->cur_sample] = temp; |
| 1216 | state->error_history[state->cur_sample] = temp - backside_params.input_target; |
| 1217 | |
| 1218 | /* If first loop, fill the history table */ |
| 1219 | if (state->first) { |
| 1220 | for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) { |
| 1221 | state->cur_sample = (state->cur_sample + 1) % |
| 1222 | BACKSIDE_PID_HISTORY_SIZE; |
| 1223 | state->sample_history[state->cur_sample] = temp; |
| 1224 | state->error_history[state->cur_sample] = |
| 1225 | temp - backside_params.input_target; |
| 1226 | } |
| 1227 | state->first = 0; |
| 1228 | } |
| 1229 | |
| 1230 | /* Calculate the integral term */ |
| 1231 | sum = 0; |
| 1232 | integral = 0; |
| 1233 | for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++) |
| 1234 | integral += state->error_history[i]; |
| 1235 | integral *= backside_params.interval; |
| 1236 | DBG(" integral: %08x\n", integral); |
| 1237 | integ_p = ((s64)backside_params.G_r) * (s64)integral; |
| 1238 | DBG(" integ_p: %d\n", (int)(integ_p >> 36)); |
| 1239 | sum += integ_p; |
| 1240 | |
| 1241 | /* Calculate the derivative term */ |
| 1242 | derivative = state->error_history[state->cur_sample] - |
| 1243 | state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1) |
| 1244 | % BACKSIDE_PID_HISTORY_SIZE]; |
| 1245 | derivative /= backside_params.interval; |
| 1246 | deriv_p = ((s64)backside_params.G_d) * (s64)derivative; |
| 1247 | DBG(" deriv_p: %d\n", (int)(deriv_p >> 36)); |
| 1248 | sum += deriv_p; |
| 1249 | |
| 1250 | /* Calculate the proportional term */ |
| 1251 | prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]); |
| 1252 | DBG(" prop_p: %d\n", (int)(prop_p >> 36)); |
| 1253 | sum += prop_p; |
| 1254 | |
| 1255 | /* Scale sum */ |
| 1256 | sum >>= 36; |
| 1257 | |
| 1258 | DBG(" sum: %d\n", (int)sum); |
| 1259 | if (backside_params.additive) |
| 1260 | state->pwm += (s32)sum; |
| 1261 | else |
| 1262 | state->pwm = sum; |
| 1263 | |
| 1264 | /* Check for clamp */ |
| 1265 | fan_min = (dimm_output_clamp * 100) / 14000; |
| 1266 | fan_min = max(fan_min, backside_params.output_min); |
| 1267 | |
| 1268 | state->pwm = max(state->pwm, fan_min); |
| 1269 | state->pwm = min(state->pwm, backside_params.output_max); |
| 1270 | |
| 1271 | DBG("** BACKSIDE PWM: %d\n", (int)state->pwm); |
| 1272 | set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm); |
| 1273 | } |
| 1274 | |
| 1275 | /* |
| 1276 | * Initialize the state structure for the backside fan control loop |
| 1277 | */ |
| 1278 | static int init_backside_state(struct backside_pid_state *state) |
| 1279 | { |
| 1280 | struct device_node *u3; |
| 1281 | int u3h = 1; /* conservative by default */ |
| 1282 | |
| 1283 | /* |
| 1284 | * There are different PID params for machines with U3 and machines |
| 1285 | * with U3H, pick the right ones now |
| 1286 | */ |
| 1287 | u3 = of_find_node_by_path("/u3@0,f8000000"); |
| 1288 | if (u3 != NULL) { |
| 1289 | u32 *vers = (u32 *)get_property(u3, "device-rev", NULL); |
| 1290 | if (vers) |
| 1291 | if (((*vers) & 0x3f) < 0x34) |
| 1292 | u3h = 0; |
| 1293 | of_node_put(u3); |
| 1294 | } |
| 1295 | |
| 1296 | if (rackmac) { |
| 1297 | backside_params.G_d = BACKSIDE_PID_RACK_G_d; |
| 1298 | backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET; |
| 1299 | backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN; |
| 1300 | backside_params.interval = BACKSIDE_PID_RACK_INTERVAL; |
| 1301 | backside_params.G_p = BACKSIDE_PID_RACK_G_p; |
| 1302 | backside_params.G_r = BACKSIDE_PID_G_r; |
| 1303 | backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX; |
| 1304 | backside_params.additive = 0; |
| 1305 | } else if (u3h) { |
| 1306 | backside_params.G_d = BACKSIDE_PID_U3H_G_d; |
| 1307 | backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET; |
| 1308 | backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN; |
| 1309 | backside_params.interval = BACKSIDE_PID_INTERVAL; |
| 1310 | backside_params.G_p = BACKSIDE_PID_G_p; |
| 1311 | backside_params.G_r = BACKSIDE_PID_G_r; |
| 1312 | backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX; |
| 1313 | backside_params.additive = 1; |
| 1314 | } else { |
| 1315 | backside_params.G_d = BACKSIDE_PID_U3_G_d; |
| 1316 | backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET; |
| 1317 | backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN; |
| 1318 | backside_params.interval = BACKSIDE_PID_INTERVAL; |
| 1319 | backside_params.G_p = BACKSIDE_PID_G_p; |
| 1320 | backside_params.G_r = BACKSIDE_PID_G_r; |
| 1321 | backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX; |
| 1322 | backside_params.additive = 1; |
| 1323 | } |
| 1324 | |
| 1325 | state->ticks = 1; |
| 1326 | state->first = 1; |
| 1327 | state->pwm = 50; |
| 1328 | |
| 1329 | state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp"); |
| 1330 | if (state->monitor == NULL) |
| 1331 | return -ENODEV; |
| 1332 | |
| 1333 | device_create_file(&of_dev->dev, &dev_attr_backside_temperature); |
| 1334 | device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm); |
| 1335 | |
| 1336 | return 0; |
| 1337 | } |
| 1338 | |
| 1339 | /* |
| 1340 | * Dispose of the state data for the backside control loop |
| 1341 | */ |
| 1342 | static void dispose_backside_state(struct backside_pid_state *state) |
| 1343 | { |
| 1344 | if (state->monitor == NULL) |
| 1345 | return; |
| 1346 | |
| 1347 | device_remove_file(&of_dev->dev, &dev_attr_backside_temperature); |
| 1348 | device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm); |
| 1349 | |
| 1350 | detach_i2c_chip(state->monitor); |
| 1351 | state->monitor = NULL; |
| 1352 | } |
| 1353 | |
| 1354 | /* |
| 1355 | * Drives bay fan control loop |
| 1356 | */ |
| 1357 | static void do_monitor_drives(struct drives_pid_state *state) |
| 1358 | { |
| 1359 | s32 temp, integral, derivative; |
| 1360 | s64 integ_p, deriv_p, prop_p, sum; |
| 1361 | int i, rc; |
| 1362 | |
| 1363 | if (--state->ticks != 0) |
| 1364 | return; |
| 1365 | state->ticks = DRIVES_PID_INTERVAL; |
| 1366 | |
| 1367 | DBG("drives:\n"); |
| 1368 | |
| 1369 | /* Check fan status */ |
| 1370 | rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED); |
| 1371 | if (rc < 0) { |
| 1372 | printk(KERN_WARNING "Error %d reading drives fan !\n", rc); |
| 1373 | /* XXX What do we do now ? */ |
| 1374 | } else |
| 1375 | state->rpm = rc; |
| 1376 | DBG(" current rpm: %d\n", state->rpm); |
| 1377 | |
| 1378 | /* Get some sensor readings */ |
| 1379 | temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor, DS1775_TEMP)) << 8; |
| 1380 | state->last_temp = temp; |
| 1381 | DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp), |
| 1382 | FIX32TOPRINT(DRIVES_PID_INPUT_TARGET)); |
| 1383 | |
| 1384 | /* Store temperature and error in history array */ |
| 1385 | state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE; |
| 1386 | state->sample_history[state->cur_sample] = temp; |
| 1387 | state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET; |
| 1388 | |
| 1389 | /* If first loop, fill the history table */ |
| 1390 | if (state->first) { |
| 1391 | for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) { |
| 1392 | state->cur_sample = (state->cur_sample + 1) % |
| 1393 | DRIVES_PID_HISTORY_SIZE; |
| 1394 | state->sample_history[state->cur_sample] = temp; |
| 1395 | state->error_history[state->cur_sample] = |
| 1396 | temp - DRIVES_PID_INPUT_TARGET; |
| 1397 | } |
| 1398 | state->first = 0; |
| 1399 | } |
| 1400 | |
| 1401 | /* Calculate the integral term */ |
| 1402 | sum = 0; |
| 1403 | integral = 0; |
| 1404 | for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++) |
| 1405 | integral += state->error_history[i]; |
| 1406 | integral *= DRIVES_PID_INTERVAL; |
| 1407 | DBG(" integral: %08x\n", integral); |
| 1408 | integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral; |
| 1409 | DBG(" integ_p: %d\n", (int)(integ_p >> 36)); |
| 1410 | sum += integ_p; |
| 1411 | |
| 1412 | /* Calculate the derivative term */ |
| 1413 | derivative = state->error_history[state->cur_sample] - |
| 1414 | state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1) |
| 1415 | % DRIVES_PID_HISTORY_SIZE]; |
| 1416 | derivative /= DRIVES_PID_INTERVAL; |
| 1417 | deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative; |
| 1418 | DBG(" deriv_p: %d\n", (int)(deriv_p >> 36)); |
| 1419 | sum += deriv_p; |
| 1420 | |
| 1421 | /* Calculate the proportional term */ |
| 1422 | prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]); |
| 1423 | DBG(" prop_p: %d\n", (int)(prop_p >> 36)); |
| 1424 | sum += prop_p; |
| 1425 | |
| 1426 | /* Scale sum */ |
| 1427 | sum >>= 36; |
| 1428 | |
| 1429 | DBG(" sum: %d\n", (int)sum); |
| 1430 | state->rpm += (s32)sum; |
| 1431 | |
| 1432 | state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN); |
| 1433 | state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX); |
| 1434 | |
| 1435 | DBG("** DRIVES RPM: %d\n", (int)state->rpm); |
| 1436 | set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm); |
| 1437 | } |
| 1438 | |
| 1439 | /* |
| 1440 | * Initialize the state structure for the drives bay fan control loop |
| 1441 | */ |
| 1442 | static int init_drives_state(struct drives_pid_state *state) |
| 1443 | { |
| 1444 | state->ticks = 1; |
| 1445 | state->first = 1; |
| 1446 | state->rpm = 1000; |
| 1447 | |
| 1448 | state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp"); |
| 1449 | if (state->monitor == NULL) |
| 1450 | return -ENODEV; |
| 1451 | |
| 1452 | device_create_file(&of_dev->dev, &dev_attr_drives_temperature); |
| 1453 | device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm); |
| 1454 | |
| 1455 | return 0; |
| 1456 | } |
| 1457 | |
| 1458 | /* |
| 1459 | * Dispose of the state data for the drives control loop |
| 1460 | */ |
| 1461 | static void dispose_drives_state(struct drives_pid_state *state) |
| 1462 | { |
| 1463 | if (state->monitor == NULL) |
| 1464 | return; |
| 1465 | |
| 1466 | device_remove_file(&of_dev->dev, &dev_attr_drives_temperature); |
| 1467 | device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm); |
| 1468 | |
| 1469 | detach_i2c_chip(state->monitor); |
| 1470 | state->monitor = NULL; |
| 1471 | } |
| 1472 | |
| 1473 | /* |
| 1474 | * DIMMs temp control loop |
| 1475 | */ |
| 1476 | static void do_monitor_dimms(struct dimm_pid_state *state) |
| 1477 | { |
| 1478 | s32 temp, integral, derivative, fan_min; |
| 1479 | s64 integ_p, deriv_p, prop_p, sum; |
| 1480 | int i; |
| 1481 | |
| 1482 | if (--state->ticks != 0) |
| 1483 | return; |
| 1484 | state->ticks = DIMM_PID_INTERVAL; |
| 1485 | |
| 1486 | DBG("DIMM:\n"); |
| 1487 | |
| 1488 | DBG(" current value: %d\n", state->output); |
| 1489 | |
| 1490 | temp = read_lm87_reg(state->monitor, LM87_INT_TEMP); |
| 1491 | if (temp < 0) |
| 1492 | return; |
| 1493 | temp <<= 16; |
| 1494 | state->last_temp = temp; |
| 1495 | DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp), |
| 1496 | FIX32TOPRINT(DIMM_PID_INPUT_TARGET)); |
| 1497 | |
| 1498 | /* Store temperature and error in history array */ |
| 1499 | state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE; |
| 1500 | state->sample_history[state->cur_sample] = temp; |
| 1501 | state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET; |
| 1502 | |
| 1503 | /* If first loop, fill the history table */ |
| 1504 | if (state->first) { |
| 1505 | for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) { |
| 1506 | state->cur_sample = (state->cur_sample + 1) % |
| 1507 | DIMM_PID_HISTORY_SIZE; |
| 1508 | state->sample_history[state->cur_sample] = temp; |
| 1509 | state->error_history[state->cur_sample] = |
| 1510 | temp - DIMM_PID_INPUT_TARGET; |
| 1511 | } |
| 1512 | state->first = 0; |
| 1513 | } |
| 1514 | |
| 1515 | /* Calculate the integral term */ |
| 1516 | sum = 0; |
| 1517 | integral = 0; |
| 1518 | for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++) |
| 1519 | integral += state->error_history[i]; |
| 1520 | integral *= DIMM_PID_INTERVAL; |
| 1521 | DBG(" integral: %08x\n", integral); |
| 1522 | integ_p = ((s64)DIMM_PID_G_r) * (s64)integral; |
| 1523 | DBG(" integ_p: %d\n", (int)(integ_p >> 36)); |
| 1524 | sum += integ_p; |
| 1525 | |
| 1526 | /* Calculate the derivative term */ |
| 1527 | derivative = state->error_history[state->cur_sample] - |
| 1528 | state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1) |
| 1529 | % DIMM_PID_HISTORY_SIZE]; |
| 1530 | derivative /= DIMM_PID_INTERVAL; |
| 1531 | deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative; |
| 1532 | DBG(" deriv_p: %d\n", (int)(deriv_p >> 36)); |
| 1533 | sum += deriv_p; |
| 1534 | |
| 1535 | /* Calculate the proportional term */ |
| 1536 | prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]); |
| 1537 | DBG(" prop_p: %d\n", (int)(prop_p >> 36)); |
| 1538 | sum += prop_p; |
| 1539 | |
| 1540 | /* Scale sum */ |
| 1541 | sum >>= 36; |
| 1542 | |
| 1543 | DBG(" sum: %d\n", (int)sum); |
| 1544 | state->output = (s32)sum; |
| 1545 | state->output = max(state->output, DIMM_PID_OUTPUT_MIN); |
| 1546 | state->output = min(state->output, DIMM_PID_OUTPUT_MAX); |
| 1547 | dimm_output_clamp = state->output; |
| 1548 | |
| 1549 | DBG("** DIMM clamp value: %d\n", (int)state->output); |
| 1550 | |
| 1551 | /* Backside PID is only every 5 seconds, force backside fan clamping now */ |
| 1552 | fan_min = (dimm_output_clamp * 100) / 14000; |
| 1553 | fan_min = max(fan_min, backside_params.output_min); |
| 1554 | if (backside_state.pwm < fan_min) { |
| 1555 | backside_state.pwm = fan_min; |
| 1556 | DBG(" -> applying clamp to backside fan now: %d !\n", fan_min); |
| 1557 | set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min); |
| 1558 | } |
| 1559 | } |
| 1560 | |
| 1561 | /* |
| 1562 | * Initialize the state structure for the DIMM temp control loop |
| 1563 | */ |
| 1564 | static int init_dimms_state(struct dimm_pid_state *state) |
| 1565 | { |
| 1566 | state->ticks = 1; |
| 1567 | state->first = 1; |
| 1568 | state->output = 4000; |
| 1569 | |
| 1570 | state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp"); |
| 1571 | if (state->monitor == NULL) |
| 1572 | return -ENODEV; |
| 1573 | |
| 1574 | device_create_file(&of_dev->dev, &dev_attr_dimms_temperature); |
| 1575 | |
| 1576 | return 0; |
| 1577 | } |
| 1578 | |
| 1579 | /* |
| 1580 | * Dispose of the state data for the drives control loop |
| 1581 | */ |
| 1582 | static void dispose_dimms_state(struct dimm_pid_state *state) |
| 1583 | { |
| 1584 | if (state->monitor == NULL) |
| 1585 | return; |
| 1586 | |
| 1587 | device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature); |
| 1588 | |
| 1589 | detach_i2c_chip(state->monitor); |
| 1590 | state->monitor = NULL; |
| 1591 | } |
| 1592 | |
| 1593 | static int call_critical_overtemp(void) |
| 1594 | { |
| 1595 | char *argv[] = { critical_overtemp_path, NULL }; |
| 1596 | static char *envp[] = { "HOME=/", |
| 1597 | "TERM=linux", |
| 1598 | "PATH=/sbin:/usr/sbin:/bin:/usr/bin", |
| 1599 | NULL }; |
| 1600 | |
| 1601 | return call_usermodehelper(critical_overtemp_path, argv, envp, 0); |
| 1602 | } |
| 1603 | |
| 1604 | |
| 1605 | /* |
| 1606 | * Here's the kernel thread that calls the various control loops |
| 1607 | */ |
| 1608 | static int main_control_loop(void *x) |
| 1609 | { |
| 1610 | daemonize("kfand"); |
| 1611 | |
| 1612 | DBG("main_control_loop started\n"); |
| 1613 | |
| 1614 | down(&driver_lock); |
| 1615 | |
| 1616 | if (start_fcu() < 0) { |
| 1617 | printk(KERN_ERR "kfand: failed to start FCU\n"); |
| 1618 | up(&driver_lock); |
| 1619 | goto out; |
| 1620 | } |
| 1621 | |
| 1622 | /* Set the PCI fan once for now */ |
| 1623 | set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM); |
| 1624 | |
| 1625 | /* Initialize ADCs */ |
| 1626 | initialize_adc(&cpu_state[0]); |
| 1627 | if (cpu_state[1].monitor != NULL) |
| 1628 | initialize_adc(&cpu_state[1]); |
| 1629 | |
| 1630 | up(&driver_lock); |
| 1631 | |
| 1632 | while (state == state_attached) { |
| 1633 | unsigned long elapsed, start; |
| 1634 | |
| 1635 | start = jiffies; |
| 1636 | |
| 1637 | down(&driver_lock); |
| 1638 | |
| 1639 | /* First, we always calculate the new DIMMs state on an Xserve */ |
| 1640 | if (rackmac) |
| 1641 | do_monitor_dimms(&dimms_state); |
| 1642 | |
| 1643 | /* Then, the CPUs */ |
| 1644 | if (cpu_pid_type == CPU_PID_TYPE_COMBINED) |
| 1645 | do_monitor_cpu_combined(); |
| 1646 | else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) { |
| 1647 | do_monitor_cpu_rack(&cpu_state[0]); |
| 1648 | if (cpu_state[1].monitor != NULL) |
| 1649 | do_monitor_cpu_rack(&cpu_state[1]); |
| 1650 | // better deal with UP |
| 1651 | } else { |
| 1652 | do_monitor_cpu_split(&cpu_state[0]); |
| 1653 | if (cpu_state[1].monitor != NULL) |
| 1654 | do_monitor_cpu_split(&cpu_state[1]); |
| 1655 | // better deal with UP |
| 1656 | } |
| 1657 | /* Then, the rest */ |
| 1658 | do_monitor_backside(&backside_state); |
| 1659 | if (!rackmac) |
| 1660 | do_monitor_drives(&drives_state); |
| 1661 | up(&driver_lock); |
| 1662 | |
| 1663 | if (critical_state == 1) { |
| 1664 | printk(KERN_WARNING "Temperature control detected a critical condition\n"); |
| 1665 | printk(KERN_WARNING "Attempting to shut down...\n"); |
| 1666 | if (call_critical_overtemp()) { |
| 1667 | printk(KERN_WARNING "Can't call %s, power off now!\n", |
| 1668 | critical_overtemp_path); |
| 1669 | machine_power_off(); |
| 1670 | } |
| 1671 | } |
| 1672 | if (critical_state > 0) |
| 1673 | critical_state++; |
| 1674 | if (critical_state > MAX_CRITICAL_STATE) { |
| 1675 | printk(KERN_WARNING "Shutdown timed out, power off now !\n"); |
| 1676 | machine_power_off(); |
| 1677 | } |
| 1678 | |
| 1679 | // FIXME: Deal with signals |
| 1680 | set_current_state(TASK_INTERRUPTIBLE); |
| 1681 | elapsed = jiffies - start; |
| 1682 | if (elapsed < HZ) |
| 1683 | schedule_timeout(HZ - elapsed); |
| 1684 | } |
| 1685 | |
| 1686 | out: |
| 1687 | DBG("main_control_loop ended\n"); |
| 1688 | |
| 1689 | ctrl_task = 0; |
| 1690 | complete_and_exit(&ctrl_complete, 0); |
| 1691 | } |
| 1692 | |
| 1693 | /* |
| 1694 | * Dispose the control loops when tearing down |
| 1695 | */ |
| 1696 | static void dispose_control_loops(void) |
| 1697 | { |
| 1698 | dispose_cpu_state(&cpu_state[0]); |
| 1699 | dispose_cpu_state(&cpu_state[1]); |
| 1700 | dispose_backside_state(&backside_state); |
| 1701 | dispose_drives_state(&drives_state); |
| 1702 | dispose_dimms_state(&dimms_state); |
| 1703 | } |
| 1704 | |
| 1705 | /* |
| 1706 | * Create the control loops. U3-0 i2c bus is up, so we can now |
| 1707 | * get to the various sensors |
| 1708 | */ |
| 1709 | static int create_control_loops(void) |
| 1710 | { |
| 1711 | struct device_node *np; |
| 1712 | |
| 1713 | /* Count CPUs from the device-tree, we don't care how many are |
| 1714 | * actually used by Linux |
| 1715 | */ |
| 1716 | cpu_count = 0; |
| 1717 | for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));) |
| 1718 | cpu_count++; |
| 1719 | |
| 1720 | DBG("counted %d CPUs in the device-tree\n", cpu_count); |
| 1721 | |
| 1722 | /* Decide the type of PID algorithm to use based on the presence of |
| 1723 | * the pumps, though that may not be the best way, that is good enough |
| 1724 | * for now |
| 1725 | */ |
| 1726 | if (rackmac) |
| 1727 | cpu_pid_type = CPU_PID_TYPE_RACKMAC; |
| 1728 | else if (machine_is_compatible("PowerMac7,3") |
| 1729 | && (cpu_count > 1) |
| 1730 | && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID |
| 1731 | && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) { |
| 1732 | printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n"); |
| 1733 | cpu_pid_type = CPU_PID_TYPE_COMBINED; |
| 1734 | } else |
| 1735 | cpu_pid_type = CPU_PID_TYPE_SPLIT; |
| 1736 | |
| 1737 | /* Create control loops for everything. If any fail, everything |
| 1738 | * fails |
| 1739 | */ |
| 1740 | if (init_cpu_state(&cpu_state[0], 0)) |
| 1741 | goto fail; |
| 1742 | if (cpu_pid_type == CPU_PID_TYPE_COMBINED) |
| 1743 | fetch_cpu_pumps_minmax(); |
| 1744 | |
| 1745 | if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1)) |
| 1746 | goto fail; |
| 1747 | if (init_backside_state(&backside_state)) |
| 1748 | goto fail; |
| 1749 | if (rackmac && init_dimms_state(&dimms_state)) |
| 1750 | goto fail; |
| 1751 | if (!rackmac && init_drives_state(&drives_state)) |
| 1752 | goto fail; |
| 1753 | |
| 1754 | DBG("all control loops up !\n"); |
| 1755 | |
| 1756 | return 0; |
| 1757 | |
| 1758 | fail: |
| 1759 | DBG("failure creating control loops, disposing\n"); |
| 1760 | |
| 1761 | dispose_control_loops(); |
| 1762 | |
| 1763 | return -ENODEV; |
| 1764 | } |
| 1765 | |
| 1766 | /* |
| 1767 | * Start the control loops after everything is up, that is create |
| 1768 | * the thread that will make them run |
| 1769 | */ |
| 1770 | static void start_control_loops(void) |
| 1771 | { |
| 1772 | init_completion(&ctrl_complete); |
| 1773 | |
| 1774 | ctrl_task = kernel_thread(main_control_loop, NULL, SIGCHLD | CLONE_KERNEL); |
| 1775 | } |
| 1776 | |
| 1777 | /* |
| 1778 | * Stop the control loops when tearing down |
| 1779 | */ |
| 1780 | static void stop_control_loops(void) |
| 1781 | { |
| 1782 | if (ctrl_task != 0) |
| 1783 | wait_for_completion(&ctrl_complete); |
| 1784 | } |
| 1785 | |
| 1786 | /* |
| 1787 | * Attach to the i2c FCU after detecting U3-1 bus |
| 1788 | */ |
| 1789 | static int attach_fcu(void) |
| 1790 | { |
| 1791 | fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu"); |
| 1792 | if (fcu == NULL) |
| 1793 | return -ENODEV; |
| 1794 | |
| 1795 | DBG("FCU attached\n"); |
| 1796 | |
| 1797 | return 0; |
| 1798 | } |
| 1799 | |
| 1800 | /* |
| 1801 | * Detach from the i2c FCU when tearing down |
| 1802 | */ |
| 1803 | static void detach_fcu(void) |
| 1804 | { |
| 1805 | if (fcu) |
| 1806 | detach_i2c_chip(fcu); |
| 1807 | fcu = NULL; |
| 1808 | } |
| 1809 | |
| 1810 | /* |
| 1811 | * Attach to the i2c controller. We probe the various chips based |
| 1812 | * on the device-tree nodes and build everything for the driver to |
| 1813 | * run, we then kick the driver monitoring thread |
| 1814 | */ |
| 1815 | static int therm_pm72_attach(struct i2c_adapter *adapter) |
| 1816 | { |
| 1817 | down(&driver_lock); |
| 1818 | |
| 1819 | /* Check state */ |
| 1820 | if (state == state_detached) |
| 1821 | state = state_attaching; |
| 1822 | if (state != state_attaching) { |
| 1823 | up(&driver_lock); |
| 1824 | return 0; |
| 1825 | } |
| 1826 | |
| 1827 | /* Check if we are looking for one of these */ |
| 1828 | if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) { |
| 1829 | u3_0 = adapter; |
| 1830 | DBG("found U3-0\n"); |
| 1831 | if (k2 || !rackmac) |
| 1832 | if (create_control_loops()) |
| 1833 | u3_0 = NULL; |
| 1834 | } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) { |
| 1835 | u3_1 = adapter; |
| 1836 | DBG("found U3-1, attaching FCU\n"); |
| 1837 | if (attach_fcu()) |
| 1838 | u3_1 = NULL; |
| 1839 | } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) { |
| 1840 | k2 = adapter; |
| 1841 | DBG("Found K2\n"); |
| 1842 | if (u3_0 && rackmac) |
| 1843 | if (create_control_loops()) |
| 1844 | k2 = NULL; |
| 1845 | } |
| 1846 | /* We got all we need, start control loops */ |
| 1847 | if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) { |
| 1848 | DBG("everything up, starting control loops\n"); |
| 1849 | state = state_attached; |
| 1850 | start_control_loops(); |
| 1851 | } |
| 1852 | up(&driver_lock); |
| 1853 | |
| 1854 | return 0; |
| 1855 | } |
| 1856 | |
| 1857 | /* |
| 1858 | * Called on every adapter when the driver or the i2c controller |
| 1859 | * is going away. |
| 1860 | */ |
| 1861 | static int therm_pm72_detach(struct i2c_adapter *adapter) |
| 1862 | { |
| 1863 | down(&driver_lock); |
| 1864 | |
| 1865 | if (state != state_detached) |
| 1866 | state = state_detaching; |
| 1867 | |
| 1868 | /* Stop control loops if any */ |
| 1869 | DBG("stopping control loops\n"); |
| 1870 | up(&driver_lock); |
| 1871 | stop_control_loops(); |
| 1872 | down(&driver_lock); |
| 1873 | |
| 1874 | if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) { |
| 1875 | DBG("lost U3-0, disposing control loops\n"); |
| 1876 | dispose_control_loops(); |
| 1877 | u3_0 = NULL; |
| 1878 | } |
| 1879 | |
| 1880 | if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) { |
| 1881 | DBG("lost U3-1, detaching FCU\n"); |
| 1882 | detach_fcu(); |
| 1883 | u3_1 = NULL; |
| 1884 | } |
| 1885 | if (u3_0 == NULL && u3_1 == NULL) |
| 1886 | state = state_detached; |
| 1887 | |
| 1888 | up(&driver_lock); |
| 1889 | |
| 1890 | return 0; |
| 1891 | } |
| 1892 | |
| 1893 | static int fan_check_loc_match(const char *loc, int fan) |
| 1894 | { |
| 1895 | char tmp[64]; |
| 1896 | char *c, *e; |
| 1897 | |
| 1898 | strlcpy(tmp, fcu_fans[fan].loc, 64); |
| 1899 | |
| 1900 | c = tmp; |
| 1901 | for (;;) { |
| 1902 | e = strchr(c, ','); |
| 1903 | if (e) |
| 1904 | *e = 0; |
| 1905 | if (strcmp(loc, c) == 0) |
| 1906 | return 1; |
| 1907 | if (e == NULL) |
| 1908 | break; |
| 1909 | c = e + 1; |
| 1910 | } |
| 1911 | return 0; |
| 1912 | } |
| 1913 | |
| 1914 | static void fcu_lookup_fans(struct device_node *fcu_node) |
| 1915 | { |
| 1916 | struct device_node *np = NULL; |
| 1917 | int i; |
| 1918 | |
| 1919 | /* The table is filled by default with values that are suitable |
| 1920 | * for the old machines without device-tree informations. We scan |
| 1921 | * the device-tree and override those values with whatever is |
| 1922 | * there |
| 1923 | */ |
| 1924 | |
| 1925 | DBG("Looking up FCU controls in device-tree...\n"); |
| 1926 | |
| 1927 | while ((np = of_get_next_child(fcu_node, np)) != NULL) { |
| 1928 | int type = -1; |
| 1929 | char *loc; |
| 1930 | u32 *reg; |
| 1931 | |
| 1932 | DBG(" control: %s, type: %s\n", np->name, np->type); |
| 1933 | |
| 1934 | /* Detect control type */ |
| 1935 | if (!strcmp(np->type, "fan-rpm-control") || |
| 1936 | !strcmp(np->type, "fan-rpm")) |
| 1937 | type = FCU_FAN_RPM; |
| 1938 | if (!strcmp(np->type, "fan-pwm-control") || |
| 1939 | !strcmp(np->type, "fan-pwm")) |
| 1940 | type = FCU_FAN_PWM; |
| 1941 | /* Only care about fans for now */ |
| 1942 | if (type == -1) |
| 1943 | continue; |
| 1944 | |
| 1945 | /* Lookup for a matching location */ |
| 1946 | loc = (char *)get_property(np, "location", NULL); |
| 1947 | reg = (u32 *)get_property(np, "reg", NULL); |
| 1948 | if (loc == NULL || reg == NULL) |
| 1949 | continue; |
| 1950 | DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg); |
| 1951 | |
| 1952 | for (i = 0; i < FCU_FAN_COUNT; i++) { |
| 1953 | int fan_id; |
| 1954 | |
| 1955 | if (!fan_check_loc_match(loc, i)) |
| 1956 | continue; |
| 1957 | DBG(" location match, index: %d\n", i); |
| 1958 | fcu_fans[i].id = FCU_FAN_ABSENT_ID; |
| 1959 | if (type != fcu_fans[i].type) { |
| 1960 | printk(KERN_WARNING "therm_pm72: Fan type mismatch " |
| 1961 | "in device-tree for %s\n", np->full_name); |
| 1962 | break; |
| 1963 | } |
| 1964 | if (type == FCU_FAN_RPM) |
| 1965 | fan_id = ((*reg) - 0x10) / 2; |
| 1966 | else |
| 1967 | fan_id = ((*reg) - 0x30) / 2; |
| 1968 | if (fan_id > 7) { |
| 1969 | printk(KERN_WARNING "therm_pm72: Can't parse " |
| 1970 | "fan ID in device-tree for %s\n", np->full_name); |
| 1971 | break; |
| 1972 | } |
| 1973 | DBG(" fan id -> %d, type -> %d\n", fan_id, type); |
| 1974 | fcu_fans[i].id = fan_id; |
| 1975 | } |
| 1976 | } |
| 1977 | |
| 1978 | /* Now dump the array */ |
| 1979 | printk(KERN_INFO "Detected fan controls:\n"); |
| 1980 | for (i = 0; i < FCU_FAN_COUNT; i++) { |
| 1981 | if (fcu_fans[i].id == FCU_FAN_ABSENT_ID) |
| 1982 | continue; |
| 1983 | printk(KERN_INFO " %d: %s fan, id %d, location: %s\n", i, |
| 1984 | fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM", |
| 1985 | fcu_fans[i].id, fcu_fans[i].loc); |
| 1986 | } |
| 1987 | } |
| 1988 | |
| 1989 | static int fcu_of_probe(struct of_device* dev, const struct of_match *match) |
| 1990 | { |
| 1991 | int rc; |
| 1992 | |
| 1993 | state = state_detached; |
| 1994 | |
| 1995 | /* Lookup the fans in the device tree */ |
| 1996 | fcu_lookup_fans(dev->node); |
| 1997 | |
| 1998 | /* Add the driver */ |
| 1999 | rc = i2c_add_driver(&therm_pm72_driver); |
| 2000 | if (rc < 0) |
| 2001 | return rc; |
| 2002 | return 0; |
| 2003 | } |
| 2004 | |
| 2005 | static int fcu_of_remove(struct of_device* dev) |
| 2006 | { |
| 2007 | i2c_del_driver(&therm_pm72_driver); |
| 2008 | |
| 2009 | return 0; |
| 2010 | } |
| 2011 | |
| 2012 | static struct of_match fcu_of_match[] = |
| 2013 | { |
| 2014 | { |
| 2015 | .name = OF_ANY_MATCH, |
| 2016 | .type = "fcu", |
| 2017 | .compatible = OF_ANY_MATCH |
| 2018 | }, |
| 2019 | {}, |
| 2020 | }; |
| 2021 | |
| 2022 | static struct of_platform_driver fcu_of_platform_driver = |
| 2023 | { |
| 2024 | .name = "temperature", |
| 2025 | .match_table = fcu_of_match, |
| 2026 | .probe = fcu_of_probe, |
| 2027 | .remove = fcu_of_remove |
| 2028 | }; |
| 2029 | |
| 2030 | /* |
| 2031 | * Check machine type, attach to i2c controller |
| 2032 | */ |
| 2033 | static int __init therm_pm72_init(void) |
| 2034 | { |
| 2035 | struct device_node *np; |
| 2036 | |
| 2037 | rackmac = machine_is_compatible("RackMac3,1"); |
| 2038 | |
| 2039 | if (!machine_is_compatible("PowerMac7,2") && |
| 2040 | !machine_is_compatible("PowerMac7,3") && |
| 2041 | !rackmac) |
| 2042 | return -ENODEV; |
| 2043 | |
| 2044 | printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION); |
| 2045 | |
| 2046 | np = of_find_node_by_type(NULL, "fcu"); |
| 2047 | if (np == NULL) { |
| 2048 | /* Some machines have strangely broken device-tree */ |
| 2049 | np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e"); |
| 2050 | if (np == NULL) { |
| 2051 | printk(KERN_ERR "Can't find FCU in device-tree !\n"); |
| 2052 | return -ENODEV; |
| 2053 | } |
| 2054 | } |
| 2055 | of_dev = of_platform_device_create(np, "temperature"); |
| 2056 | if (of_dev == NULL) { |
| 2057 | printk(KERN_ERR "Can't register FCU platform device !\n"); |
| 2058 | return -ENODEV; |
| 2059 | } |
| 2060 | |
| 2061 | of_register_driver(&fcu_of_platform_driver); |
| 2062 | |
| 2063 | return 0; |
| 2064 | } |
| 2065 | |
| 2066 | static void __exit therm_pm72_exit(void) |
| 2067 | { |
| 2068 | of_unregister_driver(&fcu_of_platform_driver); |
| 2069 | |
| 2070 | if (of_dev) |
| 2071 | of_device_unregister(of_dev); |
| 2072 | } |
| 2073 | |
| 2074 | module_init(therm_pm72_init); |
| 2075 | module_exit(therm_pm72_exit); |
| 2076 | |
| 2077 | MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>"); |
| 2078 | MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control"); |
| 2079 | MODULE_LICENSE("GPL"); |
| 2080 | |