Roland Stigge | 2944a44 | 2012-06-07 12:22:15 +0200 | [diff] [blame] | 1 | /* |
| 2 | * NXP LPC32XX NAND SLC driver |
| 3 | * |
| 4 | * Authors: |
| 5 | * Kevin Wells <kevin.wells@nxp.com> |
| 6 | * Roland Stigge <stigge@antcom.de> |
| 7 | * |
| 8 | * Copyright © 2011 NXP Semiconductors |
| 9 | * Copyright © 2012 Roland Stigge |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or modify |
| 12 | * it under the terms of the GNU General Public License as published by |
| 13 | * the Free Software Foundation; either version 2 of the License, or |
| 14 | * (at your option) any later version. |
| 15 | * |
| 16 | * This program is distributed in the hope that it will be useful, |
| 17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 19 | * GNU General Public License for more details. |
| 20 | */ |
| 21 | |
| 22 | #include <linux/slab.h> |
| 23 | #include <linux/module.h> |
| 24 | #include <linux/platform_device.h> |
| 25 | #include <linux/mtd/mtd.h> |
| 26 | #include <linux/mtd/nand.h> |
| 27 | #include <linux/mtd/partitions.h> |
| 28 | #include <linux/clk.h> |
| 29 | #include <linux/err.h> |
| 30 | #include <linux/delay.h> |
| 31 | #include <linux/io.h> |
| 32 | #include <linux/mm.h> |
| 33 | #include <linux/dma-mapping.h> |
| 34 | #include <linux/dmaengine.h> |
| 35 | #include <linux/mtd/nand_ecc.h> |
| 36 | #include <linux/gpio.h> |
| 37 | #include <linux/of.h> |
| 38 | #include <linux/of_mtd.h> |
| 39 | #include <linux/of_gpio.h> |
| 40 | #include <linux/amba/pl08x.h> |
| 41 | |
| 42 | #define LPC32XX_MODNAME "lpc32xx-nand" |
| 43 | |
| 44 | /********************************************************************** |
| 45 | * SLC NAND controller register offsets |
| 46 | **********************************************************************/ |
| 47 | |
| 48 | #define SLC_DATA(x) (x + 0x000) |
| 49 | #define SLC_ADDR(x) (x + 0x004) |
| 50 | #define SLC_CMD(x) (x + 0x008) |
| 51 | #define SLC_STOP(x) (x + 0x00C) |
| 52 | #define SLC_CTRL(x) (x + 0x010) |
| 53 | #define SLC_CFG(x) (x + 0x014) |
| 54 | #define SLC_STAT(x) (x + 0x018) |
| 55 | #define SLC_INT_STAT(x) (x + 0x01C) |
| 56 | #define SLC_IEN(x) (x + 0x020) |
| 57 | #define SLC_ISR(x) (x + 0x024) |
| 58 | #define SLC_ICR(x) (x + 0x028) |
| 59 | #define SLC_TAC(x) (x + 0x02C) |
| 60 | #define SLC_TC(x) (x + 0x030) |
| 61 | #define SLC_ECC(x) (x + 0x034) |
| 62 | #define SLC_DMA_DATA(x) (x + 0x038) |
| 63 | |
| 64 | /********************************************************************** |
| 65 | * slc_ctrl register definitions |
| 66 | **********************************************************************/ |
| 67 | #define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */ |
| 68 | #define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */ |
| 69 | #define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */ |
| 70 | |
| 71 | /********************************************************************** |
| 72 | * slc_cfg register definitions |
| 73 | **********************************************************************/ |
| 74 | #define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */ |
| 75 | #define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */ |
| 76 | #define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */ |
| 77 | #define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */ |
| 78 | #define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */ |
| 79 | #define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */ |
| 80 | |
| 81 | /********************************************************************** |
| 82 | * slc_stat register definitions |
| 83 | **********************************************************************/ |
| 84 | #define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */ |
| 85 | #define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */ |
| 86 | #define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */ |
| 87 | |
| 88 | /********************************************************************** |
| 89 | * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions |
| 90 | **********************************************************************/ |
| 91 | #define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */ |
| 92 | #define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */ |
| 93 | |
| 94 | /********************************************************************** |
| 95 | * slc_tac register definitions |
| 96 | **********************************************************************/ |
| 97 | /* Clock setting for RDY write sample wait time in 2*n clocks */ |
| 98 | #define SLCTAC_WDR(n) (((n) & 0xF) << 28) |
| 99 | /* Write pulse width in clock cycles, 1 to 16 clocks */ |
| 100 | #define SLCTAC_WWIDTH(n) (((n) & 0xF) << 24) |
| 101 | /* Write hold time of control and data signals, 1 to 16 clocks */ |
| 102 | #define SLCTAC_WHOLD(n) (((n) & 0xF) << 20) |
| 103 | /* Write setup time of control and data signals, 1 to 16 clocks */ |
| 104 | #define SLCTAC_WSETUP(n) (((n) & 0xF) << 16) |
| 105 | /* Clock setting for RDY read sample wait time in 2*n clocks */ |
| 106 | #define SLCTAC_RDR(n) (((n) & 0xF) << 12) |
| 107 | /* Read pulse width in clock cycles, 1 to 16 clocks */ |
| 108 | #define SLCTAC_RWIDTH(n) (((n) & 0xF) << 8) |
| 109 | /* Read hold time of control and data signals, 1 to 16 clocks */ |
| 110 | #define SLCTAC_RHOLD(n) (((n) & 0xF) << 4) |
| 111 | /* Read setup time of control and data signals, 1 to 16 clocks */ |
| 112 | #define SLCTAC_RSETUP(n) (((n) & 0xF) << 0) |
| 113 | |
| 114 | /********************************************************************** |
| 115 | * slc_ecc register definitions |
| 116 | **********************************************************************/ |
| 117 | /* ECC line party fetch macro */ |
| 118 | #define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF) |
| 119 | #define SLCECC_TO_COLPAR(n) ((n) & 0x3F) |
| 120 | |
| 121 | /* |
| 122 | * DMA requires storage space for the DMA local buffer and the hardware ECC |
| 123 | * storage area. The DMA local buffer is only used if DMA mapping fails |
| 124 | * during runtime. |
| 125 | */ |
| 126 | #define LPC32XX_DMA_DATA_SIZE 4096 |
| 127 | #define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4) |
| 128 | |
| 129 | /* Number of bytes used for ECC stored in NAND per 256 bytes */ |
| 130 | #define LPC32XX_SLC_DEV_ECC_BYTES 3 |
| 131 | |
| 132 | /* |
| 133 | * If the NAND base clock frequency can't be fetched, this frequency will be |
| 134 | * used instead as the base. This rate is used to setup the timing registers |
| 135 | * used for NAND accesses. |
| 136 | */ |
| 137 | #define LPC32XX_DEF_BUS_RATE 133250000 |
| 138 | |
| 139 | /* Milliseconds for DMA FIFO timeout (unlikely anyway) */ |
| 140 | #define LPC32XX_DMA_TIMEOUT 100 |
| 141 | |
| 142 | /* |
| 143 | * NAND ECC Layout for small page NAND devices |
| 144 | * Note: For large and huge page devices, the default layouts are used |
| 145 | */ |
| 146 | static struct nand_ecclayout lpc32xx_nand_oob_16 = { |
| 147 | .eccbytes = 6, |
| 148 | .eccpos = {10, 11, 12, 13, 14, 15}, |
| 149 | .oobfree = { |
| 150 | { .offset = 0, .length = 4 }, |
| 151 | { .offset = 6, .length = 4 }, |
| 152 | }, |
| 153 | }; |
| 154 | |
| 155 | static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; |
| 156 | static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; |
| 157 | |
| 158 | /* |
| 159 | * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6 |
| 160 | * Note: Large page devices used the default layout |
| 161 | */ |
| 162 | static struct nand_bbt_descr bbt_smallpage_main_descr = { |
| 163 | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| 164 | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| 165 | .offs = 0, |
| 166 | .len = 4, |
| 167 | .veroffs = 6, |
| 168 | .maxblocks = 4, |
| 169 | .pattern = bbt_pattern |
| 170 | }; |
| 171 | |
| 172 | static struct nand_bbt_descr bbt_smallpage_mirror_descr = { |
| 173 | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| 174 | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| 175 | .offs = 0, |
| 176 | .len = 4, |
| 177 | .veroffs = 6, |
| 178 | .maxblocks = 4, |
| 179 | .pattern = mirror_pattern |
| 180 | }; |
| 181 | |
| 182 | /* |
| 183 | * NAND platform configuration structure |
| 184 | */ |
| 185 | struct lpc32xx_nand_cfg_slc { |
| 186 | uint32_t wdr_clks; |
| 187 | uint32_t wwidth; |
| 188 | uint32_t whold; |
| 189 | uint32_t wsetup; |
| 190 | uint32_t rdr_clks; |
| 191 | uint32_t rwidth; |
| 192 | uint32_t rhold; |
| 193 | uint32_t rsetup; |
| 194 | bool use_bbt; |
Alexandre Pereira da Silva | df63fe7 | 2012-06-27 17:51:13 +0200 | [diff] [blame^] | 195 | int wp_gpio; |
Roland Stigge | 2944a44 | 2012-06-07 12:22:15 +0200 | [diff] [blame] | 196 | struct mtd_partition *parts; |
| 197 | unsigned num_parts; |
| 198 | }; |
| 199 | |
| 200 | struct lpc32xx_nand_host { |
| 201 | struct nand_chip nand_chip; |
| 202 | struct clk *clk; |
| 203 | struct mtd_info mtd; |
| 204 | void __iomem *io_base; |
| 205 | struct lpc32xx_nand_cfg_slc *ncfg; |
| 206 | |
| 207 | struct completion comp; |
| 208 | struct dma_chan *dma_chan; |
| 209 | uint32_t dma_buf_len; |
| 210 | struct dma_slave_config dma_slave_config; |
| 211 | struct scatterlist sgl; |
| 212 | |
| 213 | /* |
| 214 | * DMA and CPU addresses of ECC work area and data buffer |
| 215 | */ |
| 216 | uint32_t *ecc_buf; |
| 217 | uint8_t *data_buf; |
| 218 | dma_addr_t io_base_dma; |
| 219 | }; |
| 220 | |
| 221 | static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) |
| 222 | { |
| 223 | uint32_t clkrate, tmp; |
| 224 | |
| 225 | /* Reset SLC controller */ |
| 226 | writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base)); |
| 227 | udelay(1000); |
| 228 | |
| 229 | /* Basic setup */ |
| 230 | writel(0, SLC_CFG(host->io_base)); |
| 231 | writel(0, SLC_IEN(host->io_base)); |
| 232 | writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN), |
| 233 | SLC_ICR(host->io_base)); |
| 234 | |
| 235 | /* Get base clock for SLC block */ |
| 236 | clkrate = clk_get_rate(host->clk); |
| 237 | if (clkrate == 0) |
| 238 | clkrate = LPC32XX_DEF_BUS_RATE; |
| 239 | |
| 240 | /* Compute clock setup values */ |
| 241 | tmp = SLCTAC_WDR(host->ncfg->wdr_clks) | |
| 242 | SLCTAC_WWIDTH(1 + (clkrate / host->ncfg->wwidth)) | |
| 243 | SLCTAC_WHOLD(1 + (clkrate / host->ncfg->whold)) | |
| 244 | SLCTAC_WSETUP(1 + (clkrate / host->ncfg->wsetup)) | |
| 245 | SLCTAC_RDR(host->ncfg->rdr_clks) | |
| 246 | SLCTAC_RWIDTH(1 + (clkrate / host->ncfg->rwidth)) | |
| 247 | SLCTAC_RHOLD(1 + (clkrate / host->ncfg->rhold)) | |
| 248 | SLCTAC_RSETUP(1 + (clkrate / host->ncfg->rsetup)); |
| 249 | writel(tmp, SLC_TAC(host->io_base)); |
| 250 | } |
| 251 | |
| 252 | /* |
| 253 | * Hardware specific access to control lines |
| 254 | */ |
| 255 | static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, |
| 256 | unsigned int ctrl) |
| 257 | { |
| 258 | uint32_t tmp; |
| 259 | struct nand_chip *chip = mtd->priv; |
| 260 | struct lpc32xx_nand_host *host = chip->priv; |
| 261 | |
| 262 | /* Does CE state need to be changed? */ |
| 263 | tmp = readl(SLC_CFG(host->io_base)); |
| 264 | if (ctrl & NAND_NCE) |
| 265 | tmp |= SLCCFG_CE_LOW; |
| 266 | else |
| 267 | tmp &= ~SLCCFG_CE_LOW; |
| 268 | writel(tmp, SLC_CFG(host->io_base)); |
| 269 | |
| 270 | if (cmd != NAND_CMD_NONE) { |
| 271 | if (ctrl & NAND_CLE) |
| 272 | writel(cmd, SLC_CMD(host->io_base)); |
| 273 | else |
| 274 | writel(cmd, SLC_ADDR(host->io_base)); |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | /* |
| 279 | * Read the Device Ready pin |
| 280 | */ |
| 281 | static int lpc32xx_nand_device_ready(struct mtd_info *mtd) |
| 282 | { |
| 283 | struct nand_chip *chip = mtd->priv; |
| 284 | struct lpc32xx_nand_host *host = chip->priv; |
| 285 | int rdy = 0; |
| 286 | |
| 287 | if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0) |
| 288 | rdy = 1; |
| 289 | |
| 290 | return rdy; |
| 291 | } |
| 292 | |
| 293 | /* |
| 294 | * Enable NAND write protect |
| 295 | */ |
| 296 | static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) |
| 297 | { |
Alexandre Pereira da Silva | df63fe7 | 2012-06-27 17:51:13 +0200 | [diff] [blame^] | 298 | if (gpio_is_valid(host->ncfg->wp_gpio)) |
| 299 | gpio_set_value(host->ncfg->wp_gpio, 0); |
Roland Stigge | 2944a44 | 2012-06-07 12:22:15 +0200 | [diff] [blame] | 300 | } |
| 301 | |
| 302 | /* |
| 303 | * Disable NAND write protect |
| 304 | */ |
| 305 | static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) |
| 306 | { |
Alexandre Pereira da Silva | df63fe7 | 2012-06-27 17:51:13 +0200 | [diff] [blame^] | 307 | if (gpio_is_valid(host->ncfg->wp_gpio)) |
| 308 | gpio_set_value(host->ncfg->wp_gpio, 1); |
Roland Stigge | 2944a44 | 2012-06-07 12:22:15 +0200 | [diff] [blame] | 309 | } |
| 310 | |
| 311 | /* |
| 312 | * Prepares SLC for transfers with H/W ECC enabled |
| 313 | */ |
| 314 | static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode) |
| 315 | { |
| 316 | /* Hardware ECC is enabled automatically in hardware as needed */ |
| 317 | } |
| 318 | |
| 319 | /* |
| 320 | * Calculates the ECC for the data |
| 321 | */ |
| 322 | static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd, |
| 323 | const unsigned char *buf, |
| 324 | unsigned char *code) |
| 325 | { |
| 326 | /* |
| 327 | * ECC is calculated automatically in hardware during syndrome read |
| 328 | * and write operations, so it doesn't need to be calculated here. |
| 329 | */ |
| 330 | return 0; |
| 331 | } |
| 332 | |
| 333 | /* |
| 334 | * Read a single byte from NAND device |
| 335 | */ |
| 336 | static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd) |
| 337 | { |
| 338 | struct nand_chip *chip = mtd->priv; |
| 339 | struct lpc32xx_nand_host *host = chip->priv; |
| 340 | |
| 341 | return (uint8_t)readl(SLC_DATA(host->io_base)); |
| 342 | } |
| 343 | |
| 344 | /* |
| 345 | * Simple device read without ECC |
| 346 | */ |
| 347 | static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) |
| 348 | { |
| 349 | struct nand_chip *chip = mtd->priv; |
| 350 | struct lpc32xx_nand_host *host = chip->priv; |
| 351 | |
| 352 | /* Direct device read with no ECC */ |
| 353 | while (len-- > 0) |
| 354 | *buf++ = (uint8_t)readl(SLC_DATA(host->io_base)); |
| 355 | } |
| 356 | |
| 357 | /* |
| 358 | * Simple device write without ECC |
| 359 | */ |
| 360 | static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) |
| 361 | { |
| 362 | struct nand_chip *chip = mtd->priv; |
| 363 | struct lpc32xx_nand_host *host = chip->priv; |
| 364 | |
| 365 | /* Direct device write with no ECC */ |
| 366 | while (len-- > 0) |
| 367 | writel((uint32_t)*buf++, SLC_DATA(host->io_base)); |
| 368 | } |
| 369 | |
| 370 | /* |
| 371 | * Verify data in buffer to data on device |
| 372 | */ |
| 373 | static int lpc32xx_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) |
| 374 | { |
| 375 | struct nand_chip *chip = mtd->priv; |
| 376 | struct lpc32xx_nand_host *host = chip->priv; |
| 377 | int i; |
| 378 | |
| 379 | /* DATA register must be read as 32 bits or it will fail */ |
| 380 | for (i = 0; i < len; i++) { |
| 381 | if (buf[i] != (uint8_t)readl(SLC_DATA(host->io_base))) |
| 382 | return -EFAULT; |
| 383 | } |
| 384 | |
| 385 | return 0; |
| 386 | } |
| 387 | |
| 388 | /* |
| 389 | * Read the OOB data from the device without ECC using FIFO method |
| 390 | */ |
| 391 | static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd, |
| 392 | struct nand_chip *chip, int page) |
| 393 | { |
| 394 | chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); |
| 395 | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| 396 | |
| 397 | return 0; |
| 398 | } |
| 399 | |
| 400 | /* |
| 401 | * Write the OOB data to the device without ECC using FIFO method |
| 402 | */ |
| 403 | static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd, |
| 404 | struct nand_chip *chip, int page) |
| 405 | { |
| 406 | int status; |
| 407 | |
| 408 | chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); |
| 409 | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| 410 | |
| 411 | /* Send command to program the OOB data */ |
| 412 | chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| 413 | |
| 414 | status = chip->waitfunc(mtd, chip); |
| 415 | |
| 416 | return status & NAND_STATUS_FAIL ? -EIO : 0; |
| 417 | } |
| 418 | |
| 419 | /* |
| 420 | * Fills in the ECC fields in the OOB buffer with the hardware generated ECC |
| 421 | */ |
| 422 | static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count) |
| 423 | { |
| 424 | int i; |
| 425 | |
| 426 | for (i = 0; i < (count * 3); i += 3) { |
| 427 | uint32_t ce = ecc[i / 3]; |
| 428 | ce = ~(ce << 2) & 0xFFFFFF; |
| 429 | spare[i + 2] = (uint8_t)(ce & 0xFF); |
| 430 | ce >>= 8; |
| 431 | spare[i + 1] = (uint8_t)(ce & 0xFF); |
| 432 | ce >>= 8; |
| 433 | spare[i] = (uint8_t)(ce & 0xFF); |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | static void lpc32xx_dma_complete_func(void *completion) |
| 438 | { |
| 439 | complete(completion); |
| 440 | } |
| 441 | |
| 442 | static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma, |
| 443 | void *mem, int len, enum dma_transfer_direction dir) |
| 444 | { |
| 445 | struct nand_chip *chip = mtd->priv; |
| 446 | struct lpc32xx_nand_host *host = chip->priv; |
| 447 | struct dma_async_tx_descriptor *desc; |
| 448 | int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; |
| 449 | int res; |
| 450 | |
| 451 | host->dma_slave_config.direction = dir; |
| 452 | host->dma_slave_config.src_addr = dma; |
| 453 | host->dma_slave_config.dst_addr = dma; |
| 454 | host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| 455 | host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| 456 | host->dma_slave_config.src_maxburst = 4; |
| 457 | host->dma_slave_config.dst_maxburst = 4; |
| 458 | /* DMA controller does flow control: */ |
| 459 | host->dma_slave_config.device_fc = false; |
| 460 | if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { |
| 461 | dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); |
| 462 | return -ENXIO; |
| 463 | } |
| 464 | |
| 465 | sg_init_one(&host->sgl, mem, len); |
| 466 | |
| 467 | res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, |
| 468 | DMA_BIDIRECTIONAL); |
| 469 | if (res != 1) { |
| 470 | dev_err(mtd->dev.parent, "Failed to map sg list\n"); |
| 471 | return -ENXIO; |
| 472 | } |
| 473 | desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, |
| 474 | flags); |
| 475 | if (!desc) { |
| 476 | dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); |
| 477 | goto out1; |
| 478 | } |
| 479 | |
| 480 | init_completion(&host->comp); |
| 481 | desc->callback = lpc32xx_dma_complete_func; |
| 482 | desc->callback_param = &host->comp; |
| 483 | |
| 484 | dmaengine_submit(desc); |
| 485 | dma_async_issue_pending(host->dma_chan); |
| 486 | |
| 487 | wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000)); |
| 488 | |
| 489 | dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, |
| 490 | DMA_BIDIRECTIONAL); |
| 491 | |
| 492 | return 0; |
| 493 | out1: |
| 494 | dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, |
| 495 | DMA_BIDIRECTIONAL); |
| 496 | return -ENXIO; |
| 497 | } |
| 498 | |
| 499 | /* |
| 500 | * DMA read/write transfers with ECC support |
| 501 | */ |
| 502 | static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages, |
| 503 | int read) |
| 504 | { |
| 505 | struct nand_chip *chip = mtd->priv; |
| 506 | struct lpc32xx_nand_host *host = chip->priv; |
| 507 | int i, status = 0; |
| 508 | unsigned long timeout; |
| 509 | int res; |
| 510 | enum dma_transfer_direction dir = |
| 511 | read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV; |
| 512 | uint8_t *dma_buf; |
| 513 | bool dma_mapped; |
| 514 | |
| 515 | if ((void *)buf <= high_memory) { |
| 516 | dma_buf = buf; |
| 517 | dma_mapped = true; |
| 518 | } else { |
| 519 | dma_buf = host->data_buf; |
| 520 | dma_mapped = false; |
| 521 | if (!read) |
| 522 | memcpy(host->data_buf, buf, mtd->writesize); |
| 523 | } |
| 524 | |
| 525 | if (read) { |
| 526 | writel(readl(SLC_CFG(host->io_base)) | |
| 527 | SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | |
| 528 | SLCCFG_DMA_BURST, SLC_CFG(host->io_base)); |
| 529 | } else { |
| 530 | writel((readl(SLC_CFG(host->io_base)) | |
| 531 | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) & |
| 532 | ~SLCCFG_DMA_DIR, |
| 533 | SLC_CFG(host->io_base)); |
| 534 | } |
| 535 | |
| 536 | /* Clear initial ECC */ |
| 537 | writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base)); |
| 538 | |
| 539 | /* Transfer size is data area only */ |
| 540 | writel(mtd->writesize, SLC_TC(host->io_base)); |
| 541 | |
| 542 | /* Start transfer in the NAND controller */ |
| 543 | writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START, |
| 544 | SLC_CTRL(host->io_base)); |
| 545 | |
| 546 | for (i = 0; i < chip->ecc.steps; i++) { |
| 547 | /* Data */ |
| 548 | res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma), |
| 549 | dma_buf + i * chip->ecc.size, |
| 550 | mtd->writesize / chip->ecc.steps, dir); |
| 551 | if (res) |
| 552 | return res; |
| 553 | |
| 554 | /* Always _read_ ECC */ |
| 555 | if (i == chip->ecc.steps - 1) |
| 556 | break; |
| 557 | if (!read) /* ECC availability delayed on write */ |
| 558 | udelay(10); |
| 559 | res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma), |
| 560 | &host->ecc_buf[i], 4, DMA_DEV_TO_MEM); |
| 561 | if (res) |
| 562 | return res; |
| 563 | } |
| 564 | |
| 565 | /* |
| 566 | * According to NXP, the DMA can be finished here, but the NAND |
| 567 | * controller may still have buffered data. After porting to using the |
| 568 | * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty) |
| 569 | * appears to be always true, according to tests. Keeping the check for |
| 570 | * safety reasons for now. |
| 571 | */ |
| 572 | if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) { |
| 573 | dev_warn(mtd->dev.parent, "FIFO not empty!\n"); |
| 574 | timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT); |
| 575 | while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) && |
| 576 | time_before(jiffies, timeout)) |
| 577 | cpu_relax(); |
| 578 | if (!time_before(jiffies, timeout)) { |
| 579 | dev_err(mtd->dev.parent, "FIFO held data too long\n"); |
| 580 | status = -EIO; |
| 581 | } |
| 582 | } |
| 583 | |
| 584 | /* Read last calculated ECC value */ |
| 585 | if (!read) |
| 586 | udelay(10); |
| 587 | host->ecc_buf[chip->ecc.steps - 1] = |
| 588 | readl(SLC_ECC(host->io_base)); |
| 589 | |
| 590 | /* Flush DMA */ |
| 591 | dmaengine_terminate_all(host->dma_chan); |
| 592 | |
| 593 | if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO || |
| 594 | readl(SLC_TC(host->io_base))) { |
| 595 | /* Something is left in the FIFO, something is wrong */ |
| 596 | dev_err(mtd->dev.parent, "DMA FIFO failure\n"); |
| 597 | status = -EIO; |
| 598 | } |
| 599 | |
| 600 | /* Stop DMA & HW ECC */ |
| 601 | writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START, |
| 602 | SLC_CTRL(host->io_base)); |
| 603 | writel(readl(SLC_CFG(host->io_base)) & |
| 604 | ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | |
| 605 | SLCCFG_DMA_BURST), SLC_CFG(host->io_base)); |
| 606 | |
| 607 | if (!dma_mapped && read) |
| 608 | memcpy(buf, host->data_buf, mtd->writesize); |
| 609 | |
| 610 | return status; |
| 611 | } |
| 612 | |
| 613 | /* |
| 614 | * Read the data and OOB data from the device, use ECC correction with the |
| 615 | * data, disable ECC for the OOB data |
| 616 | */ |
| 617 | static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd, |
| 618 | struct nand_chip *chip, uint8_t *buf, |
| 619 | int oob_required, int page) |
| 620 | { |
| 621 | struct lpc32xx_nand_host *host = chip->priv; |
| 622 | int stat, i, status; |
| 623 | uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE]; |
| 624 | |
| 625 | /* Issue read command */ |
| 626 | chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); |
| 627 | |
| 628 | /* Read data and oob, calculate ECC */ |
| 629 | status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1); |
| 630 | |
| 631 | /* Get OOB data */ |
| 632 | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| 633 | |
| 634 | /* Convert to stored ECC format */ |
| 635 | lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps); |
| 636 | |
| 637 | /* Pointer to ECC data retrieved from NAND spare area */ |
| 638 | oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0]; |
| 639 | |
| 640 | for (i = 0; i < chip->ecc.steps; i++) { |
| 641 | stat = chip->ecc.correct(mtd, buf, oobecc, |
| 642 | &tmpecc[i * chip->ecc.bytes]); |
| 643 | if (stat < 0) |
| 644 | mtd->ecc_stats.failed++; |
| 645 | else |
| 646 | mtd->ecc_stats.corrected += stat; |
| 647 | |
| 648 | buf += chip->ecc.size; |
| 649 | oobecc += chip->ecc.bytes; |
| 650 | } |
| 651 | |
| 652 | return status; |
| 653 | } |
| 654 | |
| 655 | /* |
| 656 | * Read the data and OOB data from the device, no ECC correction with the |
| 657 | * data or OOB data |
| 658 | */ |
| 659 | static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd, |
| 660 | struct nand_chip *chip, |
| 661 | uint8_t *buf, int oob_required, |
| 662 | int page) |
| 663 | { |
| 664 | /* Issue read command */ |
| 665 | chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); |
| 666 | |
| 667 | /* Raw reads can just use the FIFO interface */ |
| 668 | chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); |
| 669 | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| 670 | |
| 671 | return 0; |
| 672 | } |
| 673 | |
| 674 | /* |
| 675 | * Write the data and OOB data to the device, use ECC with the data, |
| 676 | * disable ECC for the OOB data |
| 677 | */ |
| 678 | static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd, |
| 679 | struct nand_chip *chip, |
| 680 | const uint8_t *buf, int oob_required) |
| 681 | { |
| 682 | struct lpc32xx_nand_host *host = chip->priv; |
| 683 | uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0]; |
| 684 | int error; |
| 685 | |
| 686 | /* Write data, calculate ECC on outbound data */ |
| 687 | error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0); |
| 688 | if (error) |
| 689 | return error; |
| 690 | |
| 691 | /* |
| 692 | * The calculated ECC needs some manual work done to it before |
| 693 | * committing it to NAND. Process the calculated ECC and place |
| 694 | * the resultant values directly into the OOB buffer. */ |
| 695 | lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps); |
| 696 | |
| 697 | /* Write ECC data to device */ |
| 698 | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| 699 | return 0; |
| 700 | } |
| 701 | |
| 702 | /* |
| 703 | * Write the data and OOB data to the device, no ECC correction with the |
| 704 | * data or OOB data |
| 705 | */ |
| 706 | static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd, |
| 707 | struct nand_chip *chip, |
| 708 | const uint8_t *buf, |
| 709 | int oob_required) |
| 710 | { |
| 711 | /* Raw writes can just use the FIFO interface */ |
| 712 | chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); |
| 713 | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| 714 | return 0; |
| 715 | } |
| 716 | |
| 717 | static bool lpc32xx_dma_filter(struct dma_chan *chan, void *param) |
| 718 | { |
| 719 | struct pl08x_dma_chan *ch = |
| 720 | container_of(chan, struct pl08x_dma_chan, chan); |
| 721 | |
| 722 | /* In LPC32xx's PL080 DMA wiring, the SLC NAND DMA signal is #1 */ |
| 723 | if (ch->cd->min_signal == 1) |
| 724 | return true; |
| 725 | return false; |
| 726 | } |
| 727 | |
| 728 | static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host) |
| 729 | { |
| 730 | struct mtd_info *mtd = &host->mtd; |
| 731 | dma_cap_mask_t mask; |
| 732 | |
| 733 | dma_cap_zero(mask); |
| 734 | dma_cap_set(DMA_SLAVE, mask); |
| 735 | host->dma_chan = dma_request_channel(mask, lpc32xx_dma_filter, NULL); |
| 736 | if (!host->dma_chan) { |
| 737 | dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); |
| 738 | return -EBUSY; |
| 739 | } |
| 740 | |
| 741 | return 0; |
| 742 | } |
| 743 | |
| 744 | #ifdef CONFIG_OF |
| 745 | static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev) |
| 746 | { |
| 747 | struct lpc32xx_nand_cfg_slc *pdata; |
| 748 | struct device_node *np = dev->of_node; |
| 749 | |
| 750 | pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); |
| 751 | if (!pdata) { |
| 752 | dev_err(dev, "could not allocate memory for platform data\n"); |
| 753 | return NULL; |
| 754 | } |
| 755 | |
| 756 | of_property_read_u32(np, "nxp,wdr-clks", &pdata->wdr_clks); |
| 757 | of_property_read_u32(np, "nxp,wwidth", &pdata->wwidth); |
| 758 | of_property_read_u32(np, "nxp,whold", &pdata->whold); |
| 759 | of_property_read_u32(np, "nxp,wsetup", &pdata->wsetup); |
| 760 | of_property_read_u32(np, "nxp,rdr-clks", &pdata->rdr_clks); |
| 761 | of_property_read_u32(np, "nxp,rwidth", &pdata->rwidth); |
| 762 | of_property_read_u32(np, "nxp,rhold", &pdata->rhold); |
| 763 | of_property_read_u32(np, "nxp,rsetup", &pdata->rsetup); |
| 764 | |
| 765 | if (!pdata->wdr_clks || !pdata->wwidth || !pdata->whold || |
| 766 | !pdata->wsetup || !pdata->rdr_clks || !pdata->rwidth || |
| 767 | !pdata->rhold || !pdata->rsetup) { |
| 768 | dev_err(dev, "chip parameters not specified correctly\n"); |
| 769 | return NULL; |
| 770 | } |
| 771 | |
| 772 | pdata->use_bbt = of_get_nand_on_flash_bbt(np); |
| 773 | pdata->wp_gpio = of_get_named_gpio_flags(np, "gpios", 0, NULL); |
| 774 | |
| 775 | return pdata; |
| 776 | } |
| 777 | #else |
| 778 | static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev) |
| 779 | { |
| 780 | return NULL; |
| 781 | } |
| 782 | #endif |
| 783 | |
| 784 | /* |
| 785 | * Probe for NAND controller |
| 786 | */ |
| 787 | static int __devinit lpc32xx_nand_probe(struct platform_device *pdev) |
| 788 | { |
| 789 | struct lpc32xx_nand_host *host; |
| 790 | struct mtd_info *mtd; |
| 791 | struct nand_chip *chip; |
| 792 | struct resource *rc; |
| 793 | struct mtd_part_parser_data ppdata = {}; |
| 794 | int res; |
| 795 | |
| 796 | rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 797 | if (rc == NULL) { |
| 798 | dev_err(&pdev->dev, "No memory resource found for device\n"); |
| 799 | return -EBUSY; |
| 800 | } |
| 801 | |
| 802 | /* Allocate memory for the device structure (and zero it) */ |
| 803 | host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); |
| 804 | if (!host) { |
| 805 | dev_err(&pdev->dev, "failed to allocate device structure\n"); |
| 806 | return -ENOMEM; |
| 807 | } |
| 808 | host->io_base_dma = rc->start; |
| 809 | |
| 810 | host->io_base = devm_request_and_ioremap(&pdev->dev, rc); |
| 811 | if (host->io_base == NULL) { |
| 812 | dev_err(&pdev->dev, "ioremap failed\n"); |
| 813 | return -ENOMEM; |
| 814 | } |
| 815 | |
| 816 | if (pdev->dev.of_node) |
| 817 | host->ncfg = lpc32xx_parse_dt(&pdev->dev); |
| 818 | else |
| 819 | host->ncfg = pdev->dev.platform_data; |
| 820 | if (!host->ncfg) { |
| 821 | dev_err(&pdev->dev, "Missing platform data\n"); |
| 822 | return -ENOENT; |
| 823 | } |
Alexandre Pereira da Silva | df63fe7 | 2012-06-27 17:51:13 +0200 | [diff] [blame^] | 824 | if (gpio_is_valid(host->ncfg->wp_gpio) && |
| 825 | gpio_request(host->ncfg->wp_gpio, "NAND WP")) { |
Roland Stigge | 2944a44 | 2012-06-07 12:22:15 +0200 | [diff] [blame] | 826 | dev_err(&pdev->dev, "GPIO not available\n"); |
| 827 | return -EBUSY; |
| 828 | } |
| 829 | lpc32xx_wp_disable(host); |
| 830 | |
| 831 | mtd = &host->mtd; |
| 832 | chip = &host->nand_chip; |
| 833 | chip->priv = host; |
| 834 | mtd->priv = chip; |
| 835 | mtd->owner = THIS_MODULE; |
| 836 | mtd->dev.parent = &pdev->dev; |
| 837 | |
| 838 | /* Get NAND clock */ |
| 839 | host->clk = clk_get(&pdev->dev, NULL); |
| 840 | if (IS_ERR(host->clk)) { |
| 841 | dev_err(&pdev->dev, "Clock failure\n"); |
| 842 | res = -ENOENT; |
| 843 | goto err_exit1; |
| 844 | } |
| 845 | clk_enable(host->clk); |
| 846 | |
| 847 | /* Set NAND IO addresses and command/ready functions */ |
| 848 | chip->IO_ADDR_R = SLC_DATA(host->io_base); |
| 849 | chip->IO_ADDR_W = SLC_DATA(host->io_base); |
| 850 | chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; |
| 851 | chip->dev_ready = lpc32xx_nand_device_ready; |
| 852 | chip->chip_delay = 20; /* 20us command delay time */ |
| 853 | |
| 854 | /* Init NAND controller */ |
| 855 | lpc32xx_nand_setup(host); |
| 856 | |
| 857 | platform_set_drvdata(pdev, host); |
| 858 | |
| 859 | /* NAND callbacks for LPC32xx SLC hardware */ |
| 860 | chip->ecc.mode = NAND_ECC_HW_SYNDROME; |
| 861 | chip->read_byte = lpc32xx_nand_read_byte; |
| 862 | chip->read_buf = lpc32xx_nand_read_buf; |
| 863 | chip->write_buf = lpc32xx_nand_write_buf; |
| 864 | chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome; |
| 865 | chip->ecc.read_page = lpc32xx_nand_read_page_syndrome; |
| 866 | chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome; |
| 867 | chip->ecc.write_page = lpc32xx_nand_write_page_syndrome; |
| 868 | chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome; |
| 869 | chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome; |
| 870 | chip->ecc.calculate = lpc32xx_nand_ecc_calculate; |
| 871 | chip->ecc.correct = nand_correct_data; |
| 872 | chip->ecc.strength = 1; |
| 873 | chip->ecc.hwctl = lpc32xx_nand_ecc_enable; |
| 874 | chip->verify_buf = lpc32xx_verify_buf; |
| 875 | |
| 876 | /* bitflip_threshold's default is defined as ecc_strength anyway. |
| 877 | * Unfortunately, it is set only later at add_mtd_device(). Meanwhile |
| 878 | * being 0, it causes bad block table scanning errors in |
| 879 | * nand_scan_tail(), so preparing it here already. */ |
| 880 | mtd->bitflip_threshold = chip->ecc.strength; |
| 881 | |
| 882 | /* |
| 883 | * Allocate a large enough buffer for a single huge page plus |
| 884 | * extra space for the spare area and ECC storage area |
| 885 | */ |
| 886 | host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE; |
| 887 | host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len, |
| 888 | GFP_KERNEL); |
| 889 | if (host->data_buf == NULL) { |
| 890 | dev_err(&pdev->dev, "Error allocating memory\n"); |
| 891 | res = -ENOMEM; |
| 892 | goto err_exit2; |
| 893 | } |
| 894 | |
| 895 | res = lpc32xx_nand_dma_setup(host); |
| 896 | if (res) { |
| 897 | res = -EIO; |
| 898 | goto err_exit2; |
| 899 | } |
| 900 | |
| 901 | /* Find NAND device */ |
| 902 | if (nand_scan_ident(mtd, 1, NULL)) { |
| 903 | res = -ENXIO; |
| 904 | goto err_exit3; |
| 905 | } |
| 906 | |
| 907 | /* OOB and ECC CPU and DMA work areas */ |
| 908 | host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE); |
| 909 | |
| 910 | /* |
| 911 | * Small page FLASH has a unique OOB layout, but large and huge |
| 912 | * page FLASH use the standard layout. Small page FLASH uses a |
| 913 | * custom BBT marker layout. |
| 914 | */ |
| 915 | if (mtd->writesize <= 512) |
| 916 | chip->ecc.layout = &lpc32xx_nand_oob_16; |
| 917 | |
| 918 | /* These sizes remain the same regardless of page size */ |
| 919 | chip->ecc.size = 256; |
| 920 | chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES; |
| 921 | chip->ecc.prepad = chip->ecc.postpad = 0; |
| 922 | |
| 923 | /* Avoid extra scan if using BBT, setup BBT support */ |
| 924 | if (host->ncfg->use_bbt) { |
| 925 | chip->options |= NAND_SKIP_BBTSCAN; |
| 926 | chip->bbt_options |= NAND_BBT_USE_FLASH; |
| 927 | |
| 928 | /* |
| 929 | * Use a custom BBT marker setup for small page FLASH that |
| 930 | * won't interfere with the ECC layout. Large and huge page |
| 931 | * FLASH use the standard layout. |
| 932 | */ |
| 933 | if (mtd->writesize <= 512) { |
| 934 | chip->bbt_td = &bbt_smallpage_main_descr; |
| 935 | chip->bbt_md = &bbt_smallpage_mirror_descr; |
| 936 | } |
| 937 | } |
| 938 | |
| 939 | /* |
| 940 | * Fills out all the uninitialized function pointers with the defaults |
| 941 | */ |
| 942 | if (nand_scan_tail(mtd)) { |
| 943 | res = -ENXIO; |
| 944 | goto err_exit3; |
| 945 | } |
| 946 | |
| 947 | /* Standard layout in FLASH for bad block tables */ |
| 948 | if (host->ncfg->use_bbt) { |
| 949 | if (nand_default_bbt(mtd) < 0) |
| 950 | dev_err(&pdev->dev, |
| 951 | "Error initializing default bad block tables\n"); |
| 952 | } |
| 953 | |
| 954 | mtd->name = "nxp_lpc3220_slc"; |
| 955 | ppdata.of_node = pdev->dev.of_node; |
| 956 | res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts, |
| 957 | host->ncfg->num_parts); |
| 958 | if (!res) |
| 959 | return res; |
| 960 | |
| 961 | nand_release(mtd); |
| 962 | |
| 963 | err_exit3: |
| 964 | dma_release_channel(host->dma_chan); |
| 965 | err_exit2: |
| 966 | clk_disable(host->clk); |
| 967 | clk_put(host->clk); |
| 968 | platform_set_drvdata(pdev, NULL); |
| 969 | err_exit1: |
| 970 | lpc32xx_wp_enable(host); |
| 971 | gpio_free(host->ncfg->wp_gpio); |
| 972 | |
| 973 | return res; |
| 974 | } |
| 975 | |
| 976 | /* |
| 977 | * Remove NAND device. |
| 978 | */ |
| 979 | static int __devexit lpc32xx_nand_remove(struct platform_device *pdev) |
| 980 | { |
| 981 | uint32_t tmp; |
| 982 | struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); |
| 983 | struct mtd_info *mtd = &host->mtd; |
| 984 | |
| 985 | nand_release(mtd); |
| 986 | dma_release_channel(host->dma_chan); |
| 987 | |
| 988 | /* Force CE high */ |
| 989 | tmp = readl(SLC_CTRL(host->io_base)); |
| 990 | tmp &= ~SLCCFG_CE_LOW; |
| 991 | writel(tmp, SLC_CTRL(host->io_base)); |
| 992 | |
| 993 | clk_disable(host->clk); |
| 994 | clk_put(host->clk); |
| 995 | platform_set_drvdata(pdev, NULL); |
| 996 | lpc32xx_wp_enable(host); |
| 997 | gpio_free(host->ncfg->wp_gpio); |
| 998 | |
| 999 | return 0; |
| 1000 | } |
| 1001 | |
| 1002 | #ifdef CONFIG_PM |
| 1003 | static int lpc32xx_nand_resume(struct platform_device *pdev) |
| 1004 | { |
| 1005 | struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); |
| 1006 | |
| 1007 | /* Re-enable NAND clock */ |
| 1008 | clk_enable(host->clk); |
| 1009 | |
| 1010 | /* Fresh init of NAND controller */ |
| 1011 | lpc32xx_nand_setup(host); |
| 1012 | |
| 1013 | /* Disable write protect */ |
| 1014 | lpc32xx_wp_disable(host); |
| 1015 | |
| 1016 | return 0; |
| 1017 | } |
| 1018 | |
| 1019 | static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) |
| 1020 | { |
| 1021 | uint32_t tmp; |
| 1022 | struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); |
| 1023 | |
| 1024 | /* Force CE high */ |
| 1025 | tmp = readl(SLC_CTRL(host->io_base)); |
| 1026 | tmp &= ~SLCCFG_CE_LOW; |
| 1027 | writel(tmp, SLC_CTRL(host->io_base)); |
| 1028 | |
| 1029 | /* Enable write protect for safety */ |
| 1030 | lpc32xx_wp_enable(host); |
| 1031 | |
| 1032 | /* Disable clock */ |
| 1033 | clk_disable(host->clk); |
| 1034 | |
| 1035 | return 0; |
| 1036 | } |
| 1037 | |
| 1038 | #else |
| 1039 | #define lpc32xx_nand_resume NULL |
| 1040 | #define lpc32xx_nand_suspend NULL |
| 1041 | #endif |
| 1042 | |
| 1043 | #if defined(CONFIG_OF) |
| 1044 | static const struct of_device_id lpc32xx_nand_match[] = { |
| 1045 | { .compatible = "nxp,lpc3220-slc" }, |
| 1046 | { /* sentinel */ }, |
| 1047 | }; |
| 1048 | MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); |
| 1049 | #endif |
| 1050 | |
| 1051 | static struct platform_driver lpc32xx_nand_driver = { |
| 1052 | .probe = lpc32xx_nand_probe, |
| 1053 | .remove = __devexit_p(lpc32xx_nand_remove), |
| 1054 | .resume = lpc32xx_nand_resume, |
| 1055 | .suspend = lpc32xx_nand_suspend, |
| 1056 | .driver = { |
| 1057 | .name = LPC32XX_MODNAME, |
| 1058 | .owner = THIS_MODULE, |
| 1059 | .of_match_table = of_match_ptr(lpc32xx_nand_match), |
| 1060 | }, |
| 1061 | }; |
| 1062 | |
| 1063 | module_platform_driver(lpc32xx_nand_driver); |
| 1064 | |
| 1065 | MODULE_LICENSE("GPL"); |
| 1066 | MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>"); |
| 1067 | MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); |
| 1068 | MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller"); |