blob: e486c7d244c24fb5266bff7c314a546b17e10cb3 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Nathan Scott7b718762005-11-02 14:58:39 +11002 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004 *
Nathan Scott7b718762005-11-02 14:58:39 +11005 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
Linus Torvalds1da177e2005-04-16 15:20:36 -07007 * published by the Free Software Foundation.
8 *
Nathan Scott7b718762005-11-02 14:58:39 +11009 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 *
Nathan Scott7b718762005-11-02 14:58:39 +110014 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070018#include "xfs.h"
Nathan Scotta844f452005-11-02 14:38:42 +110019#include "xfs_fs.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070020#include "xfs_types.h"
Nathan Scotta844f452005-11-02 14:38:42 +110021#include "xfs_bit.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070022#include "xfs_log.h"
Nathan Scotta844f452005-11-02 14:38:42 +110023#include "xfs_inum.h"
24#include "xfs_imap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070025#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
29#include "xfs_dir.h"
30#include "xfs_dir2.h"
31#include "xfs_dmapi.h"
32#include "xfs_mount.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070033#include "xfs_bmap_btree.h"
Nathan Scotta844f452005-11-02 14:38:42 +110034#include "xfs_alloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070035#include "xfs_ialloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070036#include "xfs_dir_sf.h"
37#include "xfs_dir2_sf.h"
Nathan Scotta844f452005-11-02 14:38:42 +110038#include "xfs_attr_sf.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include "xfs_dinode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070040#include "xfs_inode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070041#include "xfs_buf_item.h"
Nathan Scotta844f452005-11-02 14:38:42 +110042#include "xfs_inode_item.h"
43#include "xfs_btree.h"
44#include "xfs_alloc.h"
45#include "xfs_ialloc.h"
46#include "xfs_bmap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070047#include "xfs_rw.h"
48#include "xfs_error.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070049#include "xfs_utils.h"
50#include "xfs_dir2_trace.h"
51#include "xfs_quota.h"
52#include "xfs_mac.h"
53#include "xfs_acl.h"
54
55
56kmem_zone_t *xfs_ifork_zone;
57kmem_zone_t *xfs_inode_zone;
58kmem_zone_t *xfs_chashlist_zone;
59
60/*
61 * Used in xfs_itruncate(). This is the maximum number of extents
62 * freed from a file in a single transaction.
63 */
64#define XFS_ITRUNC_MAX_EXTENTS 2
65
66STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
67STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
68STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
69STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
70
71
72#ifdef DEBUG
73/*
74 * Make sure that the extents in the given memory buffer
75 * are valid.
76 */
77STATIC void
78xfs_validate_extents(
79 xfs_bmbt_rec_t *ep,
80 int nrecs,
81 int disk,
82 xfs_exntfmt_t fmt)
83{
84 xfs_bmbt_irec_t irec;
85 xfs_bmbt_rec_t rec;
86 int i;
87
88 for (i = 0; i < nrecs; i++) {
89 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
90 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
91 if (disk)
92 xfs_bmbt_disk_get_all(&rec, &irec);
93 else
94 xfs_bmbt_get_all(&rec, &irec);
95 if (fmt == XFS_EXTFMT_NOSTATE)
96 ASSERT(irec.br_state == XFS_EXT_NORM);
97 ep++;
98 }
99}
100#else /* DEBUG */
101#define xfs_validate_extents(ep, nrecs, disk, fmt)
102#endif /* DEBUG */
103
104/*
105 * Check that none of the inode's in the buffer have a next
106 * unlinked field of 0.
107 */
108#if defined(DEBUG)
109void
110xfs_inobp_check(
111 xfs_mount_t *mp,
112 xfs_buf_t *bp)
113{
114 int i;
115 int j;
116 xfs_dinode_t *dip;
117
118 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
119
120 for (i = 0; i < j; i++) {
121 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
122 i * mp->m_sb.sb_inodesize);
123 if (!dip->di_next_unlinked) {
124 xfs_fs_cmn_err(CE_ALERT, mp,
125 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
126 bp);
127 ASSERT(dip->di_next_unlinked);
128 }
129 }
130}
131#endif
132
133/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700134 * This routine is called to map an inode number within a file
135 * system to the buffer containing the on-disk version of the
136 * inode. It returns a pointer to the buffer containing the
137 * on-disk inode in the bpp parameter, and in the dip parameter
138 * it returns a pointer to the on-disk inode within that buffer.
139 *
140 * If a non-zero error is returned, then the contents of bpp and
141 * dipp are undefined.
142 *
143 * Use xfs_imap() to determine the size and location of the
144 * buffer to read from disk.
145 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +1000146STATIC int
Linus Torvalds1da177e2005-04-16 15:20:36 -0700147xfs_inotobp(
148 xfs_mount_t *mp,
149 xfs_trans_t *tp,
150 xfs_ino_t ino,
151 xfs_dinode_t **dipp,
152 xfs_buf_t **bpp,
153 int *offset)
154{
155 int di_ok;
156 xfs_imap_t imap;
157 xfs_buf_t *bp;
158 int error;
159 xfs_dinode_t *dip;
160
161 /*
162 * Call the space managment code to find the location of the
163 * inode on disk.
164 */
165 imap.im_blkno = 0;
166 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
167 if (error != 0) {
168 cmn_err(CE_WARN,
169 "xfs_inotobp: xfs_imap() returned an "
170 "error %d on %s. Returning error.", error, mp->m_fsname);
171 return error;
172 }
173
174 /*
175 * If the inode number maps to a block outside the bounds of the
176 * file system then return NULL rather than calling read_buf
177 * and panicing when we get an error from the driver.
178 */
179 if ((imap.im_blkno + imap.im_len) >
180 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
181 cmn_err(CE_WARN,
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100182 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
Linus Torvalds1da177e2005-04-16 15:20:36 -0700183 "of the file system %s. Returning EINVAL.",
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100184 (unsigned long long)imap.im_blkno,
185 imap.im_len, mp->m_fsname);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186 return XFS_ERROR(EINVAL);
187 }
188
189 /*
190 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
191 * default to just a read_buf() call.
192 */
193 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
194 (int)imap.im_len, XFS_BUF_LOCK, &bp);
195
196 if (error) {
197 cmn_err(CE_WARN,
198 "xfs_inotobp: xfs_trans_read_buf() returned an "
199 "error %d on %s. Returning error.", error, mp->m_fsname);
200 return error;
201 }
202 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
203 di_ok =
204 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
205 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
206 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
207 XFS_RANDOM_ITOBP_INOTOBP))) {
208 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
209 xfs_trans_brelse(tp, bp);
210 cmn_err(CE_WARN,
211 "xfs_inotobp: XFS_TEST_ERROR() returned an "
212 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
213 return XFS_ERROR(EFSCORRUPTED);
214 }
215
216 xfs_inobp_check(mp, bp);
217
218 /*
219 * Set *dipp to point to the on-disk inode in the buffer.
220 */
221 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
222 *bpp = bp;
223 *offset = imap.im_boffset;
224 return 0;
225}
226
227
228/*
229 * This routine is called to map an inode to the buffer containing
230 * the on-disk version of the inode. It returns a pointer to the
231 * buffer containing the on-disk inode in the bpp parameter, and in
232 * the dip parameter it returns a pointer to the on-disk inode within
233 * that buffer.
234 *
235 * If a non-zero error is returned, then the contents of bpp and
236 * dipp are undefined.
237 *
238 * If the inode is new and has not yet been initialized, use xfs_imap()
239 * to determine the size and location of the buffer to read from disk.
240 * If the inode has already been mapped to its buffer and read in once,
241 * then use the mapping information stored in the inode rather than
242 * calling xfs_imap(). This allows us to avoid the overhead of looking
243 * at the inode btree for small block file systems (see xfs_dilocate()).
244 * We can tell whether the inode has been mapped in before by comparing
245 * its disk block address to 0. Only uninitialized inodes will have
246 * 0 for the disk block address.
247 */
248int
249xfs_itobp(
250 xfs_mount_t *mp,
251 xfs_trans_t *tp,
252 xfs_inode_t *ip,
253 xfs_dinode_t **dipp,
254 xfs_buf_t **bpp,
255 xfs_daddr_t bno)
256{
257 xfs_buf_t *bp;
258 int error;
259 xfs_imap_t imap;
260#ifdef __KERNEL__
261 int i;
262 int ni;
263#endif
264
265 if (ip->i_blkno == (xfs_daddr_t)0) {
266 /*
267 * Call the space management code to find the location of the
268 * inode on disk.
269 */
270 imap.im_blkno = bno;
271 error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP);
272 if (error != 0) {
273 return error;
274 }
275
276 /*
277 * If the inode number maps to a block outside the bounds
278 * of the file system then return NULL rather than calling
279 * read_buf and panicing when we get an error from the
280 * driver.
281 */
282 if ((imap.im_blkno + imap.im_len) >
283 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
284#ifdef DEBUG
285 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
286 "(imap.im_blkno (0x%llx) "
287 "+ imap.im_len (0x%llx)) > "
288 " XFS_FSB_TO_BB(mp, "
289 "mp->m_sb.sb_dblocks) (0x%llx)",
290 (unsigned long long) imap.im_blkno,
291 (unsigned long long) imap.im_len,
292 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
293#endif /* DEBUG */
294 return XFS_ERROR(EINVAL);
295 }
296
297 /*
298 * Fill in the fields in the inode that will be used to
299 * map the inode to its buffer from now on.
300 */
301 ip->i_blkno = imap.im_blkno;
302 ip->i_len = imap.im_len;
303 ip->i_boffset = imap.im_boffset;
304 } else {
305 /*
306 * We've already mapped the inode once, so just use the
307 * mapping that we saved the first time.
308 */
309 imap.im_blkno = ip->i_blkno;
310 imap.im_len = ip->i_len;
311 imap.im_boffset = ip->i_boffset;
312 }
313 ASSERT(bno == 0 || bno == imap.im_blkno);
314
315 /*
316 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
317 * default to just a read_buf() call.
318 */
319 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
320 (int)imap.im_len, XFS_BUF_LOCK, &bp);
321
322 if (error) {
323#ifdef DEBUG
324 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
325 "xfs_trans_read_buf() returned error %d, "
326 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
327 error, (unsigned long long) imap.im_blkno,
328 (unsigned long long) imap.im_len);
329#endif /* DEBUG */
330 return error;
331 }
332#ifdef __KERNEL__
333 /*
334 * Validate the magic number and version of every inode in the buffer
335 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
336 */
337#ifdef DEBUG
338 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
339#else
340 ni = 1;
341#endif
342 for (i = 0; i < ni; i++) {
343 int di_ok;
344 xfs_dinode_t *dip;
345
346 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
347 (i << mp->m_sb.sb_inodelog));
348 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
349 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
350 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
351 XFS_RANDOM_ITOBP_INOTOBP))) {
352#ifdef DEBUG
353 prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
354 mp->m_ddev_targp,
355 (unsigned long long)imap.im_blkno, i,
356 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
357#endif
358 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
359 mp, dip);
360 xfs_trans_brelse(tp, bp);
361 return XFS_ERROR(EFSCORRUPTED);
362 }
363 }
364#endif /* __KERNEL__ */
365
366 xfs_inobp_check(mp, bp);
367
368 /*
369 * Mark the buffer as an inode buffer now that it looks good
370 */
371 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
372
373 /*
374 * Set *dipp to point to the on-disk inode in the buffer.
375 */
376 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
377 *bpp = bp;
378 return 0;
379}
380
381/*
382 * Move inode type and inode format specific information from the
383 * on-disk inode to the in-core inode. For fifos, devs, and sockets
384 * this means set if_rdev to the proper value. For files, directories,
385 * and symlinks this means to bring in the in-line data or extent
386 * pointers. For a file in B-tree format, only the root is immediately
387 * brought in-core. The rest will be in-lined in if_extents when it
388 * is first referenced (see xfs_iread_extents()).
389 */
390STATIC int
391xfs_iformat(
392 xfs_inode_t *ip,
393 xfs_dinode_t *dip)
394{
395 xfs_attr_shortform_t *atp;
396 int size;
397 int error;
398 xfs_fsize_t di_size;
399 ip->i_df.if_ext_max =
400 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
401 error = 0;
402
403 if (unlikely(
404 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
405 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
406 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
407 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
408 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu."
409 " Unmount and run xfs_repair.",
410 (unsigned long long)ip->i_ino,
411 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
412 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
413 (unsigned long long)
414 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
415 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
416 ip->i_mount, dip);
417 return XFS_ERROR(EFSCORRUPTED);
418 }
419
420 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
421 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
422 "corrupt dinode %Lu, forkoff = 0x%x."
423 " Unmount and run xfs_repair.",
424 (unsigned long long)ip->i_ino,
425 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
426 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
427 ip->i_mount, dip);
428 return XFS_ERROR(EFSCORRUPTED);
429 }
430
431 switch (ip->i_d.di_mode & S_IFMT) {
432 case S_IFIFO:
433 case S_IFCHR:
434 case S_IFBLK:
435 case S_IFSOCK:
436 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
437 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
438 ip->i_mount, dip);
439 return XFS_ERROR(EFSCORRUPTED);
440 }
441 ip->i_d.di_size = 0;
442 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
443 break;
444
445 case S_IFREG:
446 case S_IFLNK:
447 case S_IFDIR:
448 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
449 case XFS_DINODE_FMT_LOCAL:
450 /*
451 * no local regular files yet
452 */
453 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
454 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
455 "corrupt inode (local format for regular file) %Lu. Unmount and run xfs_repair.",
456 (unsigned long long) ip->i_ino);
457 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
458 XFS_ERRLEVEL_LOW,
459 ip->i_mount, dip);
460 return XFS_ERROR(EFSCORRUPTED);
461 }
462
463 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
464 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
465 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
466 "corrupt inode %Lu (bad size %Ld for local inode). Unmount and run xfs_repair.",
467 (unsigned long long) ip->i_ino,
468 (long long) di_size);
469 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
470 XFS_ERRLEVEL_LOW,
471 ip->i_mount, dip);
472 return XFS_ERROR(EFSCORRUPTED);
473 }
474
475 size = (int)di_size;
476 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
477 break;
478 case XFS_DINODE_FMT_EXTENTS:
479 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
480 break;
481 case XFS_DINODE_FMT_BTREE:
482 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
483 break;
484 default:
485 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
486 ip->i_mount);
487 return XFS_ERROR(EFSCORRUPTED);
488 }
489 break;
490
491 default:
492 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
493 return XFS_ERROR(EFSCORRUPTED);
494 }
495 if (error) {
496 return error;
497 }
498 if (!XFS_DFORK_Q(dip))
499 return 0;
500 ASSERT(ip->i_afp == NULL);
501 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
502 ip->i_afp->if_ext_max =
503 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
504 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
505 case XFS_DINODE_FMT_LOCAL:
506 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
507 size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT);
508 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
509 break;
510 case XFS_DINODE_FMT_EXTENTS:
511 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
512 break;
513 case XFS_DINODE_FMT_BTREE:
514 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
515 break;
516 default:
517 error = XFS_ERROR(EFSCORRUPTED);
518 break;
519 }
520 if (error) {
521 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
522 ip->i_afp = NULL;
523 xfs_idestroy_fork(ip, XFS_DATA_FORK);
524 }
525 return error;
526}
527
528/*
529 * The file is in-lined in the on-disk inode.
530 * If it fits into if_inline_data, then copy
531 * it there, otherwise allocate a buffer for it
532 * and copy the data there. Either way, set
533 * if_data to point at the data.
534 * If we allocate a buffer for the data, make
535 * sure that its size is a multiple of 4 and
536 * record the real size in i_real_bytes.
537 */
538STATIC int
539xfs_iformat_local(
540 xfs_inode_t *ip,
541 xfs_dinode_t *dip,
542 int whichfork,
543 int size)
544{
545 xfs_ifork_t *ifp;
546 int real_size;
547
548 /*
549 * If the size is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
552 */
553 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
555 "corrupt inode %Lu (bad size %d for local fork, size = %d). Unmount and run xfs_repair.",
556 (unsigned long long) ip->i_ino, size,
557 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
558 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
559 ip->i_mount, dip);
560 return XFS_ERROR(EFSCORRUPTED);
561 }
562 ifp = XFS_IFORK_PTR(ip, whichfork);
563 real_size = 0;
564 if (size == 0)
565 ifp->if_u1.if_data = NULL;
566 else if (size <= sizeof(ifp->if_u2.if_inline_data))
567 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
568 else {
569 real_size = roundup(size, 4);
570 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
571 }
572 ifp->if_bytes = size;
573 ifp->if_real_bytes = real_size;
574 if (size)
575 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
576 ifp->if_flags &= ~XFS_IFEXTENTS;
577 ifp->if_flags |= XFS_IFINLINE;
578 return 0;
579}
580
581/*
582 * The file consists of a set of extents all
583 * of which fit into the on-disk inode.
584 * If there are few enough extents to fit into
585 * the if_inline_ext, then copy them there.
586 * Otherwise allocate a buffer for them and copy
587 * them into it. Either way, set if_extents
588 * to point at the extents.
589 */
590STATIC int
591xfs_iformat_extents(
592 xfs_inode_t *ip,
593 xfs_dinode_t *dip,
594 int whichfork)
595{
596 xfs_bmbt_rec_t *ep, *dp;
597 xfs_ifork_t *ifp;
598 int nex;
599 int real_size;
600 int size;
601 int i;
602
603 ifp = XFS_IFORK_PTR(ip, whichfork);
604 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
605 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
606
607 /*
608 * If the number of extents is unreasonable, then something
609 * is wrong and we just bail out rather than crash in
610 * kmem_alloc() or memcpy() below.
611 */
612 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
613 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
614 "corrupt inode %Lu ((a)extents = %d). Unmount and run xfs_repair.",
615 (unsigned long long) ip->i_ino, nex);
616 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
617 ip->i_mount, dip);
618 return XFS_ERROR(EFSCORRUPTED);
619 }
620
621 real_size = 0;
622 if (nex == 0)
623 ifp->if_u1.if_extents = NULL;
624 else if (nex <= XFS_INLINE_EXTS)
625 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
626 else {
627 ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
628 ASSERT(ifp->if_u1.if_extents != NULL);
629 real_size = size;
630 }
631 ifp->if_bytes = size;
632 ifp->if_real_bytes = real_size;
633 if (size) {
634 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
635 xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip));
636 ep = ifp->if_u1.if_extents;
637 for (i = 0; i < nex; i++, ep++, dp++) {
638 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
639 ARCH_CONVERT);
640 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
641 ARCH_CONVERT);
642 }
643 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
644 whichfork);
645 if (whichfork != XFS_DATA_FORK ||
646 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
647 if (unlikely(xfs_check_nostate_extents(
648 ifp->if_u1.if_extents, nex))) {
649 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
650 XFS_ERRLEVEL_LOW,
651 ip->i_mount);
652 return XFS_ERROR(EFSCORRUPTED);
653 }
654 }
655 ifp->if_flags |= XFS_IFEXTENTS;
656 return 0;
657}
658
659/*
660 * The file has too many extents to fit into
661 * the inode, so they are in B-tree format.
662 * Allocate a buffer for the root of the B-tree
663 * and copy the root into it. The i_extents
664 * field will remain NULL until all of the
665 * extents are read in (when they are needed).
666 */
667STATIC int
668xfs_iformat_btree(
669 xfs_inode_t *ip,
670 xfs_dinode_t *dip,
671 int whichfork)
672{
673 xfs_bmdr_block_t *dfp;
674 xfs_ifork_t *ifp;
675 /* REFERENCED */
676 int nrecs;
677 int size;
678
679 ifp = XFS_IFORK_PTR(ip, whichfork);
680 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
681 size = XFS_BMAP_BROOT_SPACE(dfp);
682 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
683
684 /*
685 * blow out if -- fork has less extents than can fit in
686 * fork (fork shouldn't be a btree format), root btree
687 * block has more records than can fit into the fork,
688 * or the number of extents is greater than the number of
689 * blocks.
690 */
691 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
692 || XFS_BMDR_SPACE_CALC(nrecs) >
693 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
694 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
695 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
696 "corrupt inode %Lu (btree). Unmount and run xfs_repair.",
697 (unsigned long long) ip->i_ino);
698 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
699 ip->i_mount);
700 return XFS_ERROR(EFSCORRUPTED);
701 }
702
703 ifp->if_broot_bytes = size;
704 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
705 ASSERT(ifp->if_broot != NULL);
706 /*
707 * Copy and convert from the on-disk structure
708 * to the in-memory structure.
709 */
710 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
711 ifp->if_broot, size);
712 ifp->if_flags &= ~XFS_IFEXTENTS;
713 ifp->if_flags |= XFS_IFBROOT;
714
715 return 0;
716}
717
718/*
719 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
720 * and native format
721 *
722 * buf = on-disk representation
723 * dip = native representation
724 * dir = direction - +ve -> disk to native
725 * -ve -> native to disk
726 */
727void
728xfs_xlate_dinode_core(
729 xfs_caddr_t buf,
730 xfs_dinode_core_t *dip,
731 int dir)
732{
733 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
734 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
735 xfs_arch_t arch = ARCH_CONVERT;
736
737 ASSERT(dir);
738
739 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
740 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
741 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
742 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
743 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
744 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
745 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
746 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
747 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
748
749 if (dir > 0) {
750 memcpy(mem_core->di_pad, buf_core->di_pad,
751 sizeof(buf_core->di_pad));
752 } else {
753 memcpy(buf_core->di_pad, mem_core->di_pad,
754 sizeof(buf_core->di_pad));
755 }
756
757 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
758
759 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
760 dir, arch);
761 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
762 dir, arch);
763 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
764 dir, arch);
765 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
766 dir, arch);
767 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
768 dir, arch);
769 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
770 dir, arch);
771 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
772 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
773 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
774 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
775 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
776 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
777 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
778 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
779 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
780 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
781 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
782}
783
784STATIC uint
785_xfs_dic2xflags(
786 xfs_dinode_core_t *dic,
787 __uint16_t di_flags)
788{
789 uint flags = 0;
790
791 if (di_flags & XFS_DIFLAG_ANY) {
792 if (di_flags & XFS_DIFLAG_REALTIME)
793 flags |= XFS_XFLAG_REALTIME;
794 if (di_flags & XFS_DIFLAG_PREALLOC)
795 flags |= XFS_XFLAG_PREALLOC;
796 if (di_flags & XFS_DIFLAG_IMMUTABLE)
797 flags |= XFS_XFLAG_IMMUTABLE;
798 if (di_flags & XFS_DIFLAG_APPEND)
799 flags |= XFS_XFLAG_APPEND;
800 if (di_flags & XFS_DIFLAG_SYNC)
801 flags |= XFS_XFLAG_SYNC;
802 if (di_flags & XFS_DIFLAG_NOATIME)
803 flags |= XFS_XFLAG_NOATIME;
804 if (di_flags & XFS_DIFLAG_NODUMP)
805 flags |= XFS_XFLAG_NODUMP;
806 if (di_flags & XFS_DIFLAG_RTINHERIT)
807 flags |= XFS_XFLAG_RTINHERIT;
808 if (di_flags & XFS_DIFLAG_PROJINHERIT)
809 flags |= XFS_XFLAG_PROJINHERIT;
810 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
811 flags |= XFS_XFLAG_NOSYMLINKS;
Nathan Scottdd9f4382006-01-11 15:28:28 +1100812 if (di_flags & XFS_DIFLAG_EXTSIZE)
813 flags |= XFS_XFLAG_EXTSIZE;
814 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
815 flags |= XFS_XFLAG_EXTSZINHERIT;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700816 }
817
818 return flags;
819}
820
821uint
822xfs_ip2xflags(
823 xfs_inode_t *ip)
824{
825 xfs_dinode_core_t *dic = &ip->i_d;
826
827 return _xfs_dic2xflags(dic, dic->di_flags) |
828 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
829}
830
831uint
832xfs_dic2xflags(
833 xfs_dinode_core_t *dic)
834{
835 return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
836 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
837}
838
839/*
840 * Given a mount structure and an inode number, return a pointer
841 * to a newly allocated in-core inode coresponding to the given
842 * inode number.
843 *
844 * Initialize the inode's attributes and extent pointers if it
845 * already has them (it will not if the inode has no links).
846 */
847int
848xfs_iread(
849 xfs_mount_t *mp,
850 xfs_trans_t *tp,
851 xfs_ino_t ino,
852 xfs_inode_t **ipp,
853 xfs_daddr_t bno)
854{
855 xfs_buf_t *bp;
856 xfs_dinode_t *dip;
857 xfs_inode_t *ip;
858 int error;
859
860 ASSERT(xfs_inode_zone != NULL);
861
862 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
863 ip->i_ino = ino;
864 ip->i_mount = mp;
865
866 /*
867 * Get pointer's to the on-disk inode and the buffer containing it.
868 * If the inode number refers to a block outside the file system
869 * then xfs_itobp() will return NULL. In this case we should
870 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
871 * know that this is a new incore inode.
872 */
873 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno);
874
875 if (error != 0) {
876 kmem_zone_free(xfs_inode_zone, ip);
877 return error;
878 }
879
880 /*
881 * Initialize inode's trace buffers.
882 * Do this before xfs_iformat in case it adds entries.
883 */
884#ifdef XFS_BMAP_TRACE
885 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
886#endif
887#ifdef XFS_BMBT_TRACE
888 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
889#endif
890#ifdef XFS_RW_TRACE
891 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
892#endif
893#ifdef XFS_ILOCK_TRACE
894 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
895#endif
896#ifdef XFS_DIR2_TRACE
897 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
898#endif
899
900 /*
901 * If we got something that isn't an inode it means someone
902 * (nfs or dmi) has a stale handle.
903 */
904 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
905 kmem_zone_free(xfs_inode_zone, ip);
906 xfs_trans_brelse(tp, bp);
907#ifdef DEBUG
908 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
909 "dip->di_core.di_magic (0x%x) != "
910 "XFS_DINODE_MAGIC (0x%x)",
911 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
912 XFS_DINODE_MAGIC);
913#endif /* DEBUG */
914 return XFS_ERROR(EINVAL);
915 }
916
917 /*
918 * If the on-disk inode is already linked to a directory
919 * entry, copy all of the inode into the in-core inode.
920 * xfs_iformat() handles copying in the inode format
921 * specific information.
922 * Otherwise, just get the truly permanent information.
923 */
924 if (dip->di_core.di_mode) {
925 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
926 &(ip->i_d), 1);
927 error = xfs_iformat(ip, dip);
928 if (error) {
929 kmem_zone_free(xfs_inode_zone, ip);
930 xfs_trans_brelse(tp, bp);
931#ifdef DEBUG
932 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
933 "xfs_iformat() returned error %d",
934 error);
935#endif /* DEBUG */
936 return error;
937 }
938 } else {
939 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
940 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
941 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
942 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
943 /*
944 * Make sure to pull in the mode here as well in
945 * case the inode is released without being used.
946 * This ensures that xfs_inactive() will see that
947 * the inode is already free and not try to mess
948 * with the uninitialized part of it.
949 */
950 ip->i_d.di_mode = 0;
951 /*
952 * Initialize the per-fork minima and maxima for a new
953 * inode here. xfs_iformat will do it for old inodes.
954 */
955 ip->i_df.if_ext_max =
956 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
957 }
958
959 INIT_LIST_HEAD(&ip->i_reclaim);
960
961 /*
962 * The inode format changed when we moved the link count and
963 * made it 32 bits long. If this is an old format inode,
964 * convert it in memory to look like a new one. If it gets
965 * flushed to disk we will convert back before flushing or
966 * logging it. We zero out the new projid field and the old link
967 * count field. We'll handle clearing the pad field (the remains
968 * of the old uuid field) when we actually convert the inode to
969 * the new format. We don't change the version number so that we
970 * can distinguish this from a real new format inode.
971 */
972 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
973 ip->i_d.di_nlink = ip->i_d.di_onlink;
974 ip->i_d.di_onlink = 0;
975 ip->i_d.di_projid = 0;
976 }
977
978 ip->i_delayed_blks = 0;
979
980 /*
981 * Mark the buffer containing the inode as something to keep
982 * around for a while. This helps to keep recently accessed
983 * meta-data in-core longer.
984 */
985 XFS_BUF_SET_REF(bp, XFS_INO_REF);
986
987 /*
988 * Use xfs_trans_brelse() to release the buffer containing the
989 * on-disk inode, because it was acquired with xfs_trans_read_buf()
990 * in xfs_itobp() above. If tp is NULL, this is just a normal
991 * brelse(). If we're within a transaction, then xfs_trans_brelse()
992 * will only release the buffer if it is not dirty within the
993 * transaction. It will be OK to release the buffer in this case,
994 * because inodes on disk are never destroyed and we will be
995 * locking the new in-core inode before putting it in the hash
996 * table where other processes can find it. Thus we don't have
997 * to worry about the inode being changed just because we released
998 * the buffer.
999 */
1000 xfs_trans_brelse(tp, bp);
1001 *ipp = ip;
1002 return 0;
1003}
1004
1005/*
1006 * Read in extents from a btree-format inode.
1007 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1008 */
1009int
1010xfs_iread_extents(
1011 xfs_trans_t *tp,
1012 xfs_inode_t *ip,
1013 int whichfork)
1014{
1015 int error;
1016 xfs_ifork_t *ifp;
1017 size_t size;
1018
1019 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1020 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1021 ip->i_mount);
1022 return XFS_ERROR(EFSCORRUPTED);
1023 }
1024 size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t);
1025 ifp = XFS_IFORK_PTR(ip, whichfork);
1026 /*
1027 * We know that the size is valid (it's checked in iformat_btree)
1028 */
1029 ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
1030 ASSERT(ifp->if_u1.if_extents != NULL);
1031 ifp->if_lastex = NULLEXTNUM;
1032 ifp->if_bytes = ifp->if_real_bytes = (int)size;
1033 ifp->if_flags |= XFS_IFEXTENTS;
1034 error = xfs_bmap_read_extents(tp, ip, whichfork);
1035 if (error) {
1036 kmem_free(ifp->if_u1.if_extents, size);
1037 ifp->if_u1.if_extents = NULL;
1038 ifp->if_bytes = ifp->if_real_bytes = 0;
1039 ifp->if_flags &= ~XFS_IFEXTENTS;
1040 return error;
1041 }
1042 xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents,
1043 XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip));
1044 return 0;
1045}
1046
1047/*
1048 * Allocate an inode on disk and return a copy of its in-core version.
1049 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1050 * appropriately within the inode. The uid and gid for the inode are
1051 * set according to the contents of the given cred structure.
1052 *
1053 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1054 * has a free inode available, call xfs_iget()
1055 * to obtain the in-core version of the allocated inode. Finally,
1056 * fill in the inode and log its initial contents. In this case,
1057 * ialloc_context would be set to NULL and call_again set to false.
1058 *
1059 * If xfs_dialloc() does not have an available inode,
1060 * it will replenish its supply by doing an allocation. Since we can
1061 * only do one allocation within a transaction without deadlocks, we
1062 * must commit the current transaction before returning the inode itself.
1063 * In this case, therefore, we will set call_again to true and return.
1064 * The caller should then commit the current transaction, start a new
1065 * transaction, and call xfs_ialloc() again to actually get the inode.
1066 *
1067 * To ensure that some other process does not grab the inode that
1068 * was allocated during the first call to xfs_ialloc(), this routine
1069 * also returns the [locked] bp pointing to the head of the freelist
1070 * as ialloc_context. The caller should hold this buffer across
1071 * the commit and pass it back into this routine on the second call.
1072 */
1073int
1074xfs_ialloc(
1075 xfs_trans_t *tp,
1076 xfs_inode_t *pip,
1077 mode_t mode,
Nathan Scott31b084a2005-05-05 13:25:00 -07001078 xfs_nlink_t nlink,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001079 xfs_dev_t rdev,
1080 cred_t *cr,
1081 xfs_prid_t prid,
1082 int okalloc,
1083 xfs_buf_t **ialloc_context,
1084 boolean_t *call_again,
1085 xfs_inode_t **ipp)
1086{
1087 xfs_ino_t ino;
1088 xfs_inode_t *ip;
1089 vnode_t *vp;
1090 uint flags;
1091 int error;
1092
1093 /*
1094 * Call the space management code to pick
1095 * the on-disk inode to be allocated.
1096 */
1097 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1098 ialloc_context, call_again, &ino);
1099 if (error != 0) {
1100 return error;
1101 }
1102 if (*call_again || ino == NULLFSINO) {
1103 *ipp = NULL;
1104 return 0;
1105 }
1106 ASSERT(*ialloc_context == NULL);
1107
1108 /*
1109 * Get the in-core inode with the lock held exclusively.
1110 * This is because we're setting fields here we need
1111 * to prevent others from looking at until we're done.
1112 */
1113 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1114 IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1115 if (error != 0) {
1116 return error;
1117 }
1118 ASSERT(ip != NULL);
1119
1120 vp = XFS_ITOV(ip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001121 ip->i_d.di_mode = (__uint16_t)mode;
1122 ip->i_d.di_onlink = 0;
1123 ip->i_d.di_nlink = nlink;
1124 ASSERT(ip->i_d.di_nlink == nlink);
1125 ip->i_d.di_uid = current_fsuid(cr);
1126 ip->i_d.di_gid = current_fsgid(cr);
1127 ip->i_d.di_projid = prid;
1128 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1129
1130 /*
1131 * If the superblock version is up to where we support new format
1132 * inodes and this is currently an old format inode, then change
1133 * the inode version number now. This way we only do the conversion
1134 * here rather than here and in the flush/logging code.
1135 */
1136 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1137 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1138 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1139 /*
1140 * We've already zeroed the old link count, the projid field,
1141 * and the pad field.
1142 */
1143 }
1144
1145 /*
1146 * Project ids won't be stored on disk if we are using a version 1 inode.
1147 */
1148 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1149 xfs_bump_ino_vers2(tp, ip);
1150
1151 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1152 ip->i_d.di_gid = pip->i_d.di_gid;
1153 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1154 ip->i_d.di_mode |= S_ISGID;
1155 }
1156 }
1157
1158 /*
1159 * If the group ID of the new file does not match the effective group
1160 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1161 * (and only if the irix_sgid_inherit compatibility variable is set).
1162 */
1163 if ((irix_sgid_inherit) &&
1164 (ip->i_d.di_mode & S_ISGID) &&
1165 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1166 ip->i_d.di_mode &= ~S_ISGID;
1167 }
1168
1169 ip->i_d.di_size = 0;
1170 ip->i_d.di_nextents = 0;
1171 ASSERT(ip->i_d.di_nblocks == 0);
1172 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1173 /*
1174 * di_gen will have been taken care of in xfs_iread.
1175 */
1176 ip->i_d.di_extsize = 0;
1177 ip->i_d.di_dmevmask = 0;
1178 ip->i_d.di_dmstate = 0;
1179 ip->i_d.di_flags = 0;
1180 flags = XFS_ILOG_CORE;
1181 switch (mode & S_IFMT) {
1182 case S_IFIFO:
1183 case S_IFCHR:
1184 case S_IFBLK:
1185 case S_IFSOCK:
1186 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1187 ip->i_df.if_u2.if_rdev = rdev;
1188 ip->i_df.if_flags = 0;
1189 flags |= XFS_ILOG_DEV;
1190 break;
1191 case S_IFREG:
1192 case S_IFDIR:
1193 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
Nathan Scott365ca832005-06-21 15:39:12 +10001194 uint di_flags = 0;
1195
1196 if ((mode & S_IFMT) == S_IFDIR) {
1197 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1198 di_flags |= XFS_DIFLAG_RTINHERIT;
Nathan Scottdd9f4382006-01-11 15:28:28 +11001199 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1200 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1201 ip->i_d.di_extsize = pip->i_d.di_extsize;
1202 }
1203 } else if ((mode & S_IFMT) == S_IFREG) {
Nathan Scott365ca832005-06-21 15:39:12 +10001204 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1205 di_flags |= XFS_DIFLAG_REALTIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001206 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1207 }
Nathan Scottdd9f4382006-01-11 15:28:28 +11001208 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1209 di_flags |= XFS_DIFLAG_EXTSIZE;
1210 ip->i_d.di_extsize = pip->i_d.di_extsize;
1211 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001212 }
1213 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1214 xfs_inherit_noatime)
Nathan Scott365ca832005-06-21 15:39:12 +10001215 di_flags |= XFS_DIFLAG_NOATIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001216 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1217 xfs_inherit_nodump)
Nathan Scott365ca832005-06-21 15:39:12 +10001218 di_flags |= XFS_DIFLAG_NODUMP;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001219 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1220 xfs_inherit_sync)
Nathan Scott365ca832005-06-21 15:39:12 +10001221 di_flags |= XFS_DIFLAG_SYNC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001222 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1223 xfs_inherit_nosymlinks)
Nathan Scott365ca832005-06-21 15:39:12 +10001224 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1225 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1226 di_flags |= XFS_DIFLAG_PROJINHERIT;
1227 ip->i_d.di_flags |= di_flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001228 }
1229 /* FALLTHROUGH */
1230 case S_IFLNK:
1231 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1232 ip->i_df.if_flags = XFS_IFEXTENTS;
1233 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1234 ip->i_df.if_u1.if_extents = NULL;
1235 break;
1236 default:
1237 ASSERT(0);
1238 }
1239 /*
1240 * Attribute fork settings for new inode.
1241 */
1242 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1243 ip->i_d.di_anextents = 0;
1244
1245 /*
1246 * Log the new values stuffed into the inode.
1247 */
1248 xfs_trans_log_inode(tp, ip, flags);
1249
Christoph Hellwig0432dab2005-09-02 16:46:51 +10001250 /* now that we have an i_mode we can set Linux inode ops (& unlock) */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001251 VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1252
1253 *ipp = ip;
1254 return 0;
1255}
1256
1257/*
1258 * Check to make sure that there are no blocks allocated to the
1259 * file beyond the size of the file. We don't check this for
1260 * files with fixed size extents or real time extents, but we
1261 * at least do it for regular files.
1262 */
1263#ifdef DEBUG
1264void
1265xfs_isize_check(
1266 xfs_mount_t *mp,
1267 xfs_inode_t *ip,
1268 xfs_fsize_t isize)
1269{
1270 xfs_fileoff_t map_first;
1271 int nimaps;
1272 xfs_bmbt_irec_t imaps[2];
1273
1274 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1275 return;
1276
Nathan Scottdd9f4382006-01-11 15:28:28 +11001277 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001278 return;
1279
1280 nimaps = 2;
1281 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1282 /*
1283 * The filesystem could be shutting down, so bmapi may return
1284 * an error.
1285 */
1286 if (xfs_bmapi(NULL, ip, map_first,
1287 (XFS_B_TO_FSB(mp,
1288 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1289 map_first),
1290 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1291 NULL))
1292 return;
1293 ASSERT(nimaps == 1);
1294 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1295}
1296#endif /* DEBUG */
1297
1298/*
1299 * Calculate the last possible buffered byte in a file. This must
1300 * include data that was buffered beyond the EOF by the write code.
1301 * This also needs to deal with overflowing the xfs_fsize_t type
1302 * which can happen for sizes near the limit.
1303 *
1304 * We also need to take into account any blocks beyond the EOF. It
1305 * may be the case that they were buffered by a write which failed.
1306 * In that case the pages will still be in memory, but the inode size
1307 * will never have been updated.
1308 */
1309xfs_fsize_t
1310xfs_file_last_byte(
1311 xfs_inode_t *ip)
1312{
1313 xfs_mount_t *mp;
1314 xfs_fsize_t last_byte;
1315 xfs_fileoff_t last_block;
1316 xfs_fileoff_t size_last_block;
1317 int error;
1318
1319 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1320
1321 mp = ip->i_mount;
1322 /*
1323 * Only check for blocks beyond the EOF if the extents have
1324 * been read in. This eliminates the need for the inode lock,
1325 * and it also saves us from looking when it really isn't
1326 * necessary.
1327 */
1328 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1329 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1330 XFS_DATA_FORK);
1331 if (error) {
1332 last_block = 0;
1333 }
1334 } else {
1335 last_block = 0;
1336 }
1337 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1338 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1339
1340 last_byte = XFS_FSB_TO_B(mp, last_block);
1341 if (last_byte < 0) {
1342 return XFS_MAXIOFFSET(mp);
1343 }
1344 last_byte += (1 << mp->m_writeio_log);
1345 if (last_byte < 0) {
1346 return XFS_MAXIOFFSET(mp);
1347 }
1348 return last_byte;
1349}
1350
1351#if defined(XFS_RW_TRACE)
1352STATIC void
1353xfs_itrunc_trace(
1354 int tag,
1355 xfs_inode_t *ip,
1356 int flag,
1357 xfs_fsize_t new_size,
1358 xfs_off_t toss_start,
1359 xfs_off_t toss_finish)
1360{
1361 if (ip->i_rwtrace == NULL) {
1362 return;
1363 }
1364
1365 ktrace_enter(ip->i_rwtrace,
1366 (void*)((long)tag),
1367 (void*)ip,
1368 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1369 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1370 (void*)((long)flag),
1371 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1372 (void*)(unsigned long)(new_size & 0xffffffff),
1373 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1374 (void*)(unsigned long)(toss_start & 0xffffffff),
1375 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1376 (void*)(unsigned long)(toss_finish & 0xffffffff),
1377 (void*)(unsigned long)current_cpu(),
1378 (void*)0,
1379 (void*)0,
1380 (void*)0,
1381 (void*)0);
1382}
1383#else
1384#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1385#endif
1386
1387/*
1388 * Start the truncation of the file to new_size. The new size
1389 * must be smaller than the current size. This routine will
1390 * clear the buffer and page caches of file data in the removed
1391 * range, and xfs_itruncate_finish() will remove the underlying
1392 * disk blocks.
1393 *
1394 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1395 * must NOT have the inode lock held at all. This is because we're
1396 * calling into the buffer/page cache code and we can't hold the
1397 * inode lock when we do so.
1398 *
1399 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1400 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1401 * in the case that the caller is locking things out of order and
1402 * may not be able to call xfs_itruncate_finish() with the inode lock
1403 * held without dropping the I/O lock. If the caller must drop the
1404 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1405 * must be called again with all the same restrictions as the initial
1406 * call.
1407 */
1408void
1409xfs_itruncate_start(
1410 xfs_inode_t *ip,
1411 uint flags,
1412 xfs_fsize_t new_size)
1413{
1414 xfs_fsize_t last_byte;
1415 xfs_off_t toss_start;
1416 xfs_mount_t *mp;
1417 vnode_t *vp;
1418
1419 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1420 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1421 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1422 (flags == XFS_ITRUNC_MAYBE));
1423
1424 mp = ip->i_mount;
1425 vp = XFS_ITOV(ip);
1426 /*
1427 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1428 * overlapping the region being removed. We have to use
1429 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1430 * caller may not be able to finish the truncate without
1431 * dropping the inode's I/O lock. Make sure
1432 * to catch any pages brought in by buffers overlapping
1433 * the EOF by searching out beyond the isize by our
1434 * block size. We round new_size up to a block boundary
1435 * so that we don't toss things on the same block as
1436 * new_size but before it.
1437 *
1438 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1439 * call remapf() over the same region if the file is mapped.
1440 * This frees up mapped file references to the pages in the
1441 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1442 * that we get the latest mapped changes flushed out.
1443 */
1444 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1445 toss_start = XFS_FSB_TO_B(mp, toss_start);
1446 if (toss_start < 0) {
1447 /*
1448 * The place to start tossing is beyond our maximum
1449 * file size, so there is no way that the data extended
1450 * out there.
1451 */
1452 return;
1453 }
1454 last_byte = xfs_file_last_byte(ip);
1455 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1456 last_byte);
1457 if (last_byte > toss_start) {
1458 if (flags & XFS_ITRUNC_DEFINITE) {
1459 VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1460 } else {
1461 VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1462 }
1463 }
1464
1465#ifdef DEBUG
1466 if (new_size == 0) {
1467 ASSERT(VN_CACHED(vp) == 0);
1468 }
1469#endif
1470}
1471
1472/*
1473 * Shrink the file to the given new_size. The new
1474 * size must be smaller than the current size.
1475 * This will free up the underlying blocks
1476 * in the removed range after a call to xfs_itruncate_start()
1477 * or xfs_atruncate_start().
1478 *
1479 * The transaction passed to this routine must have made
1480 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1481 * This routine may commit the given transaction and
1482 * start new ones, so make sure everything involved in
1483 * the transaction is tidy before calling here.
1484 * Some transaction will be returned to the caller to be
1485 * committed. The incoming transaction must already include
1486 * the inode, and both inode locks must be held exclusively.
1487 * The inode must also be "held" within the transaction. On
1488 * return the inode will be "held" within the returned transaction.
1489 * This routine does NOT require any disk space to be reserved
1490 * for it within the transaction.
1491 *
1492 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1493 * and it indicates the fork which is to be truncated. For the
1494 * attribute fork we only support truncation to size 0.
1495 *
1496 * We use the sync parameter to indicate whether or not the first
1497 * transaction we perform might have to be synchronous. For the attr fork,
1498 * it needs to be so if the unlink of the inode is not yet known to be
1499 * permanent in the log. This keeps us from freeing and reusing the
1500 * blocks of the attribute fork before the unlink of the inode becomes
1501 * permanent.
1502 *
1503 * For the data fork, we normally have to run synchronously if we're
1504 * being called out of the inactive path or we're being called
1505 * out of the create path where we're truncating an existing file.
1506 * Either way, the truncate needs to be sync so blocks don't reappear
1507 * in the file with altered data in case of a crash. wsync filesystems
1508 * can run the first case async because anything that shrinks the inode
1509 * has to run sync so by the time we're called here from inactive, the
1510 * inode size is permanently set to 0.
1511 *
1512 * Calls from the truncate path always need to be sync unless we're
1513 * in a wsync filesystem and the file has already been unlinked.
1514 *
1515 * The caller is responsible for correctly setting the sync parameter.
1516 * It gets too hard for us to guess here which path we're being called
1517 * out of just based on inode state.
1518 */
1519int
1520xfs_itruncate_finish(
1521 xfs_trans_t **tp,
1522 xfs_inode_t *ip,
1523 xfs_fsize_t new_size,
1524 int fork,
1525 int sync)
1526{
1527 xfs_fsblock_t first_block;
1528 xfs_fileoff_t first_unmap_block;
1529 xfs_fileoff_t last_block;
1530 xfs_filblks_t unmap_len=0;
1531 xfs_mount_t *mp;
1532 xfs_trans_t *ntp;
1533 int done;
1534 int committed;
1535 xfs_bmap_free_t free_list;
1536 int error;
1537
1538 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1539 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1540 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1541 ASSERT(*tp != NULL);
1542 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1543 ASSERT(ip->i_transp == *tp);
1544 ASSERT(ip->i_itemp != NULL);
1545 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1546
1547
1548 ntp = *tp;
1549 mp = (ntp)->t_mountp;
1550 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1551
1552 /*
1553 * We only support truncating the entire attribute fork.
1554 */
1555 if (fork == XFS_ATTR_FORK) {
1556 new_size = 0LL;
1557 }
1558 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1559 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1560 /*
1561 * The first thing we do is set the size to new_size permanently
1562 * on disk. This way we don't have to worry about anyone ever
1563 * being able to look at the data being freed even in the face
1564 * of a crash. What we're getting around here is the case where
1565 * we free a block, it is allocated to another file, it is written
1566 * to, and then we crash. If the new data gets written to the
1567 * file but the log buffers containing the free and reallocation
1568 * don't, then we'd end up with garbage in the blocks being freed.
1569 * As long as we make the new_size permanent before actually
1570 * freeing any blocks it doesn't matter if they get writtten to.
1571 *
1572 * The callers must signal into us whether or not the size
1573 * setting here must be synchronous. There are a few cases
1574 * where it doesn't have to be synchronous. Those cases
1575 * occur if the file is unlinked and we know the unlink is
1576 * permanent or if the blocks being truncated are guaranteed
1577 * to be beyond the inode eof (regardless of the link count)
1578 * and the eof value is permanent. Both of these cases occur
1579 * only on wsync-mounted filesystems. In those cases, we're
1580 * guaranteed that no user will ever see the data in the blocks
1581 * that are being truncated so the truncate can run async.
1582 * In the free beyond eof case, the file may wind up with
1583 * more blocks allocated to it than it needs if we crash
1584 * and that won't get fixed until the next time the file
1585 * is re-opened and closed but that's ok as that shouldn't
1586 * be too many blocks.
1587 *
1588 * However, we can't just make all wsync xactions run async
1589 * because there's one call out of the create path that needs
1590 * to run sync where it's truncating an existing file to size
1591 * 0 whose size is > 0.
1592 *
1593 * It's probably possible to come up with a test in this
1594 * routine that would correctly distinguish all the above
1595 * cases from the values of the function parameters and the
1596 * inode state but for sanity's sake, I've decided to let the
1597 * layers above just tell us. It's simpler to correctly figure
1598 * out in the layer above exactly under what conditions we
1599 * can run async and I think it's easier for others read and
1600 * follow the logic in case something has to be changed.
1601 * cscope is your friend -- rcc.
1602 *
1603 * The attribute fork is much simpler.
1604 *
1605 * For the attribute fork we allow the caller to tell us whether
1606 * the unlink of the inode that led to this call is yet permanent
1607 * in the on disk log. If it is not and we will be freeing extents
1608 * in this inode then we make the first transaction synchronous
1609 * to make sure that the unlink is permanent by the time we free
1610 * the blocks.
1611 */
1612 if (fork == XFS_DATA_FORK) {
1613 if (ip->i_d.di_nextents > 0) {
1614 ip->i_d.di_size = new_size;
1615 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1616 }
1617 } else if (sync) {
1618 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1619 if (ip->i_d.di_anextents > 0)
1620 xfs_trans_set_sync(ntp);
1621 }
1622 ASSERT(fork == XFS_DATA_FORK ||
1623 (fork == XFS_ATTR_FORK &&
1624 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1625 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1626
1627 /*
1628 * Since it is possible for space to become allocated beyond
1629 * the end of the file (in a crash where the space is allocated
1630 * but the inode size is not yet updated), simply remove any
1631 * blocks which show up between the new EOF and the maximum
1632 * possible file size. If the first block to be removed is
1633 * beyond the maximum file size (ie it is the same as last_block),
1634 * then there is nothing to do.
1635 */
1636 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1637 ASSERT(first_unmap_block <= last_block);
1638 done = 0;
1639 if (last_block == first_unmap_block) {
1640 done = 1;
1641 } else {
1642 unmap_len = last_block - first_unmap_block + 1;
1643 }
1644 while (!done) {
1645 /*
1646 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1647 * will tell us whether it freed the entire range or
1648 * not. If this is a synchronous mount (wsync),
1649 * then we can tell bunmapi to keep all the
1650 * transactions asynchronous since the unlink
1651 * transaction that made this inode inactive has
1652 * already hit the disk. There's no danger of
1653 * the freed blocks being reused, there being a
1654 * crash, and the reused blocks suddenly reappearing
1655 * in this file with garbage in them once recovery
1656 * runs.
1657 */
1658 XFS_BMAP_INIT(&free_list, &first_block);
1659 error = xfs_bunmapi(ntp, ip, first_unmap_block,
1660 unmap_len,
1661 XFS_BMAPI_AFLAG(fork) |
1662 (sync ? 0 : XFS_BMAPI_ASYNC),
1663 XFS_ITRUNC_MAX_EXTENTS,
1664 &first_block, &free_list, &done);
1665 if (error) {
1666 /*
1667 * If the bunmapi call encounters an error,
1668 * return to the caller where the transaction
1669 * can be properly aborted. We just need to
1670 * make sure we're not holding any resources
1671 * that we were not when we came in.
1672 */
1673 xfs_bmap_cancel(&free_list);
1674 return error;
1675 }
1676
1677 /*
1678 * Duplicate the transaction that has the permanent
1679 * reservation and commit the old transaction.
1680 */
1681 error = xfs_bmap_finish(tp, &free_list, first_block,
1682 &committed);
1683 ntp = *tp;
1684 if (error) {
1685 /*
1686 * If the bmap finish call encounters an error,
1687 * return to the caller where the transaction
1688 * can be properly aborted. We just need to
1689 * make sure we're not holding any resources
1690 * that we were not when we came in.
1691 *
1692 * Aborting from this point might lose some
1693 * blocks in the file system, but oh well.
1694 */
1695 xfs_bmap_cancel(&free_list);
1696 if (committed) {
1697 /*
1698 * If the passed in transaction committed
1699 * in xfs_bmap_finish(), then we want to
1700 * add the inode to this one before returning.
1701 * This keeps things simple for the higher
1702 * level code, because it always knows that
1703 * the inode is locked and held in the
1704 * transaction that returns to it whether
1705 * errors occur or not. We don't mark the
1706 * inode dirty so that this transaction can
1707 * be easily aborted if possible.
1708 */
1709 xfs_trans_ijoin(ntp, ip,
1710 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1711 xfs_trans_ihold(ntp, ip);
1712 }
1713 return error;
1714 }
1715
1716 if (committed) {
1717 /*
1718 * The first xact was committed,
1719 * so add the inode to the new one.
1720 * Mark it dirty so it will be logged
1721 * and moved forward in the log as
1722 * part of every commit.
1723 */
1724 xfs_trans_ijoin(ntp, ip,
1725 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1726 xfs_trans_ihold(ntp, ip);
1727 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1728 }
1729 ntp = xfs_trans_dup(ntp);
1730 (void) xfs_trans_commit(*tp, 0, NULL);
1731 *tp = ntp;
1732 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1733 XFS_TRANS_PERM_LOG_RES,
1734 XFS_ITRUNCATE_LOG_COUNT);
1735 /*
1736 * Add the inode being truncated to the next chained
1737 * transaction.
1738 */
1739 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1740 xfs_trans_ihold(ntp, ip);
1741 if (error)
1742 return (error);
1743 }
1744 /*
1745 * Only update the size in the case of the data fork, but
1746 * always re-log the inode so that our permanent transaction
1747 * can keep on rolling it forward in the log.
1748 */
1749 if (fork == XFS_DATA_FORK) {
1750 xfs_isize_check(mp, ip, new_size);
1751 ip->i_d.di_size = new_size;
1752 }
1753 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1754 ASSERT((new_size != 0) ||
1755 (fork == XFS_ATTR_FORK) ||
1756 (ip->i_delayed_blks == 0));
1757 ASSERT((new_size != 0) ||
1758 (fork == XFS_ATTR_FORK) ||
1759 (ip->i_d.di_nextents == 0));
1760 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1761 return 0;
1762}
1763
1764
1765/*
1766 * xfs_igrow_start
1767 *
1768 * Do the first part of growing a file: zero any data in the last
1769 * block that is beyond the old EOF. We need to do this before
1770 * the inode is joined to the transaction to modify the i_size.
1771 * That way we can drop the inode lock and call into the buffer
1772 * cache to get the buffer mapping the EOF.
1773 */
1774int
1775xfs_igrow_start(
1776 xfs_inode_t *ip,
1777 xfs_fsize_t new_size,
1778 cred_t *credp)
1779{
1780 xfs_fsize_t isize;
1781 int error;
1782
1783 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1784 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1785 ASSERT(new_size > ip->i_d.di_size);
1786
1787 error = 0;
1788 isize = ip->i_d.di_size;
1789 /*
1790 * Zero any pages that may have been created by
1791 * xfs_write_file() beyond the end of the file
1792 * and any blocks between the old and new file sizes.
1793 */
1794 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize,
1795 new_size);
1796 return error;
1797}
1798
1799/*
1800 * xfs_igrow_finish
1801 *
1802 * This routine is called to extend the size of a file.
1803 * The inode must have both the iolock and the ilock locked
1804 * for update and it must be a part of the current transaction.
1805 * The xfs_igrow_start() function must have been called previously.
1806 * If the change_flag is not zero, the inode change timestamp will
1807 * be updated.
1808 */
1809void
1810xfs_igrow_finish(
1811 xfs_trans_t *tp,
1812 xfs_inode_t *ip,
1813 xfs_fsize_t new_size,
1814 int change_flag)
1815{
1816 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1817 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1818 ASSERT(ip->i_transp == tp);
1819 ASSERT(new_size > ip->i_d.di_size);
1820
1821 /*
1822 * Update the file size. Update the inode change timestamp
1823 * if change_flag set.
1824 */
1825 ip->i_d.di_size = new_size;
1826 if (change_flag)
1827 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1828 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1829
1830}
1831
1832
1833/*
1834 * This is called when the inode's link count goes to 0.
1835 * We place the on-disk inode on a list in the AGI. It
1836 * will be pulled from this list when the inode is freed.
1837 */
1838int
1839xfs_iunlink(
1840 xfs_trans_t *tp,
1841 xfs_inode_t *ip)
1842{
1843 xfs_mount_t *mp;
1844 xfs_agi_t *agi;
1845 xfs_dinode_t *dip;
1846 xfs_buf_t *agibp;
1847 xfs_buf_t *ibp;
1848 xfs_agnumber_t agno;
1849 xfs_daddr_t agdaddr;
1850 xfs_agino_t agino;
1851 short bucket_index;
1852 int offset;
1853 int error;
1854 int agi_ok;
1855
1856 ASSERT(ip->i_d.di_nlink == 0);
1857 ASSERT(ip->i_d.di_mode != 0);
1858 ASSERT(ip->i_transp == tp);
1859
1860 mp = tp->t_mountp;
1861
1862 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1863 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1864
1865 /*
1866 * Get the agi buffer first. It ensures lock ordering
1867 * on the list.
1868 */
1869 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1870 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1871 if (error) {
1872 return error;
1873 }
1874 /*
1875 * Validate the magic number of the agi block.
1876 */
1877 agi = XFS_BUF_TO_AGI(agibp);
1878 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11001879 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1880 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001881 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1882 XFS_RANDOM_IUNLINK))) {
1883 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1884 xfs_trans_brelse(tp, agibp);
1885 return XFS_ERROR(EFSCORRUPTED);
1886 }
1887 /*
1888 * Get the index into the agi hash table for the
1889 * list this inode will go on.
1890 */
1891 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1892 ASSERT(agino != 0);
1893 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1894 ASSERT(agi->agi_unlinked[bucket_index]);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001895 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001896
Christoph Hellwig16259e72005-11-02 15:11:25 +11001897 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001898 /*
1899 * There is already another inode in the bucket we need
1900 * to add ourselves to. Add us at the front of the list.
1901 * Here we put the head pointer into our next pointer,
1902 * and then we fall through to point the head at us.
1903 */
1904 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1905 if (error) {
1906 return error;
1907 }
1908 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1909 ASSERT(dip->di_next_unlinked);
1910 /* both on-disk, don't endian flip twice */
1911 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1912 offset = ip->i_boffset +
1913 offsetof(xfs_dinode_t, di_next_unlinked);
1914 xfs_trans_inode_buf(tp, ibp);
1915 xfs_trans_log_buf(tp, ibp, offset,
1916 (offset + sizeof(xfs_agino_t) - 1));
1917 xfs_inobp_check(mp, ibp);
1918 }
1919
1920 /*
1921 * Point the bucket head pointer at the inode being inserted.
1922 */
1923 ASSERT(agino != 0);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001924 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001925 offset = offsetof(xfs_agi_t, agi_unlinked) +
1926 (sizeof(xfs_agino_t) * bucket_index);
1927 xfs_trans_log_buf(tp, agibp, offset,
1928 (offset + sizeof(xfs_agino_t) - 1));
1929 return 0;
1930}
1931
1932/*
1933 * Pull the on-disk inode from the AGI unlinked list.
1934 */
1935STATIC int
1936xfs_iunlink_remove(
1937 xfs_trans_t *tp,
1938 xfs_inode_t *ip)
1939{
1940 xfs_ino_t next_ino;
1941 xfs_mount_t *mp;
1942 xfs_agi_t *agi;
1943 xfs_dinode_t *dip;
1944 xfs_buf_t *agibp;
1945 xfs_buf_t *ibp;
1946 xfs_agnumber_t agno;
1947 xfs_daddr_t agdaddr;
1948 xfs_agino_t agino;
1949 xfs_agino_t next_agino;
1950 xfs_buf_t *last_ibp;
1951 xfs_dinode_t *last_dip;
1952 short bucket_index;
1953 int offset, last_offset;
1954 int error;
1955 int agi_ok;
1956
1957 /*
1958 * First pull the on-disk inode from the AGI unlinked list.
1959 */
1960 mp = tp->t_mountp;
1961
1962 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1963 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1964
1965 /*
1966 * Get the agi buffer first. It ensures lock ordering
1967 * on the list.
1968 */
1969 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1970 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1971 if (error) {
1972 cmn_err(CE_WARN,
1973 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1974 error, mp->m_fsname);
1975 return error;
1976 }
1977 /*
1978 * Validate the magic number of the agi block.
1979 */
1980 agi = XFS_BUF_TO_AGI(agibp);
1981 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11001982 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1983 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001984 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1985 XFS_RANDOM_IUNLINK_REMOVE))) {
1986 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1987 mp, agi);
1988 xfs_trans_brelse(tp, agibp);
1989 cmn_err(CE_WARN,
1990 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1991 mp->m_fsname);
1992 return XFS_ERROR(EFSCORRUPTED);
1993 }
1994 /*
1995 * Get the index into the agi hash table for the
1996 * list this inode will go on.
1997 */
1998 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1999 ASSERT(agino != 0);
2000 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
Christoph Hellwig16259e72005-11-02 15:11:25 +11002001 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002002 ASSERT(agi->agi_unlinked[bucket_index]);
2003
Christoph Hellwig16259e72005-11-02 15:11:25 +11002004 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002005 /*
2006 * We're at the head of the list. Get the inode's
2007 * on-disk buffer to see if there is anyone after us
2008 * on the list. Only modify our next pointer if it
2009 * is not already NULLAGINO. This saves us the overhead
2010 * of dealing with the buffer when there is no need to
2011 * change it.
2012 */
2013 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2014 if (error) {
2015 cmn_err(CE_WARN,
2016 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2017 error, mp->m_fsname);
2018 return error;
2019 }
2020 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2021 ASSERT(next_agino != 0);
2022 if (next_agino != NULLAGINO) {
2023 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2024 offset = ip->i_boffset +
2025 offsetof(xfs_dinode_t, di_next_unlinked);
2026 xfs_trans_inode_buf(tp, ibp);
2027 xfs_trans_log_buf(tp, ibp, offset,
2028 (offset + sizeof(xfs_agino_t) - 1));
2029 xfs_inobp_check(mp, ibp);
2030 } else {
2031 xfs_trans_brelse(tp, ibp);
2032 }
2033 /*
2034 * Point the bucket head pointer at the next inode.
2035 */
2036 ASSERT(next_agino != 0);
2037 ASSERT(next_agino != agino);
Christoph Hellwig16259e72005-11-02 15:11:25 +11002038 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002039 offset = offsetof(xfs_agi_t, agi_unlinked) +
2040 (sizeof(xfs_agino_t) * bucket_index);
2041 xfs_trans_log_buf(tp, agibp, offset,
2042 (offset + sizeof(xfs_agino_t) - 1));
2043 } else {
2044 /*
2045 * We need to search the list for the inode being freed.
2046 */
Christoph Hellwig16259e72005-11-02 15:11:25 +11002047 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002048 last_ibp = NULL;
2049 while (next_agino != agino) {
2050 /*
2051 * If the last inode wasn't the one pointing to
2052 * us, then release its buffer since we're not
2053 * going to do anything with it.
2054 */
2055 if (last_ibp != NULL) {
2056 xfs_trans_brelse(tp, last_ibp);
2057 }
2058 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2059 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2060 &last_ibp, &last_offset);
2061 if (error) {
2062 cmn_err(CE_WARN,
2063 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2064 error, mp->m_fsname);
2065 return error;
2066 }
2067 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2068 ASSERT(next_agino != NULLAGINO);
2069 ASSERT(next_agino != 0);
2070 }
2071 /*
2072 * Now last_ibp points to the buffer previous to us on
2073 * the unlinked list. Pull us from the list.
2074 */
2075 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2076 if (error) {
2077 cmn_err(CE_WARN,
2078 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2079 error, mp->m_fsname);
2080 return error;
2081 }
2082 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2083 ASSERT(next_agino != 0);
2084 ASSERT(next_agino != agino);
2085 if (next_agino != NULLAGINO) {
2086 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2087 offset = ip->i_boffset +
2088 offsetof(xfs_dinode_t, di_next_unlinked);
2089 xfs_trans_inode_buf(tp, ibp);
2090 xfs_trans_log_buf(tp, ibp, offset,
2091 (offset + sizeof(xfs_agino_t) - 1));
2092 xfs_inobp_check(mp, ibp);
2093 } else {
2094 xfs_trans_brelse(tp, ibp);
2095 }
2096 /*
2097 * Point the previous inode on the list to the next inode.
2098 */
2099 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2100 ASSERT(next_agino != 0);
2101 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2102 xfs_trans_inode_buf(tp, last_ibp);
2103 xfs_trans_log_buf(tp, last_ibp, offset,
2104 (offset + sizeof(xfs_agino_t) - 1));
2105 xfs_inobp_check(mp, last_ibp);
2106 }
2107 return 0;
2108}
2109
2110static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2111{
2112 return (((ip->i_itemp == NULL) ||
2113 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2114 (ip->i_update_core == 0));
2115}
2116
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002117STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002118xfs_ifree_cluster(
2119 xfs_inode_t *free_ip,
2120 xfs_trans_t *tp,
2121 xfs_ino_t inum)
2122{
2123 xfs_mount_t *mp = free_ip->i_mount;
2124 int blks_per_cluster;
2125 int nbufs;
2126 int ninodes;
2127 int i, j, found, pre_flushed;
2128 xfs_daddr_t blkno;
2129 xfs_buf_t *bp;
2130 xfs_ihash_t *ih;
2131 xfs_inode_t *ip, **ip_found;
2132 xfs_inode_log_item_t *iip;
2133 xfs_log_item_t *lip;
2134 SPLDECL(s);
2135
2136 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2137 blks_per_cluster = 1;
2138 ninodes = mp->m_sb.sb_inopblock;
2139 nbufs = XFS_IALLOC_BLOCKS(mp);
2140 } else {
2141 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2142 mp->m_sb.sb_blocksize;
2143 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2144 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2145 }
2146
2147 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2148
2149 for (j = 0; j < nbufs; j++, inum += ninodes) {
2150 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2151 XFS_INO_TO_AGBNO(mp, inum));
2152
2153
2154 /*
2155 * Look for each inode in memory and attempt to lock it,
2156 * we can be racing with flush and tail pushing here.
2157 * any inode we get the locks on, add to an array of
2158 * inode items to process later.
2159 *
2160 * The get the buffer lock, we could beat a flush
2161 * or tail pushing thread to the lock here, in which
2162 * case they will go looking for the inode buffer
2163 * and fail, we need some other form of interlock
2164 * here.
2165 */
2166 found = 0;
2167 for (i = 0; i < ninodes; i++) {
2168 ih = XFS_IHASH(mp, inum + i);
2169 read_lock(&ih->ih_lock);
2170 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2171 if (ip->i_ino == inum + i)
2172 break;
2173 }
2174
2175 /* Inode not in memory or we found it already,
2176 * nothing to do
2177 */
2178 if (!ip || (ip->i_flags & XFS_ISTALE)) {
2179 read_unlock(&ih->ih_lock);
2180 continue;
2181 }
2182
2183 if (xfs_inode_clean(ip)) {
2184 read_unlock(&ih->ih_lock);
2185 continue;
2186 }
2187
2188 /* If we can get the locks then add it to the
2189 * list, otherwise by the time we get the bp lock
2190 * below it will already be attached to the
2191 * inode buffer.
2192 */
2193
2194 /* This inode will already be locked - by us, lets
2195 * keep it that way.
2196 */
2197
2198 if (ip == free_ip) {
2199 if (xfs_iflock_nowait(ip)) {
2200 ip->i_flags |= XFS_ISTALE;
2201
2202 if (xfs_inode_clean(ip)) {
2203 xfs_ifunlock(ip);
2204 } else {
2205 ip_found[found++] = ip;
2206 }
2207 }
2208 read_unlock(&ih->ih_lock);
2209 continue;
2210 }
2211
2212 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2213 if (xfs_iflock_nowait(ip)) {
2214 ip->i_flags |= XFS_ISTALE;
2215
2216 if (xfs_inode_clean(ip)) {
2217 xfs_ifunlock(ip);
2218 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2219 } else {
2220 ip_found[found++] = ip;
2221 }
2222 } else {
2223 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2224 }
2225 }
2226
2227 read_unlock(&ih->ih_lock);
2228 }
2229
2230 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2231 mp->m_bsize * blks_per_cluster,
2232 XFS_BUF_LOCK);
2233
2234 pre_flushed = 0;
2235 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2236 while (lip) {
2237 if (lip->li_type == XFS_LI_INODE) {
2238 iip = (xfs_inode_log_item_t *)lip;
2239 ASSERT(iip->ili_logged == 1);
2240 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2241 AIL_LOCK(mp,s);
2242 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2243 AIL_UNLOCK(mp, s);
2244 iip->ili_inode->i_flags |= XFS_ISTALE;
2245 pre_flushed++;
2246 }
2247 lip = lip->li_bio_list;
2248 }
2249
2250 for (i = 0; i < found; i++) {
2251 ip = ip_found[i];
2252 iip = ip->i_itemp;
2253
2254 if (!iip) {
2255 ip->i_update_core = 0;
2256 xfs_ifunlock(ip);
2257 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2258 continue;
2259 }
2260
2261 iip->ili_last_fields = iip->ili_format.ilf_fields;
2262 iip->ili_format.ilf_fields = 0;
2263 iip->ili_logged = 1;
2264 AIL_LOCK(mp,s);
2265 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2266 AIL_UNLOCK(mp, s);
2267
2268 xfs_buf_attach_iodone(bp,
2269 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2270 xfs_istale_done, (xfs_log_item_t *)iip);
2271 if (ip != free_ip) {
2272 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2273 }
2274 }
2275
2276 if (found || pre_flushed)
2277 xfs_trans_stale_inode_buf(tp, bp);
2278 xfs_trans_binval(tp, bp);
2279 }
2280
2281 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2282}
2283
2284/*
2285 * This is called to return an inode to the inode free list.
2286 * The inode should already be truncated to 0 length and have
2287 * no pages associated with it. This routine also assumes that
2288 * the inode is already a part of the transaction.
2289 *
2290 * The on-disk copy of the inode will have been added to the list
2291 * of unlinked inodes in the AGI. We need to remove the inode from
2292 * that list atomically with respect to freeing it here.
2293 */
2294int
2295xfs_ifree(
2296 xfs_trans_t *tp,
2297 xfs_inode_t *ip,
2298 xfs_bmap_free_t *flist)
2299{
2300 int error;
2301 int delete;
2302 xfs_ino_t first_ino;
2303
2304 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2305 ASSERT(ip->i_transp == tp);
2306 ASSERT(ip->i_d.di_nlink == 0);
2307 ASSERT(ip->i_d.di_nextents == 0);
2308 ASSERT(ip->i_d.di_anextents == 0);
2309 ASSERT((ip->i_d.di_size == 0) ||
2310 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2311 ASSERT(ip->i_d.di_nblocks == 0);
2312
2313 /*
2314 * Pull the on-disk inode from the AGI unlinked list.
2315 */
2316 error = xfs_iunlink_remove(tp, ip);
2317 if (error != 0) {
2318 return error;
2319 }
2320
2321 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2322 if (error != 0) {
2323 return error;
2324 }
2325 ip->i_d.di_mode = 0; /* mark incore inode as free */
2326 ip->i_d.di_flags = 0;
2327 ip->i_d.di_dmevmask = 0;
2328 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2329 ip->i_df.if_ext_max =
2330 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2331 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2332 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2333 /*
2334 * Bump the generation count so no one will be confused
2335 * by reincarnations of this inode.
2336 */
2337 ip->i_d.di_gen++;
2338 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2339
2340 if (delete) {
2341 xfs_ifree_cluster(ip, tp, first_ino);
2342 }
2343
2344 return 0;
2345}
2346
2347/*
2348 * Reallocate the space for if_broot based on the number of records
2349 * being added or deleted as indicated in rec_diff. Move the records
2350 * and pointers in if_broot to fit the new size. When shrinking this
2351 * will eliminate holes between the records and pointers created by
2352 * the caller. When growing this will create holes to be filled in
2353 * by the caller.
2354 *
2355 * The caller must not request to add more records than would fit in
2356 * the on-disk inode root. If the if_broot is currently NULL, then
2357 * if we adding records one will be allocated. The caller must also
2358 * not request that the number of records go below zero, although
2359 * it can go to zero.
2360 *
2361 * ip -- the inode whose if_broot area is changing
2362 * ext_diff -- the change in the number of records, positive or negative,
2363 * requested for the if_broot array.
2364 */
2365void
2366xfs_iroot_realloc(
2367 xfs_inode_t *ip,
2368 int rec_diff,
2369 int whichfork)
2370{
2371 int cur_max;
2372 xfs_ifork_t *ifp;
2373 xfs_bmbt_block_t *new_broot;
2374 int new_max;
2375 size_t new_size;
2376 char *np;
2377 char *op;
2378
2379 /*
2380 * Handle the degenerate case quietly.
2381 */
2382 if (rec_diff == 0) {
2383 return;
2384 }
2385
2386 ifp = XFS_IFORK_PTR(ip, whichfork);
2387 if (rec_diff > 0) {
2388 /*
2389 * If there wasn't any memory allocated before, just
2390 * allocate it now and get out.
2391 */
2392 if (ifp->if_broot_bytes == 0) {
2393 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2394 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2395 KM_SLEEP);
2396 ifp->if_broot_bytes = (int)new_size;
2397 return;
2398 }
2399
2400 /*
2401 * If there is already an existing if_broot, then we need
2402 * to realloc() it and shift the pointers to their new
2403 * location. The records don't change location because
2404 * they are kept butted up against the btree block header.
2405 */
2406 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2407 new_max = cur_max + rec_diff;
2408 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2409 ifp->if_broot = (xfs_bmbt_block_t *)
2410 kmem_realloc(ifp->if_broot,
2411 new_size,
2412 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2413 KM_SLEEP);
2414 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2415 ifp->if_broot_bytes);
2416 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2417 (int)new_size);
2418 ifp->if_broot_bytes = (int)new_size;
2419 ASSERT(ifp->if_broot_bytes <=
2420 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2421 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2422 return;
2423 }
2424
2425 /*
2426 * rec_diff is less than 0. In this case, we are shrinking the
2427 * if_broot buffer. It must already exist. If we go to zero
2428 * records, just get rid of the root and clear the status bit.
2429 */
2430 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2431 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2432 new_max = cur_max + rec_diff;
2433 ASSERT(new_max >= 0);
2434 if (new_max > 0)
2435 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2436 else
2437 new_size = 0;
2438 if (new_size > 0) {
2439 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2440 /*
2441 * First copy over the btree block header.
2442 */
2443 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2444 } else {
2445 new_broot = NULL;
2446 ifp->if_flags &= ~XFS_IFBROOT;
2447 }
2448
2449 /*
2450 * Only copy the records and pointers if there are any.
2451 */
2452 if (new_max > 0) {
2453 /*
2454 * First copy the records.
2455 */
2456 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2457 ifp->if_broot_bytes);
2458 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2459 (int)new_size);
2460 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2461
2462 /*
2463 * Then copy the pointers.
2464 */
2465 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2466 ifp->if_broot_bytes);
2467 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2468 (int)new_size);
2469 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2470 }
2471 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2472 ifp->if_broot = new_broot;
2473 ifp->if_broot_bytes = (int)new_size;
2474 ASSERT(ifp->if_broot_bytes <=
2475 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2476 return;
2477}
2478
2479
2480/*
2481 * This is called when the amount of space needed for if_extents
2482 * is increased or decreased. The change in size is indicated by
2483 * the number of extents that need to be added or deleted in the
2484 * ext_diff parameter.
2485 *
2486 * If the amount of space needed has decreased below the size of the
2487 * inline buffer, then switch to using the inline buffer. Otherwise,
2488 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2489 * to what is needed.
2490 *
2491 * ip -- the inode whose if_extents area is changing
2492 * ext_diff -- the change in the number of extents, positive or negative,
2493 * requested for the if_extents array.
2494 */
2495void
2496xfs_iext_realloc(
2497 xfs_inode_t *ip,
2498 int ext_diff,
2499 int whichfork)
2500{
2501 int byte_diff;
2502 xfs_ifork_t *ifp;
2503 int new_size;
2504 uint rnew_size;
2505
2506 if (ext_diff == 0) {
2507 return;
2508 }
2509
2510 ifp = XFS_IFORK_PTR(ip, whichfork);
2511 byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t);
2512 new_size = (int)ifp->if_bytes + byte_diff;
2513 ASSERT(new_size >= 0);
2514
2515 if (new_size == 0) {
2516 if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2517 ASSERT(ifp->if_real_bytes != 0);
2518 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2519 }
2520 ifp->if_u1.if_extents = NULL;
2521 rnew_size = 0;
2522 } else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) {
2523 /*
2524 * If the valid extents can fit in if_inline_ext,
2525 * copy them from the malloc'd vector and free it.
2526 */
2527 if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2528 /*
2529 * For now, empty files are format EXTENTS,
2530 * so the if_extents pointer is null.
2531 */
2532 if (ifp->if_u1.if_extents) {
2533 memcpy(ifp->if_u2.if_inline_ext,
2534 ifp->if_u1.if_extents, new_size);
2535 kmem_free(ifp->if_u1.if_extents,
2536 ifp->if_real_bytes);
2537 }
2538 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2539 }
2540 rnew_size = 0;
2541 } else {
2542 rnew_size = new_size;
2543 if ((rnew_size & (rnew_size - 1)) != 0)
2544 rnew_size = xfs_iroundup(rnew_size);
2545 /*
2546 * Stuck with malloc/realloc.
2547 */
2548 if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) {
2549 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2550 kmem_alloc(rnew_size, KM_SLEEP);
2551 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
2552 sizeof(ifp->if_u2.if_inline_ext));
2553 } else if (rnew_size != ifp->if_real_bytes) {
2554 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2555 kmem_realloc(ifp->if_u1.if_extents,
2556 rnew_size,
2557 ifp->if_real_bytes,
2558 KM_NOFS);
2559 }
2560 }
2561 ifp->if_real_bytes = rnew_size;
2562 ifp->if_bytes = new_size;
2563}
2564
2565
2566/*
2567 * This is called when the amount of space needed for if_data
2568 * is increased or decreased. The change in size is indicated by
2569 * the number of bytes that need to be added or deleted in the
2570 * byte_diff parameter.
2571 *
2572 * If the amount of space needed has decreased below the size of the
2573 * inline buffer, then switch to using the inline buffer. Otherwise,
2574 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2575 * to what is needed.
2576 *
2577 * ip -- the inode whose if_data area is changing
2578 * byte_diff -- the change in the number of bytes, positive or negative,
2579 * requested for the if_data array.
2580 */
2581void
2582xfs_idata_realloc(
2583 xfs_inode_t *ip,
2584 int byte_diff,
2585 int whichfork)
2586{
2587 xfs_ifork_t *ifp;
2588 int new_size;
2589 int real_size;
2590
2591 if (byte_diff == 0) {
2592 return;
2593 }
2594
2595 ifp = XFS_IFORK_PTR(ip, whichfork);
2596 new_size = (int)ifp->if_bytes + byte_diff;
2597 ASSERT(new_size >= 0);
2598
2599 if (new_size == 0) {
2600 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2601 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2602 }
2603 ifp->if_u1.if_data = NULL;
2604 real_size = 0;
2605 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2606 /*
2607 * If the valid extents/data can fit in if_inline_ext/data,
2608 * copy them from the malloc'd vector and free it.
2609 */
2610 if (ifp->if_u1.if_data == NULL) {
2611 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2612 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2613 ASSERT(ifp->if_real_bytes != 0);
2614 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2615 new_size);
2616 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2617 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2618 }
2619 real_size = 0;
2620 } else {
2621 /*
2622 * Stuck with malloc/realloc.
2623 * For inline data, the underlying buffer must be
2624 * a multiple of 4 bytes in size so that it can be
2625 * logged and stay on word boundaries. We enforce
2626 * that here.
2627 */
2628 real_size = roundup(new_size, 4);
2629 if (ifp->if_u1.if_data == NULL) {
2630 ASSERT(ifp->if_real_bytes == 0);
2631 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2632 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2633 /*
2634 * Only do the realloc if the underlying size
2635 * is really changing.
2636 */
2637 if (ifp->if_real_bytes != real_size) {
2638 ifp->if_u1.if_data =
2639 kmem_realloc(ifp->if_u1.if_data,
2640 real_size,
2641 ifp->if_real_bytes,
2642 KM_SLEEP);
2643 }
2644 } else {
2645 ASSERT(ifp->if_real_bytes == 0);
2646 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2647 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2648 ifp->if_bytes);
2649 }
2650 }
2651 ifp->if_real_bytes = real_size;
2652 ifp->if_bytes = new_size;
2653 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2654}
2655
2656
2657
2658
2659/*
2660 * Map inode to disk block and offset.
2661 *
2662 * mp -- the mount point structure for the current file system
2663 * tp -- the current transaction
2664 * ino -- the inode number of the inode to be located
2665 * imap -- this structure is filled in with the information necessary
2666 * to retrieve the given inode from disk
2667 * flags -- flags to pass to xfs_dilocate indicating whether or not
2668 * lookups in the inode btree were OK or not
2669 */
2670int
2671xfs_imap(
2672 xfs_mount_t *mp,
2673 xfs_trans_t *tp,
2674 xfs_ino_t ino,
2675 xfs_imap_t *imap,
2676 uint flags)
2677{
2678 xfs_fsblock_t fsbno;
2679 int len;
2680 int off;
2681 int error;
2682
2683 fsbno = imap->im_blkno ?
2684 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2685 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2686 if (error != 0) {
2687 return error;
2688 }
2689 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2690 imap->im_len = XFS_FSB_TO_BB(mp, len);
2691 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2692 imap->im_ioffset = (ushort)off;
2693 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2694 return 0;
2695}
2696
2697void
2698xfs_idestroy_fork(
2699 xfs_inode_t *ip,
2700 int whichfork)
2701{
2702 xfs_ifork_t *ifp;
2703
2704 ifp = XFS_IFORK_PTR(ip, whichfork);
2705 if (ifp->if_broot != NULL) {
2706 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2707 ifp->if_broot = NULL;
2708 }
2709
2710 /*
2711 * If the format is local, then we can't have an extents
2712 * array so just look for an inline data array. If we're
2713 * not local then we may or may not have an extents list,
2714 * so check and free it up if we do.
2715 */
2716 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2717 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2718 (ifp->if_u1.if_data != NULL)) {
2719 ASSERT(ifp->if_real_bytes != 0);
2720 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2721 ifp->if_u1.if_data = NULL;
2722 ifp->if_real_bytes = 0;
2723 }
2724 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2725 (ifp->if_u1.if_extents != NULL) &&
2726 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) {
2727 ASSERT(ifp->if_real_bytes != 0);
2728 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2729 ifp->if_u1.if_extents = NULL;
2730 ifp->if_real_bytes = 0;
2731 }
2732 ASSERT(ifp->if_u1.if_extents == NULL ||
2733 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2734 ASSERT(ifp->if_real_bytes == 0);
2735 if (whichfork == XFS_ATTR_FORK) {
2736 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2737 ip->i_afp = NULL;
2738 }
2739}
2740
2741/*
2742 * This is called free all the memory associated with an inode.
2743 * It must free the inode itself and any buffers allocated for
2744 * if_extents/if_data and if_broot. It must also free the lock
2745 * associated with the inode.
2746 */
2747void
2748xfs_idestroy(
2749 xfs_inode_t *ip)
2750{
2751
2752 switch (ip->i_d.di_mode & S_IFMT) {
2753 case S_IFREG:
2754 case S_IFDIR:
2755 case S_IFLNK:
2756 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2757 break;
2758 }
2759 if (ip->i_afp)
2760 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2761 mrfree(&ip->i_lock);
2762 mrfree(&ip->i_iolock);
2763 freesema(&ip->i_flock);
2764#ifdef XFS_BMAP_TRACE
2765 ktrace_free(ip->i_xtrace);
2766#endif
2767#ifdef XFS_BMBT_TRACE
2768 ktrace_free(ip->i_btrace);
2769#endif
2770#ifdef XFS_RW_TRACE
2771 ktrace_free(ip->i_rwtrace);
2772#endif
2773#ifdef XFS_ILOCK_TRACE
2774 ktrace_free(ip->i_lock_trace);
2775#endif
2776#ifdef XFS_DIR2_TRACE
2777 ktrace_free(ip->i_dir_trace);
2778#endif
2779 if (ip->i_itemp) {
2780 /* XXXdpd should be able to assert this but shutdown
2781 * is leaving the AIL behind. */
2782 ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2783 XFS_FORCED_SHUTDOWN(ip->i_mount));
2784 xfs_inode_item_destroy(ip);
2785 }
2786 kmem_zone_free(xfs_inode_zone, ip);
2787}
2788
2789
2790/*
2791 * Increment the pin count of the given buffer.
2792 * This value is protected by ipinlock spinlock in the mount structure.
2793 */
2794void
2795xfs_ipin(
2796 xfs_inode_t *ip)
2797{
2798 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2799
2800 atomic_inc(&ip->i_pincount);
2801}
2802
2803/*
2804 * Decrement the pin count of the given inode, and wake up
2805 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2806 * inode must have been previoulsy pinned with a call to xfs_ipin().
2807 */
2808void
2809xfs_iunpin(
2810 xfs_inode_t *ip)
2811{
2812 ASSERT(atomic_read(&ip->i_pincount) > 0);
2813
2814 if (atomic_dec_and_test(&ip->i_pincount)) {
2815 vnode_t *vp = XFS_ITOV_NULL(ip);
2816
2817 /* make sync come back and flush this inode */
2818 if (vp) {
2819 struct inode *inode = LINVFS_GET_IP(vp);
2820
2821 if (!(inode->i_state & I_NEW))
2822 mark_inode_dirty_sync(inode);
2823 }
2824
2825 wake_up(&ip->i_ipin_wait);
2826 }
2827}
2828
2829/*
2830 * This is called to wait for the given inode to be unpinned.
2831 * It will sleep until this happens. The caller must have the
2832 * inode locked in at least shared mode so that the buffer cannot
2833 * be subsequently pinned once someone is waiting for it to be
2834 * unpinned.
2835 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002836STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002837xfs_iunpin_wait(
2838 xfs_inode_t *ip)
2839{
2840 xfs_inode_log_item_t *iip;
2841 xfs_lsn_t lsn;
2842
2843 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2844
2845 if (atomic_read(&ip->i_pincount) == 0) {
2846 return;
2847 }
2848
2849 iip = ip->i_itemp;
2850 if (iip && iip->ili_last_lsn) {
2851 lsn = iip->ili_last_lsn;
2852 } else {
2853 lsn = (xfs_lsn_t)0;
2854 }
2855
2856 /*
2857 * Give the log a push so we don't wait here too long.
2858 */
2859 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2860
2861 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2862}
2863
2864
2865/*
2866 * xfs_iextents_copy()
2867 *
2868 * This is called to copy the REAL extents (as opposed to the delayed
2869 * allocation extents) from the inode into the given buffer. It
2870 * returns the number of bytes copied into the buffer.
2871 *
2872 * If there are no delayed allocation extents, then we can just
2873 * memcpy() the extents into the buffer. Otherwise, we need to
2874 * examine each extent in turn and skip those which are delayed.
2875 */
2876int
2877xfs_iextents_copy(
2878 xfs_inode_t *ip,
2879 xfs_bmbt_rec_t *buffer,
2880 int whichfork)
2881{
2882 int copied;
2883 xfs_bmbt_rec_t *dest_ep;
2884 xfs_bmbt_rec_t *ep;
2885#ifdef XFS_BMAP_TRACE
2886 static char fname[] = "xfs_iextents_copy";
2887#endif
2888 int i;
2889 xfs_ifork_t *ifp;
2890 int nrecs;
2891 xfs_fsblock_t start_block;
2892
2893 ifp = XFS_IFORK_PTR(ip, whichfork);
2894 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2895 ASSERT(ifp->if_bytes > 0);
2896
2897 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2898 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2899 ASSERT(nrecs > 0);
2900
2901 /*
2902 * There are some delayed allocation extents in the
2903 * inode, so copy the extents one at a time and skip
2904 * the delayed ones. There must be at least one
2905 * non-delayed extent.
2906 */
2907 ep = ifp->if_u1.if_extents;
2908 dest_ep = buffer;
2909 copied = 0;
2910 for (i = 0; i < nrecs; i++) {
2911 start_block = xfs_bmbt_get_startblock(ep);
2912 if (ISNULLSTARTBLOCK(start_block)) {
2913 /*
2914 * It's a delayed allocation extent, so skip it.
2915 */
2916 ep++;
2917 continue;
2918 }
2919
2920 /* Translate to on disk format */
2921 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2922 (__uint64_t*)&dest_ep->l0);
2923 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2924 (__uint64_t*)&dest_ep->l1);
2925 dest_ep++;
2926 ep++;
2927 copied++;
2928 }
2929 ASSERT(copied != 0);
2930 xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip));
2931
2932 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2933}
2934
2935/*
2936 * Each of the following cases stores data into the same region
2937 * of the on-disk inode, so only one of them can be valid at
2938 * any given time. While it is possible to have conflicting formats
2939 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2940 * in EXTENTS format, this can only happen when the fork has
2941 * changed formats after being modified but before being flushed.
2942 * In these cases, the format always takes precedence, because the
2943 * format indicates the current state of the fork.
2944 */
2945/*ARGSUSED*/
2946STATIC int
2947xfs_iflush_fork(
2948 xfs_inode_t *ip,
2949 xfs_dinode_t *dip,
2950 xfs_inode_log_item_t *iip,
2951 int whichfork,
2952 xfs_buf_t *bp)
2953{
2954 char *cp;
2955 xfs_ifork_t *ifp;
2956 xfs_mount_t *mp;
2957#ifdef XFS_TRANS_DEBUG
2958 int first;
2959#endif
2960 static const short brootflag[2] =
2961 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2962 static const short dataflag[2] =
2963 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2964 static const short extflag[2] =
2965 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2966
2967 if (iip == NULL)
2968 return 0;
2969 ifp = XFS_IFORK_PTR(ip, whichfork);
2970 /*
2971 * This can happen if we gave up in iformat in an error path,
2972 * for the attribute fork.
2973 */
2974 if (ifp == NULL) {
2975 ASSERT(whichfork == XFS_ATTR_FORK);
2976 return 0;
2977 }
2978 cp = XFS_DFORK_PTR(dip, whichfork);
2979 mp = ip->i_mount;
2980 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2981 case XFS_DINODE_FMT_LOCAL:
2982 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2983 (ifp->if_bytes > 0)) {
2984 ASSERT(ifp->if_u1.if_data != NULL);
2985 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2986 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2987 }
2988 if (whichfork == XFS_DATA_FORK) {
2989 if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
2990 XFS_ERROR_REPORT("xfs_iflush_fork",
2991 XFS_ERRLEVEL_LOW, mp);
2992 return XFS_ERROR(EFSCORRUPTED);
2993 }
2994 }
2995 break;
2996
2997 case XFS_DINODE_FMT_EXTENTS:
2998 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2999 !(iip->ili_format.ilf_fields & extflag[whichfork]));
3000 ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0));
3001 ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0));
3002 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
3003 (ifp->if_bytes > 0)) {
3004 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
3005 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3006 whichfork);
3007 }
3008 break;
3009
3010 case XFS_DINODE_FMT_BTREE:
3011 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3012 (ifp->if_broot_bytes > 0)) {
3013 ASSERT(ifp->if_broot != NULL);
3014 ASSERT(ifp->if_broot_bytes <=
3015 (XFS_IFORK_SIZE(ip, whichfork) +
3016 XFS_BROOT_SIZE_ADJ));
3017 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3018 (xfs_bmdr_block_t *)cp,
3019 XFS_DFORK_SIZE(dip, mp, whichfork));
3020 }
3021 break;
3022
3023 case XFS_DINODE_FMT_DEV:
3024 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3025 ASSERT(whichfork == XFS_DATA_FORK);
3026 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3027 }
3028 break;
3029
3030 case XFS_DINODE_FMT_UUID:
3031 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3032 ASSERT(whichfork == XFS_DATA_FORK);
3033 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3034 sizeof(uuid_t));
3035 }
3036 break;
3037
3038 default:
3039 ASSERT(0);
3040 break;
3041 }
3042
3043 return 0;
3044}
3045
3046/*
3047 * xfs_iflush() will write a modified inode's changes out to the
3048 * inode's on disk home. The caller must have the inode lock held
3049 * in at least shared mode and the inode flush semaphore must be
3050 * held as well. The inode lock will still be held upon return from
3051 * the call and the caller is free to unlock it.
3052 * The inode flush lock will be unlocked when the inode reaches the disk.
3053 * The flags indicate how the inode's buffer should be written out.
3054 */
3055int
3056xfs_iflush(
3057 xfs_inode_t *ip,
3058 uint flags)
3059{
3060 xfs_inode_log_item_t *iip;
3061 xfs_buf_t *bp;
3062 xfs_dinode_t *dip;
3063 xfs_mount_t *mp;
3064 int error;
3065 /* REFERENCED */
3066 xfs_chash_t *ch;
3067 xfs_inode_t *iq;
3068 int clcount; /* count of inodes clustered */
3069 int bufwasdelwri;
3070 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3071 SPLDECL(s);
3072
3073 XFS_STATS_INC(xs_iflush_count);
3074
3075 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3076 ASSERT(valusema(&ip->i_flock) <= 0);
3077 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3078 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3079
3080 iip = ip->i_itemp;
3081 mp = ip->i_mount;
3082
3083 /*
3084 * If the inode isn't dirty, then just release the inode
3085 * flush lock and do nothing.
3086 */
3087 if ((ip->i_update_core == 0) &&
3088 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3089 ASSERT((iip != NULL) ?
3090 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3091 xfs_ifunlock(ip);
3092 return 0;
3093 }
3094
3095 /*
3096 * We can't flush the inode until it is unpinned, so
3097 * wait for it. We know noone new can pin it, because
3098 * we are holding the inode lock shared and you need
3099 * to hold it exclusively to pin the inode.
3100 */
3101 xfs_iunpin_wait(ip);
3102
3103 /*
3104 * This may have been unpinned because the filesystem is shutting
3105 * down forcibly. If that's the case we must not write this inode
3106 * to disk, because the log record didn't make it to disk!
3107 */
3108 if (XFS_FORCED_SHUTDOWN(mp)) {
3109 ip->i_update_core = 0;
3110 if (iip)
3111 iip->ili_format.ilf_fields = 0;
3112 xfs_ifunlock(ip);
3113 return XFS_ERROR(EIO);
3114 }
3115
3116 /*
3117 * Get the buffer containing the on-disk inode.
3118 */
3119 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0);
3120 if (error != 0) {
3121 xfs_ifunlock(ip);
3122 return error;
3123 }
3124
3125 /*
3126 * Decide how buffer will be flushed out. This is done before
3127 * the call to xfs_iflush_int because this field is zeroed by it.
3128 */
3129 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3130 /*
3131 * Flush out the inode buffer according to the directions
3132 * of the caller. In the cases where the caller has given
3133 * us a choice choose the non-delwri case. This is because
3134 * the inode is in the AIL and we need to get it out soon.
3135 */
3136 switch (flags) {
3137 case XFS_IFLUSH_SYNC:
3138 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3139 flags = 0;
3140 break;
3141 case XFS_IFLUSH_ASYNC:
3142 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3143 flags = INT_ASYNC;
3144 break;
3145 case XFS_IFLUSH_DELWRI:
3146 flags = INT_DELWRI;
3147 break;
3148 default:
3149 ASSERT(0);
3150 flags = 0;
3151 break;
3152 }
3153 } else {
3154 switch (flags) {
3155 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3156 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3157 case XFS_IFLUSH_DELWRI:
3158 flags = INT_DELWRI;
3159 break;
3160 case XFS_IFLUSH_ASYNC:
3161 flags = INT_ASYNC;
3162 break;
3163 case XFS_IFLUSH_SYNC:
3164 flags = 0;
3165 break;
3166 default:
3167 ASSERT(0);
3168 flags = 0;
3169 break;
3170 }
3171 }
3172
3173 /*
3174 * First flush out the inode that xfs_iflush was called with.
3175 */
3176 error = xfs_iflush_int(ip, bp);
3177 if (error) {
3178 goto corrupt_out;
3179 }
3180
3181 /*
3182 * inode clustering:
3183 * see if other inodes can be gathered into this write
3184 */
3185
3186 ip->i_chash->chl_buf = bp;
3187
3188 ch = XFS_CHASH(mp, ip->i_blkno);
3189 s = mutex_spinlock(&ch->ch_lock);
3190
3191 clcount = 0;
3192 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3193 /*
3194 * Do an un-protected check to see if the inode is dirty and
3195 * is a candidate for flushing. These checks will be repeated
3196 * later after the appropriate locks are acquired.
3197 */
3198 iip = iq->i_itemp;
3199 if ((iq->i_update_core == 0) &&
3200 ((iip == NULL) ||
3201 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3202 xfs_ipincount(iq) == 0) {
3203 continue;
3204 }
3205
3206 /*
3207 * Try to get locks. If any are unavailable,
3208 * then this inode cannot be flushed and is skipped.
3209 */
3210
3211 /* get inode locks (just i_lock) */
3212 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3213 /* get inode flush lock */
3214 if (xfs_iflock_nowait(iq)) {
3215 /* check if pinned */
3216 if (xfs_ipincount(iq) == 0) {
3217 /* arriving here means that
3218 * this inode can be flushed.
3219 * first re-check that it's
3220 * dirty
3221 */
3222 iip = iq->i_itemp;
3223 if ((iq->i_update_core != 0)||
3224 ((iip != NULL) &&
3225 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3226 clcount++;
3227 error = xfs_iflush_int(iq, bp);
3228 if (error) {
3229 xfs_iunlock(iq,
3230 XFS_ILOCK_SHARED);
3231 goto cluster_corrupt_out;
3232 }
3233 } else {
3234 xfs_ifunlock(iq);
3235 }
3236 } else {
3237 xfs_ifunlock(iq);
3238 }
3239 }
3240 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3241 }
3242 }
3243 mutex_spinunlock(&ch->ch_lock, s);
3244
3245 if (clcount) {
3246 XFS_STATS_INC(xs_icluster_flushcnt);
3247 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3248 }
3249
3250 /*
3251 * If the buffer is pinned then push on the log so we won't
3252 * get stuck waiting in the write for too long.
3253 */
3254 if (XFS_BUF_ISPINNED(bp)){
3255 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3256 }
3257
3258 if (flags & INT_DELWRI) {
3259 xfs_bdwrite(mp, bp);
3260 } else if (flags & INT_ASYNC) {
3261 xfs_bawrite(mp, bp);
3262 } else {
3263 error = xfs_bwrite(mp, bp);
3264 }
3265 return error;
3266
3267corrupt_out:
3268 xfs_buf_relse(bp);
3269 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3270 xfs_iflush_abort(ip);
3271 /*
3272 * Unlocks the flush lock
3273 */
3274 return XFS_ERROR(EFSCORRUPTED);
3275
3276cluster_corrupt_out:
3277 /* Corruption detected in the clustering loop. Invalidate the
3278 * inode buffer and shut down the filesystem.
3279 */
3280 mutex_spinunlock(&ch->ch_lock, s);
3281
3282 /*
3283 * Clean up the buffer. If it was B_DELWRI, just release it --
3284 * brelse can handle it with no problems. If not, shut down the
3285 * filesystem before releasing the buffer.
3286 */
3287 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3288 xfs_buf_relse(bp);
3289 }
3290
3291 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3292
3293 if(!bufwasdelwri) {
3294 /*
3295 * Just like incore_relse: if we have b_iodone functions,
3296 * mark the buffer as an error and call them. Otherwise
3297 * mark it as stale and brelse.
3298 */
3299 if (XFS_BUF_IODONE_FUNC(bp)) {
3300 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3301 XFS_BUF_UNDONE(bp);
3302 XFS_BUF_STALE(bp);
3303 XFS_BUF_SHUT(bp);
3304 XFS_BUF_ERROR(bp,EIO);
3305 xfs_biodone(bp);
3306 } else {
3307 XFS_BUF_STALE(bp);
3308 xfs_buf_relse(bp);
3309 }
3310 }
3311
3312 xfs_iflush_abort(iq);
3313 /*
3314 * Unlocks the flush lock
3315 */
3316 return XFS_ERROR(EFSCORRUPTED);
3317}
3318
3319
3320STATIC int
3321xfs_iflush_int(
3322 xfs_inode_t *ip,
3323 xfs_buf_t *bp)
3324{
3325 xfs_inode_log_item_t *iip;
3326 xfs_dinode_t *dip;
3327 xfs_mount_t *mp;
3328#ifdef XFS_TRANS_DEBUG
3329 int first;
3330#endif
3331 SPLDECL(s);
3332
3333 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3334 ASSERT(valusema(&ip->i_flock) <= 0);
3335 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3336 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3337
3338 iip = ip->i_itemp;
3339 mp = ip->i_mount;
3340
3341
3342 /*
3343 * If the inode isn't dirty, then just release the inode
3344 * flush lock and do nothing.
3345 */
3346 if ((ip->i_update_core == 0) &&
3347 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3348 xfs_ifunlock(ip);
3349 return 0;
3350 }
3351
3352 /* set *dip = inode's place in the buffer */
3353 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3354
3355 /*
3356 * Clear i_update_core before copying out the data.
3357 * This is for coordination with our timestamp updates
3358 * that don't hold the inode lock. They will always
3359 * update the timestamps BEFORE setting i_update_core,
3360 * so if we clear i_update_core after they set it we
3361 * are guaranteed to see their updates to the timestamps.
3362 * I believe that this depends on strongly ordered memory
3363 * semantics, but we have that. We use the SYNCHRONIZE
3364 * macro to make sure that the compiler does not reorder
3365 * the i_update_core access below the data copy below.
3366 */
3367 ip->i_update_core = 0;
3368 SYNCHRONIZE();
3369
3370 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3371 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3372 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3373 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3374 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3375 goto corrupt_out;
3376 }
3377 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3378 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3379 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3380 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3381 ip->i_ino, ip, ip->i_d.di_magic);
3382 goto corrupt_out;
3383 }
3384 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3385 if (XFS_TEST_ERROR(
3386 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3387 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3388 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3389 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3390 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3391 ip->i_ino, ip);
3392 goto corrupt_out;
3393 }
3394 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3395 if (XFS_TEST_ERROR(
3396 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3397 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3398 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3399 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3400 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3401 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3402 ip->i_ino, ip);
3403 goto corrupt_out;
3404 }
3405 }
3406 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3407 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3408 XFS_RANDOM_IFLUSH_5)) {
3409 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3410 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3411 ip->i_ino,
3412 ip->i_d.di_nextents + ip->i_d.di_anextents,
3413 ip->i_d.di_nblocks,
3414 ip);
3415 goto corrupt_out;
3416 }
3417 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3418 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3419 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3420 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3421 ip->i_ino, ip->i_d.di_forkoff, ip);
3422 goto corrupt_out;
3423 }
3424 /*
3425 * bump the flush iteration count, used to detect flushes which
3426 * postdate a log record during recovery.
3427 */
3428
3429 ip->i_d.di_flushiter++;
3430
3431 /*
3432 * Copy the dirty parts of the inode into the on-disk
3433 * inode. We always copy out the core of the inode,
3434 * because if the inode is dirty at all the core must
3435 * be.
3436 */
3437 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3438
3439 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3440 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3441 ip->i_d.di_flushiter = 0;
3442
3443 /*
3444 * If this is really an old format inode and the superblock version
3445 * has not been updated to support only new format inodes, then
3446 * convert back to the old inode format. If the superblock version
3447 * has been updated, then make the conversion permanent.
3448 */
3449 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3450 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3451 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3452 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3453 /*
3454 * Convert it back.
3455 */
3456 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3457 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3458 } else {
3459 /*
3460 * The superblock version has already been bumped,
3461 * so just make the conversion to the new inode
3462 * format permanent.
3463 */
3464 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3465 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3466 ip->i_d.di_onlink = 0;
3467 dip->di_core.di_onlink = 0;
3468 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3469 memset(&(dip->di_core.di_pad[0]), 0,
3470 sizeof(dip->di_core.di_pad));
3471 ASSERT(ip->i_d.di_projid == 0);
3472 }
3473 }
3474
3475 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3476 goto corrupt_out;
3477 }
3478
3479 if (XFS_IFORK_Q(ip)) {
3480 /*
3481 * The only error from xfs_iflush_fork is on the data fork.
3482 */
3483 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3484 }
3485 xfs_inobp_check(mp, bp);
3486
3487 /*
3488 * We've recorded everything logged in the inode, so we'd
3489 * like to clear the ilf_fields bits so we don't log and
3490 * flush things unnecessarily. However, we can't stop
3491 * logging all this information until the data we've copied
3492 * into the disk buffer is written to disk. If we did we might
3493 * overwrite the copy of the inode in the log with all the
3494 * data after re-logging only part of it, and in the face of
3495 * a crash we wouldn't have all the data we need to recover.
3496 *
3497 * What we do is move the bits to the ili_last_fields field.
3498 * When logging the inode, these bits are moved back to the
3499 * ilf_fields field. In the xfs_iflush_done() routine we
3500 * clear ili_last_fields, since we know that the information
3501 * those bits represent is permanently on disk. As long as
3502 * the flush completes before the inode is logged again, then
3503 * both ilf_fields and ili_last_fields will be cleared.
3504 *
3505 * We can play with the ilf_fields bits here, because the inode
3506 * lock must be held exclusively in order to set bits there
3507 * and the flush lock protects the ili_last_fields bits.
3508 * Set ili_logged so the flush done
3509 * routine can tell whether or not to look in the AIL.
3510 * Also, store the current LSN of the inode so that we can tell
3511 * whether the item has moved in the AIL from xfs_iflush_done().
3512 * In order to read the lsn we need the AIL lock, because
3513 * it is a 64 bit value that cannot be read atomically.
3514 */
3515 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3516 iip->ili_last_fields = iip->ili_format.ilf_fields;
3517 iip->ili_format.ilf_fields = 0;
3518 iip->ili_logged = 1;
3519
3520 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3521 AIL_LOCK(mp,s);
3522 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3523 AIL_UNLOCK(mp, s);
3524
3525 /*
3526 * Attach the function xfs_iflush_done to the inode's
3527 * buffer. This will remove the inode from the AIL
3528 * and unlock the inode's flush lock when the inode is
3529 * completely written to disk.
3530 */
3531 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3532 xfs_iflush_done, (xfs_log_item_t *)iip);
3533
3534 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3535 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3536 } else {
3537 /*
3538 * We're flushing an inode which is not in the AIL and has
3539 * not been logged but has i_update_core set. For this
3540 * case we can use a B_DELWRI flush and immediately drop
3541 * the inode flush lock because we can avoid the whole
3542 * AIL state thing. It's OK to drop the flush lock now,
3543 * because we've already locked the buffer and to do anything
3544 * you really need both.
3545 */
3546 if (iip != NULL) {
3547 ASSERT(iip->ili_logged == 0);
3548 ASSERT(iip->ili_last_fields == 0);
3549 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3550 }
3551 xfs_ifunlock(ip);
3552 }
3553
3554 return 0;
3555
3556corrupt_out:
3557 return XFS_ERROR(EFSCORRUPTED);
3558}
3559
3560
3561/*
Christoph Hellwigefa80272005-06-21 15:37:17 +10003562 * Flush all inactive inodes in mp.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003563 */
Christoph Hellwigefa80272005-06-21 15:37:17 +10003564void
Linus Torvalds1da177e2005-04-16 15:20:36 -07003565xfs_iflush_all(
Christoph Hellwigefa80272005-06-21 15:37:17 +10003566 xfs_mount_t *mp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003567{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003568 xfs_inode_t *ip;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003569 vnode_t *vp;
3570
Christoph Hellwigefa80272005-06-21 15:37:17 +10003571 again:
3572 XFS_MOUNT_ILOCK(mp);
3573 ip = mp->m_inodes;
3574 if (ip == NULL)
3575 goto out;
3576
3577 do {
3578 /* Make sure we skip markers inserted by sync */
3579 if (ip->i_mount == NULL) {
3580 ip = ip->i_mnext;
3581 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003582 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003583
Christoph Hellwigefa80272005-06-21 15:37:17 +10003584 vp = XFS_ITOV_NULL(ip);
3585 if (!vp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003586 XFS_MOUNT_IUNLOCK(mp);
Christoph Hellwigefa80272005-06-21 15:37:17 +10003587 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3588 goto again;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003589 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003590
Christoph Hellwigefa80272005-06-21 15:37:17 +10003591 ASSERT(vn_count(vp) == 0);
3592
3593 ip = ip->i_mnext;
3594 } while (ip != mp->m_inodes);
3595 out:
3596 XFS_MOUNT_IUNLOCK(mp);
3597}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003598
3599/*
3600 * xfs_iaccess: check accessibility of inode for mode.
3601 */
3602int
3603xfs_iaccess(
3604 xfs_inode_t *ip,
3605 mode_t mode,
3606 cred_t *cr)
3607{
3608 int error;
3609 mode_t orgmode = mode;
3610 struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip));
3611
3612 if (mode & S_IWUSR) {
3613 umode_t imode = inode->i_mode;
3614
3615 if (IS_RDONLY(inode) &&
3616 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3617 return XFS_ERROR(EROFS);
3618
3619 if (IS_IMMUTABLE(inode))
3620 return XFS_ERROR(EACCES);
3621 }
3622
3623 /*
3624 * If there's an Access Control List it's used instead of
3625 * the mode bits.
3626 */
3627 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3628 return error ? XFS_ERROR(error) : 0;
3629
3630 if (current_fsuid(cr) != ip->i_d.di_uid) {
3631 mode >>= 3;
3632 if (!in_group_p((gid_t)ip->i_d.di_gid))
3633 mode >>= 3;
3634 }
3635
3636 /*
3637 * If the DACs are ok we don't need any capability check.
3638 */
3639 if ((ip->i_d.di_mode & mode) == mode)
3640 return 0;
3641 /*
3642 * Read/write DACs are always overridable.
3643 * Executable DACs are overridable if at least one exec bit is set.
3644 */
3645 if (!(orgmode & S_IXUSR) ||
3646 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3647 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3648 return 0;
3649
3650 if ((orgmode == S_IRUSR) ||
3651 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3652 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3653 return 0;
3654#ifdef NOISE
3655 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3656#endif /* NOISE */
3657 return XFS_ERROR(EACCES);
3658 }
3659 return XFS_ERROR(EACCES);
3660}
3661
3662/*
3663 * xfs_iroundup: round up argument to next power of two
3664 */
3665uint
3666xfs_iroundup(
3667 uint v)
3668{
3669 int i;
3670 uint m;
3671
3672 if ((v & (v - 1)) == 0)
3673 return v;
3674 ASSERT((v & 0x80000000) == 0);
3675 if ((v & (v + 1)) == 0)
3676 return v + 1;
3677 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3678 if (v & m)
3679 continue;
3680 v |= m;
3681 if ((v & (v + 1)) == 0)
3682 return v + 1;
3683 }
3684 ASSERT(0);
3685 return( 0 );
3686}
3687
Linus Torvalds1da177e2005-04-16 15:20:36 -07003688#ifdef XFS_ILOCK_TRACE
3689ktrace_t *xfs_ilock_trace_buf;
3690
3691void
3692xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3693{
3694 ktrace_enter(ip->i_lock_trace,
3695 (void *)ip,
3696 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3697 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3698 (void *)ra, /* caller of ilock */
3699 (void *)(unsigned long)current_cpu(),
3700 (void *)(unsigned long)current_pid(),
3701 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3702}
3703#endif