Tuong Lien | fc1b6d6 | 2019-11-08 12:05:11 +0700 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /** |
| 3 | * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption |
| 4 | * |
| 5 | * Copyright (c) 2019, Ericsson AB |
| 6 | * All rights reserved. |
| 7 | * |
| 8 | * Redistribution and use in source and binary forms, with or without |
| 9 | * modification, are permitted provided that the following conditions are met: |
| 10 | * |
| 11 | * 1. Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer. |
| 13 | * 2. Redistributions in binary form must reproduce the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer in the |
| 15 | * documentation and/or other materials provided with the distribution. |
| 16 | * 3. Neither the names of the copyright holders nor the names of its |
| 17 | * contributors may be used to endorse or promote products derived from |
| 18 | * this software without specific prior written permission. |
| 19 | * |
| 20 | * Alternatively, this software may be distributed under the terms of the |
| 21 | * GNU General Public License ("GPL") version 2 as published by the Free |
| 22 | * Software Foundation. |
| 23 | * |
| 24 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 25 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 26 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 27 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 28 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 29 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 30 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 31 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 32 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 33 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 34 | * POSSIBILITY OF SUCH DAMAGE. |
| 35 | */ |
| 36 | |
| 37 | #include <crypto/aead.h> |
| 38 | #include <crypto/aes.h> |
| 39 | #include "crypto.h" |
| 40 | |
| 41 | #define TIPC_TX_PROBE_LIM msecs_to_jiffies(1000) /* > 1s */ |
| 42 | #define TIPC_TX_LASTING_LIM msecs_to_jiffies(120000) /* 2 mins */ |
| 43 | #define TIPC_RX_ACTIVE_LIM msecs_to_jiffies(3000) /* 3s */ |
| 44 | #define TIPC_RX_PASSIVE_LIM msecs_to_jiffies(180000) /* 3 mins */ |
| 45 | #define TIPC_MAX_TFMS_DEF 10 |
| 46 | #define TIPC_MAX_TFMS_LIM 1000 |
| 47 | |
| 48 | /** |
| 49 | * TIPC Key ids |
| 50 | */ |
| 51 | enum { |
| 52 | KEY_UNUSED = 0, |
| 53 | KEY_MIN, |
| 54 | KEY_1 = KEY_MIN, |
| 55 | KEY_2, |
| 56 | KEY_3, |
| 57 | KEY_MAX = KEY_3, |
| 58 | }; |
| 59 | |
| 60 | /** |
| 61 | * TIPC Crypto statistics |
| 62 | */ |
| 63 | enum { |
| 64 | STAT_OK, |
| 65 | STAT_NOK, |
| 66 | STAT_ASYNC, |
| 67 | STAT_ASYNC_OK, |
| 68 | STAT_ASYNC_NOK, |
| 69 | STAT_BADKEYS, /* tx only */ |
| 70 | STAT_BADMSGS = STAT_BADKEYS, /* rx only */ |
| 71 | STAT_NOKEYS, |
| 72 | STAT_SWITCHES, |
| 73 | |
| 74 | MAX_STATS, |
| 75 | }; |
| 76 | |
| 77 | /* TIPC crypto statistics' header */ |
| 78 | static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok", |
| 79 | "async_nok", "badmsgs", "nokeys", |
| 80 | "switches"}; |
| 81 | |
| 82 | /* Max TFMs number per key */ |
| 83 | int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF; |
| 84 | |
| 85 | /** |
| 86 | * struct tipc_key - TIPC keys' status indicator |
| 87 | * |
| 88 | * 7 6 5 4 3 2 1 0 |
| 89 | * +-----+-----+-----+-----+-----+-----+-----+-----+ |
| 90 | * key: | (reserved)|passive idx| active idx|pending idx| |
| 91 | * +-----+-----+-----+-----+-----+-----+-----+-----+ |
| 92 | */ |
| 93 | struct tipc_key { |
| 94 | #define KEY_BITS (2) |
| 95 | #define KEY_MASK ((1 << KEY_BITS) - 1) |
| 96 | union { |
| 97 | struct { |
| 98 | #if defined(__LITTLE_ENDIAN_BITFIELD) |
| 99 | u8 pending:2, |
| 100 | active:2, |
| 101 | passive:2, /* rx only */ |
| 102 | reserved:2; |
| 103 | #elif defined(__BIG_ENDIAN_BITFIELD) |
| 104 | u8 reserved:2, |
| 105 | passive:2, /* rx only */ |
| 106 | active:2, |
| 107 | pending:2; |
| 108 | #else |
| 109 | #error "Please fix <asm/byteorder.h>" |
| 110 | #endif |
| 111 | } __packed; |
| 112 | u8 keys; |
| 113 | }; |
| 114 | }; |
| 115 | |
| 116 | /** |
| 117 | * struct tipc_tfm - TIPC TFM structure to form a list of TFMs |
| 118 | */ |
| 119 | struct tipc_tfm { |
| 120 | struct crypto_aead *tfm; |
| 121 | struct list_head list; |
| 122 | }; |
| 123 | |
| 124 | /** |
| 125 | * struct tipc_aead - TIPC AEAD key structure |
| 126 | * @tfm_entry: per-cpu pointer to one entry in TFM list |
| 127 | * @crypto: TIPC crypto owns this key |
| 128 | * @cloned: reference to the source key in case cloning |
| 129 | * @users: the number of the key users (TX/RX) |
| 130 | * @salt: the key's SALT value |
| 131 | * @authsize: authentication tag size (max = 16) |
| 132 | * @mode: crypto mode is applied to the key |
| 133 | * @hint[]: a hint for user key |
| 134 | * @rcu: struct rcu_head |
| 135 | * @seqno: the key seqno (cluster scope) |
| 136 | * @refcnt: the key reference counter |
| 137 | */ |
| 138 | struct tipc_aead { |
| 139 | #define TIPC_AEAD_HINT_LEN (5) |
| 140 | struct tipc_tfm * __percpu *tfm_entry; |
| 141 | struct tipc_crypto *crypto; |
| 142 | struct tipc_aead *cloned; |
| 143 | atomic_t users; |
| 144 | u32 salt; |
| 145 | u8 authsize; |
| 146 | u8 mode; |
| 147 | char hint[TIPC_AEAD_HINT_LEN + 1]; |
| 148 | struct rcu_head rcu; |
| 149 | |
| 150 | atomic64_t seqno ____cacheline_aligned; |
| 151 | refcount_t refcnt ____cacheline_aligned; |
| 152 | |
| 153 | } ____cacheline_aligned; |
| 154 | |
| 155 | /** |
| 156 | * struct tipc_crypto_stats - TIPC Crypto statistics |
| 157 | */ |
| 158 | struct tipc_crypto_stats { |
| 159 | unsigned int stat[MAX_STATS]; |
| 160 | }; |
| 161 | |
| 162 | /** |
| 163 | * struct tipc_crypto - TIPC TX/RX crypto structure |
| 164 | * @net: struct net |
| 165 | * @node: TIPC node (RX) |
| 166 | * @aead: array of pointers to AEAD keys for encryption/decryption |
| 167 | * @peer_rx_active: replicated peer RX active key index |
| 168 | * @key: the key states |
| 169 | * @working: the crypto is working or not |
| 170 | * @stats: the crypto statistics |
| 171 | * @sndnxt: the per-peer sndnxt (TX) |
| 172 | * @timer1: general timer 1 (jiffies) |
| 173 | * @timer2: general timer 1 (jiffies) |
| 174 | * @lock: tipc_key lock |
| 175 | */ |
| 176 | struct tipc_crypto { |
| 177 | struct net *net; |
| 178 | struct tipc_node *node; |
| 179 | struct tipc_aead __rcu *aead[KEY_MAX + 1]; /* key[0] is UNUSED */ |
| 180 | atomic_t peer_rx_active; |
| 181 | struct tipc_key key; |
| 182 | u8 working:1; |
| 183 | struct tipc_crypto_stats __percpu *stats; |
| 184 | |
| 185 | atomic64_t sndnxt ____cacheline_aligned; |
| 186 | unsigned long timer1; |
| 187 | unsigned long timer2; |
| 188 | spinlock_t lock; /* crypto lock */ |
| 189 | |
| 190 | } ____cacheline_aligned; |
| 191 | |
| 192 | /* struct tipc_crypto_tx_ctx - TX context for callbacks */ |
| 193 | struct tipc_crypto_tx_ctx { |
| 194 | struct tipc_aead *aead; |
| 195 | struct tipc_bearer *bearer; |
| 196 | struct tipc_media_addr dst; |
| 197 | }; |
| 198 | |
| 199 | /* struct tipc_crypto_rx_ctx - RX context for callbacks */ |
| 200 | struct tipc_crypto_rx_ctx { |
| 201 | struct tipc_aead *aead; |
| 202 | struct tipc_bearer *bearer; |
| 203 | }; |
| 204 | |
| 205 | static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead); |
| 206 | static inline void tipc_aead_put(struct tipc_aead *aead); |
| 207 | static void tipc_aead_free(struct rcu_head *rp); |
| 208 | static int tipc_aead_users(struct tipc_aead __rcu *aead); |
| 209 | static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim); |
| 210 | static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim); |
| 211 | static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val); |
| 212 | static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead); |
| 213 | static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey, |
| 214 | u8 mode); |
| 215 | static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src); |
| 216 | static void *tipc_aead_mem_alloc(struct crypto_aead *tfm, |
| 217 | unsigned int crypto_ctx_size, |
| 218 | u8 **iv, struct aead_request **req, |
| 219 | struct scatterlist **sg, int nsg); |
| 220 | static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb, |
| 221 | struct tipc_bearer *b, |
| 222 | struct tipc_media_addr *dst, |
| 223 | struct tipc_node *__dnode); |
| 224 | static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err); |
| 225 | static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead, |
| 226 | struct sk_buff *skb, struct tipc_bearer *b); |
| 227 | static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err); |
| 228 | static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr); |
| 229 | static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead, |
| 230 | u8 tx_key, struct sk_buff *skb, |
| 231 | struct tipc_crypto *__rx); |
| 232 | static inline void tipc_crypto_key_set_state(struct tipc_crypto *c, |
| 233 | u8 new_passive, |
| 234 | u8 new_active, |
| 235 | u8 new_pending); |
| 236 | static int tipc_crypto_key_attach(struct tipc_crypto *c, |
| 237 | struct tipc_aead *aead, u8 pos); |
| 238 | static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending); |
| 239 | static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx, |
| 240 | struct tipc_crypto *rx, |
| 241 | struct sk_buff *skb); |
| 242 | static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active, |
| 243 | struct tipc_msg *hdr); |
| 244 | static int tipc_crypto_key_revoke(struct net *net, u8 tx_key); |
| 245 | static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead, |
| 246 | struct tipc_bearer *b, |
| 247 | struct sk_buff **skb, int err); |
| 248 | static void tipc_crypto_do_cmd(struct net *net, int cmd); |
| 249 | static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf); |
| 250 | #ifdef TIPC_CRYPTO_DEBUG |
| 251 | static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new, |
| 252 | char *buf); |
| 253 | #endif |
| 254 | |
| 255 | #define key_next(cur) ((cur) % KEY_MAX + 1) |
| 256 | |
| 257 | #define tipc_aead_rcu_ptr(rcu_ptr, lock) \ |
| 258 | rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock)) |
| 259 | |
Tuong Lien | fc1b6d6 | 2019-11-08 12:05:11 +0700 | [diff] [blame] | 260 | #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock) \ |
| 261 | do { \ |
| 262 | typeof(rcu_ptr) __tmp = rcu_dereference_protected((rcu_ptr), \ |
| 263 | lockdep_is_held(lock)); \ |
| 264 | rcu_assign_pointer((rcu_ptr), (ptr)); \ |
| 265 | tipc_aead_put(__tmp); \ |
| 266 | } while (0) |
| 267 | |
| 268 | #define tipc_crypto_key_detach(rcu_ptr, lock) \ |
| 269 | tipc_aead_rcu_replace((rcu_ptr), NULL, lock) |
| 270 | |
| 271 | /** |
| 272 | * tipc_aead_key_validate - Validate a AEAD user key |
| 273 | */ |
| 274 | int tipc_aead_key_validate(struct tipc_aead_key *ukey) |
| 275 | { |
| 276 | int keylen; |
| 277 | |
| 278 | /* Check if algorithm exists */ |
| 279 | if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) { |
| 280 | pr_info("Not found cipher: \"%s\"!\n", ukey->alg_name); |
| 281 | return -ENODEV; |
| 282 | } |
| 283 | |
| 284 | /* Currently, we only support the "gcm(aes)" cipher algorithm */ |
| 285 | if (strcmp(ukey->alg_name, "gcm(aes)")) |
| 286 | return -ENOTSUPP; |
| 287 | |
| 288 | /* Check if key size is correct */ |
| 289 | keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE; |
| 290 | if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 && |
| 291 | keylen != TIPC_AES_GCM_KEY_SIZE_192 && |
| 292 | keylen != TIPC_AES_GCM_KEY_SIZE_256)) |
| 293 | return -EINVAL; |
| 294 | |
| 295 | return 0; |
| 296 | } |
| 297 | |
| 298 | static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead) |
| 299 | { |
| 300 | struct tipc_aead *tmp; |
| 301 | |
| 302 | rcu_read_lock(); |
| 303 | tmp = rcu_dereference(aead); |
| 304 | if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt))) |
| 305 | tmp = NULL; |
| 306 | rcu_read_unlock(); |
| 307 | |
| 308 | return tmp; |
| 309 | } |
| 310 | |
| 311 | static inline void tipc_aead_put(struct tipc_aead *aead) |
| 312 | { |
| 313 | if (aead && refcount_dec_and_test(&aead->refcnt)) |
| 314 | call_rcu(&aead->rcu, tipc_aead_free); |
| 315 | } |
| 316 | |
| 317 | /** |
| 318 | * tipc_aead_free - Release AEAD key incl. all the TFMs in the list |
| 319 | * @rp: rcu head pointer |
| 320 | */ |
| 321 | static void tipc_aead_free(struct rcu_head *rp) |
| 322 | { |
| 323 | struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu); |
| 324 | struct tipc_tfm *tfm_entry, *head, *tmp; |
| 325 | |
| 326 | if (aead->cloned) { |
| 327 | tipc_aead_put(aead->cloned); |
| 328 | } else { |
| 329 | head = *this_cpu_ptr(aead->tfm_entry); |
| 330 | list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) { |
| 331 | crypto_free_aead(tfm_entry->tfm); |
| 332 | list_del(&tfm_entry->list); |
| 333 | kfree(tfm_entry); |
| 334 | } |
| 335 | /* Free the head */ |
| 336 | crypto_free_aead(head->tfm); |
| 337 | list_del(&head->list); |
| 338 | kfree(head); |
| 339 | } |
| 340 | free_percpu(aead->tfm_entry); |
| 341 | kfree(aead); |
| 342 | } |
| 343 | |
| 344 | static int tipc_aead_users(struct tipc_aead __rcu *aead) |
| 345 | { |
| 346 | struct tipc_aead *tmp; |
| 347 | int users = 0; |
| 348 | |
| 349 | rcu_read_lock(); |
| 350 | tmp = rcu_dereference(aead); |
| 351 | if (tmp) |
| 352 | users = atomic_read(&tmp->users); |
| 353 | rcu_read_unlock(); |
| 354 | |
| 355 | return users; |
| 356 | } |
| 357 | |
| 358 | static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim) |
| 359 | { |
| 360 | struct tipc_aead *tmp; |
| 361 | |
| 362 | rcu_read_lock(); |
| 363 | tmp = rcu_dereference(aead); |
| 364 | if (tmp) |
| 365 | atomic_add_unless(&tmp->users, 1, lim); |
| 366 | rcu_read_unlock(); |
| 367 | } |
| 368 | |
| 369 | static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim) |
| 370 | { |
| 371 | struct tipc_aead *tmp; |
| 372 | |
| 373 | rcu_read_lock(); |
| 374 | tmp = rcu_dereference(aead); |
| 375 | if (tmp) |
| 376 | atomic_add_unless(&rcu_dereference(aead)->users, -1, lim); |
| 377 | rcu_read_unlock(); |
| 378 | } |
| 379 | |
| 380 | static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val) |
| 381 | { |
| 382 | struct tipc_aead *tmp; |
| 383 | int cur; |
| 384 | |
| 385 | rcu_read_lock(); |
| 386 | tmp = rcu_dereference(aead); |
| 387 | if (tmp) { |
| 388 | do { |
| 389 | cur = atomic_read(&tmp->users); |
| 390 | if (cur == val) |
| 391 | break; |
| 392 | } while (atomic_cmpxchg(&tmp->users, cur, val) != cur); |
| 393 | } |
| 394 | rcu_read_unlock(); |
| 395 | } |
| 396 | |
| 397 | /** |
| 398 | * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it |
| 399 | */ |
| 400 | static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead) |
| 401 | { |
| 402 | struct tipc_tfm **tfm_entry = this_cpu_ptr(aead->tfm_entry); |
| 403 | |
| 404 | *tfm_entry = list_next_entry(*tfm_entry, list); |
| 405 | return (*tfm_entry)->tfm; |
| 406 | } |
| 407 | |
| 408 | /** |
| 409 | * tipc_aead_init - Initiate TIPC AEAD |
| 410 | * @aead: returned new TIPC AEAD key handle pointer |
| 411 | * @ukey: pointer to user key data |
| 412 | * @mode: the key mode |
| 413 | * |
| 414 | * Allocate a (list of) new cipher transformation (TFM) with the specific user |
| 415 | * key data if valid. The number of the allocated TFMs can be set via the sysfs |
| 416 | * "net/tipc/max_tfms" first. |
| 417 | * Also, all the other AEAD data are also initialized. |
| 418 | * |
| 419 | * Return: 0 if the initiation is successful, otherwise: < 0 |
| 420 | */ |
| 421 | static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey, |
| 422 | u8 mode) |
| 423 | { |
| 424 | struct tipc_tfm *tfm_entry, *head; |
| 425 | struct crypto_aead *tfm; |
| 426 | struct tipc_aead *tmp; |
| 427 | int keylen, err, cpu; |
| 428 | int tfm_cnt = 0; |
| 429 | |
| 430 | if (unlikely(*aead)) |
| 431 | return -EEXIST; |
| 432 | |
| 433 | /* Allocate a new AEAD */ |
| 434 | tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC); |
| 435 | if (unlikely(!tmp)) |
| 436 | return -ENOMEM; |
| 437 | |
| 438 | /* The key consists of two parts: [AES-KEY][SALT] */ |
| 439 | keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE; |
| 440 | |
| 441 | /* Allocate per-cpu TFM entry pointer */ |
| 442 | tmp->tfm_entry = alloc_percpu(struct tipc_tfm *); |
| 443 | if (!tmp->tfm_entry) { |
| 444 | kzfree(tmp); |
| 445 | return -ENOMEM; |
| 446 | } |
| 447 | |
| 448 | /* Make a list of TFMs with the user key data */ |
| 449 | do { |
| 450 | tfm = crypto_alloc_aead(ukey->alg_name, 0, 0); |
| 451 | if (IS_ERR(tfm)) { |
| 452 | err = PTR_ERR(tfm); |
| 453 | break; |
| 454 | } |
| 455 | |
| 456 | if (unlikely(!tfm_cnt && |
| 457 | crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) { |
| 458 | crypto_free_aead(tfm); |
| 459 | err = -ENOTSUPP; |
| 460 | break; |
| 461 | } |
| 462 | |
Colin Ian King | c33fdc3 | 2019-11-11 12:33:34 +0000 | [diff] [blame] | 463 | err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE); |
Tuong Lien | fc1b6d6 | 2019-11-08 12:05:11 +0700 | [diff] [blame] | 464 | err |= crypto_aead_setkey(tfm, ukey->key, keylen); |
| 465 | if (unlikely(err)) { |
| 466 | crypto_free_aead(tfm); |
| 467 | break; |
| 468 | } |
| 469 | |
| 470 | tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL); |
| 471 | if (unlikely(!tfm_entry)) { |
| 472 | crypto_free_aead(tfm); |
| 473 | err = -ENOMEM; |
| 474 | break; |
| 475 | } |
| 476 | INIT_LIST_HEAD(&tfm_entry->list); |
| 477 | tfm_entry->tfm = tfm; |
| 478 | |
| 479 | /* First entry? */ |
| 480 | if (!tfm_cnt) { |
| 481 | head = tfm_entry; |
| 482 | for_each_possible_cpu(cpu) { |
| 483 | *per_cpu_ptr(tmp->tfm_entry, cpu) = head; |
| 484 | } |
| 485 | } else { |
| 486 | list_add_tail(&tfm_entry->list, &head->list); |
| 487 | } |
| 488 | |
| 489 | } while (++tfm_cnt < sysctl_tipc_max_tfms); |
| 490 | |
| 491 | /* Not any TFM is allocated? */ |
| 492 | if (!tfm_cnt) { |
| 493 | free_percpu(tmp->tfm_entry); |
| 494 | kzfree(tmp); |
| 495 | return err; |
| 496 | } |
| 497 | |
| 498 | /* Copy some chars from the user key as a hint */ |
| 499 | memcpy(tmp->hint, ukey->key, TIPC_AEAD_HINT_LEN); |
| 500 | tmp->hint[TIPC_AEAD_HINT_LEN] = '\0'; |
| 501 | |
| 502 | /* Initialize the other data */ |
| 503 | tmp->mode = mode; |
| 504 | tmp->cloned = NULL; |
| 505 | tmp->authsize = TIPC_AES_GCM_TAG_SIZE; |
| 506 | memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE); |
| 507 | atomic_set(&tmp->users, 0); |
| 508 | atomic64_set(&tmp->seqno, 0); |
| 509 | refcount_set(&tmp->refcnt, 1); |
| 510 | |
| 511 | *aead = tmp; |
| 512 | return 0; |
| 513 | } |
| 514 | |
| 515 | /** |
| 516 | * tipc_aead_clone - Clone a TIPC AEAD key |
| 517 | * @dst: dest key for the cloning |
| 518 | * @src: source key to clone from |
| 519 | * |
| 520 | * Make a "copy" of the source AEAD key data to the dest, the TFMs list is |
| 521 | * common for the keys. |
| 522 | * A reference to the source is hold in the "cloned" pointer for the later |
| 523 | * freeing purposes. |
| 524 | * |
| 525 | * Note: this must be done in cluster-key mode only! |
| 526 | * Return: 0 in case of success, otherwise < 0 |
| 527 | */ |
| 528 | static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src) |
| 529 | { |
| 530 | struct tipc_aead *aead; |
| 531 | int cpu; |
| 532 | |
| 533 | if (!src) |
| 534 | return -ENOKEY; |
| 535 | |
| 536 | if (src->mode != CLUSTER_KEY) |
| 537 | return -EINVAL; |
| 538 | |
| 539 | if (unlikely(*dst)) |
| 540 | return -EEXIST; |
| 541 | |
| 542 | aead = kzalloc(sizeof(*aead), GFP_ATOMIC); |
| 543 | if (unlikely(!aead)) |
| 544 | return -ENOMEM; |
| 545 | |
| 546 | aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC); |
| 547 | if (unlikely(!aead->tfm_entry)) { |
| 548 | kzfree(aead); |
| 549 | return -ENOMEM; |
| 550 | } |
| 551 | |
| 552 | for_each_possible_cpu(cpu) { |
| 553 | *per_cpu_ptr(aead->tfm_entry, cpu) = |
| 554 | *per_cpu_ptr(src->tfm_entry, cpu); |
| 555 | } |
| 556 | |
| 557 | memcpy(aead->hint, src->hint, sizeof(src->hint)); |
| 558 | aead->mode = src->mode; |
| 559 | aead->salt = src->salt; |
| 560 | aead->authsize = src->authsize; |
| 561 | atomic_set(&aead->users, 0); |
| 562 | atomic64_set(&aead->seqno, 0); |
| 563 | refcount_set(&aead->refcnt, 1); |
| 564 | |
| 565 | WARN_ON(!refcount_inc_not_zero(&src->refcnt)); |
| 566 | aead->cloned = src; |
| 567 | |
| 568 | *dst = aead; |
| 569 | return 0; |
| 570 | } |
| 571 | |
| 572 | /** |
| 573 | * tipc_aead_mem_alloc - Allocate memory for AEAD request operations |
| 574 | * @tfm: cipher handle to be registered with the request |
| 575 | * @crypto_ctx_size: size of crypto context for callback |
| 576 | * @iv: returned pointer to IV data |
| 577 | * @req: returned pointer to AEAD request data |
| 578 | * @sg: returned pointer to SG lists |
| 579 | * @nsg: number of SG lists to be allocated |
| 580 | * |
| 581 | * Allocate memory to store the crypto context data, AEAD request, IV and SG |
| 582 | * lists, the memory layout is as follows: |
| 583 | * crypto_ctx || iv || aead_req || sg[] |
| 584 | * |
| 585 | * Return: the pointer to the memory areas in case of success, otherwise NULL |
| 586 | */ |
| 587 | static void *tipc_aead_mem_alloc(struct crypto_aead *tfm, |
| 588 | unsigned int crypto_ctx_size, |
| 589 | u8 **iv, struct aead_request **req, |
| 590 | struct scatterlist **sg, int nsg) |
| 591 | { |
| 592 | unsigned int iv_size, req_size; |
| 593 | unsigned int len; |
| 594 | u8 *mem; |
| 595 | |
| 596 | iv_size = crypto_aead_ivsize(tfm); |
| 597 | req_size = sizeof(**req) + crypto_aead_reqsize(tfm); |
| 598 | |
| 599 | len = crypto_ctx_size; |
| 600 | len += iv_size; |
| 601 | len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1); |
| 602 | len = ALIGN(len, crypto_tfm_ctx_alignment()); |
| 603 | len += req_size; |
| 604 | len = ALIGN(len, __alignof__(struct scatterlist)); |
| 605 | len += nsg * sizeof(**sg); |
| 606 | |
| 607 | mem = kmalloc(len, GFP_ATOMIC); |
| 608 | if (!mem) |
| 609 | return NULL; |
| 610 | |
| 611 | *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size, |
| 612 | crypto_aead_alignmask(tfm) + 1); |
| 613 | *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size, |
| 614 | crypto_tfm_ctx_alignment()); |
| 615 | *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size, |
| 616 | __alignof__(struct scatterlist)); |
| 617 | |
| 618 | return (void *)mem; |
| 619 | } |
| 620 | |
| 621 | /** |
| 622 | * tipc_aead_encrypt - Encrypt a message |
| 623 | * @aead: TIPC AEAD key for the message encryption |
| 624 | * @skb: the input/output skb |
| 625 | * @b: TIPC bearer where the message will be delivered after the encryption |
| 626 | * @dst: the destination media address |
| 627 | * @__dnode: TIPC dest node if "known" |
| 628 | * |
| 629 | * Return: |
| 630 | * 0 : if the encryption has completed |
| 631 | * -EINPROGRESS/-EBUSY : if a callback will be performed |
| 632 | * < 0 : the encryption has failed |
| 633 | */ |
| 634 | static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb, |
| 635 | struct tipc_bearer *b, |
| 636 | struct tipc_media_addr *dst, |
| 637 | struct tipc_node *__dnode) |
| 638 | { |
| 639 | struct crypto_aead *tfm = tipc_aead_tfm_next(aead); |
| 640 | struct tipc_crypto_tx_ctx *tx_ctx; |
| 641 | struct aead_request *req; |
| 642 | struct sk_buff *trailer; |
| 643 | struct scatterlist *sg; |
| 644 | struct tipc_ehdr *ehdr; |
| 645 | int ehsz, len, tailen, nsg, rc; |
| 646 | void *ctx; |
| 647 | u32 salt; |
| 648 | u8 *iv; |
| 649 | |
| 650 | /* Make sure message len at least 4-byte aligned */ |
| 651 | len = ALIGN(skb->len, 4); |
| 652 | tailen = len - skb->len + aead->authsize; |
| 653 | |
| 654 | /* Expand skb tail for authentication tag: |
| 655 | * As for simplicity, we'd have made sure skb having enough tailroom |
| 656 | * for authentication tag @skb allocation. Even when skb is nonlinear |
| 657 | * but there is no frag_list, it should be still fine! |
| 658 | * Otherwise, we must cow it to be a writable buffer with the tailroom. |
| 659 | */ |
| 660 | #ifdef TIPC_CRYPTO_DEBUG |
| 661 | SKB_LINEAR_ASSERT(skb); |
| 662 | if (tailen > skb_tailroom(skb)) { |
| 663 | pr_warn("TX: skb tailroom is not enough: %d, requires: %d\n", |
| 664 | skb_tailroom(skb), tailen); |
| 665 | } |
| 666 | #endif |
| 667 | |
| 668 | if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) { |
| 669 | nsg = 1; |
| 670 | trailer = skb; |
| 671 | } else { |
| 672 | /* TODO: We could avoid skb_cow_data() if skb has no frag_list |
| 673 | * e.g. by skb_fill_page_desc() to add another page to the skb |
| 674 | * with the wanted tailen... However, page skbs look not often, |
| 675 | * so take it easy now! |
| 676 | * Cloned skbs e.g. from link_xmit() seems no choice though :( |
| 677 | */ |
| 678 | nsg = skb_cow_data(skb, tailen, &trailer); |
| 679 | if (unlikely(nsg < 0)) { |
| 680 | pr_err("TX: skb_cow_data() returned %d\n", nsg); |
| 681 | return nsg; |
| 682 | } |
| 683 | } |
| 684 | |
| 685 | pskb_put(skb, trailer, tailen); |
| 686 | |
| 687 | /* Allocate memory for the AEAD operation */ |
| 688 | ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg); |
| 689 | if (unlikely(!ctx)) |
| 690 | return -ENOMEM; |
| 691 | TIPC_SKB_CB(skb)->crypto_ctx = ctx; |
| 692 | |
| 693 | /* Map skb to the sg lists */ |
| 694 | sg_init_table(sg, nsg); |
| 695 | rc = skb_to_sgvec(skb, sg, 0, skb->len); |
| 696 | if (unlikely(rc < 0)) { |
| 697 | pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg); |
| 698 | goto exit; |
| 699 | } |
| 700 | |
| 701 | /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)] |
| 702 | * In case we're in cluster-key mode, SALT is varied by xor-ing with |
| 703 | * the source address (or w0 of id), otherwise with the dest address |
| 704 | * if dest is known. |
| 705 | */ |
| 706 | ehdr = (struct tipc_ehdr *)skb->data; |
| 707 | salt = aead->salt; |
| 708 | if (aead->mode == CLUSTER_KEY) |
| 709 | salt ^= ehdr->addr; /* __be32 */ |
| 710 | else if (__dnode) |
| 711 | salt ^= tipc_node_get_addr(__dnode); |
| 712 | memcpy(iv, &salt, 4); |
| 713 | memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); |
| 714 | |
| 715 | /* Prepare request */ |
| 716 | ehsz = tipc_ehdr_size(ehdr); |
| 717 | aead_request_set_tfm(req, tfm); |
| 718 | aead_request_set_ad(req, ehsz); |
| 719 | aead_request_set_crypt(req, sg, sg, len - ehsz, iv); |
| 720 | |
| 721 | /* Set callback function & data */ |
| 722 | aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, |
| 723 | tipc_aead_encrypt_done, skb); |
| 724 | tx_ctx = (struct tipc_crypto_tx_ctx *)ctx; |
| 725 | tx_ctx->aead = aead; |
| 726 | tx_ctx->bearer = b; |
| 727 | memcpy(&tx_ctx->dst, dst, sizeof(*dst)); |
| 728 | |
| 729 | /* Hold bearer */ |
| 730 | if (unlikely(!tipc_bearer_hold(b))) { |
| 731 | rc = -ENODEV; |
| 732 | goto exit; |
| 733 | } |
| 734 | |
| 735 | /* Now, do encrypt */ |
| 736 | rc = crypto_aead_encrypt(req); |
| 737 | if (rc == -EINPROGRESS || rc == -EBUSY) |
| 738 | return rc; |
| 739 | |
| 740 | tipc_bearer_put(b); |
| 741 | |
| 742 | exit: |
| 743 | kfree(ctx); |
| 744 | TIPC_SKB_CB(skb)->crypto_ctx = NULL; |
| 745 | return rc; |
| 746 | } |
| 747 | |
| 748 | static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err) |
| 749 | { |
| 750 | struct sk_buff *skb = base->data; |
| 751 | struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx; |
| 752 | struct tipc_bearer *b = tx_ctx->bearer; |
| 753 | struct tipc_aead *aead = tx_ctx->aead; |
| 754 | struct tipc_crypto *tx = aead->crypto; |
| 755 | struct net *net = tx->net; |
| 756 | |
| 757 | switch (err) { |
| 758 | case 0: |
| 759 | this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]); |
| 760 | if (likely(test_bit(0, &b->up))) |
| 761 | b->media->send_msg(net, skb, b, &tx_ctx->dst); |
| 762 | else |
| 763 | kfree_skb(skb); |
| 764 | break; |
| 765 | case -EINPROGRESS: |
| 766 | return; |
| 767 | default: |
| 768 | this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]); |
| 769 | kfree_skb(skb); |
| 770 | break; |
| 771 | } |
| 772 | |
| 773 | kfree(tx_ctx); |
| 774 | tipc_bearer_put(b); |
| 775 | tipc_aead_put(aead); |
| 776 | } |
| 777 | |
| 778 | /** |
| 779 | * tipc_aead_decrypt - Decrypt an encrypted message |
| 780 | * @net: struct net |
| 781 | * @aead: TIPC AEAD for the message decryption |
| 782 | * @skb: the input/output skb |
| 783 | * @b: TIPC bearer where the message has been received |
| 784 | * |
| 785 | * Return: |
| 786 | * 0 : if the decryption has completed |
| 787 | * -EINPROGRESS/-EBUSY : if a callback will be performed |
| 788 | * < 0 : the decryption has failed |
| 789 | */ |
| 790 | static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead, |
| 791 | struct sk_buff *skb, struct tipc_bearer *b) |
| 792 | { |
| 793 | struct tipc_crypto_rx_ctx *rx_ctx; |
| 794 | struct aead_request *req; |
| 795 | struct crypto_aead *tfm; |
| 796 | struct sk_buff *unused; |
| 797 | struct scatterlist *sg; |
| 798 | struct tipc_ehdr *ehdr; |
| 799 | int ehsz, nsg, rc; |
| 800 | void *ctx; |
| 801 | u32 salt; |
| 802 | u8 *iv; |
| 803 | |
| 804 | if (unlikely(!aead)) |
| 805 | return -ENOKEY; |
| 806 | |
| 807 | /* Cow skb data if needed */ |
| 808 | if (likely(!skb_cloned(skb) && |
| 809 | (!skb_is_nonlinear(skb) || !skb_has_frag_list(skb)))) { |
| 810 | nsg = 1 + skb_shinfo(skb)->nr_frags; |
| 811 | } else { |
| 812 | nsg = skb_cow_data(skb, 0, &unused); |
| 813 | if (unlikely(nsg < 0)) { |
| 814 | pr_err("RX: skb_cow_data() returned %d\n", nsg); |
| 815 | return nsg; |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | /* Allocate memory for the AEAD operation */ |
| 820 | tfm = tipc_aead_tfm_next(aead); |
| 821 | ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg); |
| 822 | if (unlikely(!ctx)) |
| 823 | return -ENOMEM; |
| 824 | TIPC_SKB_CB(skb)->crypto_ctx = ctx; |
| 825 | |
| 826 | /* Map skb to the sg lists */ |
| 827 | sg_init_table(sg, nsg); |
| 828 | rc = skb_to_sgvec(skb, sg, 0, skb->len); |
| 829 | if (unlikely(rc < 0)) { |
| 830 | pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg); |
| 831 | goto exit; |
| 832 | } |
| 833 | |
| 834 | /* Reconstruct IV: */ |
| 835 | ehdr = (struct tipc_ehdr *)skb->data; |
| 836 | salt = aead->salt; |
| 837 | if (aead->mode == CLUSTER_KEY) |
| 838 | salt ^= ehdr->addr; /* __be32 */ |
| 839 | else if (ehdr->destined) |
| 840 | salt ^= tipc_own_addr(net); |
| 841 | memcpy(iv, &salt, 4); |
| 842 | memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); |
| 843 | |
| 844 | /* Prepare request */ |
| 845 | ehsz = tipc_ehdr_size(ehdr); |
| 846 | aead_request_set_tfm(req, tfm); |
| 847 | aead_request_set_ad(req, ehsz); |
| 848 | aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv); |
| 849 | |
| 850 | /* Set callback function & data */ |
| 851 | aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, |
| 852 | tipc_aead_decrypt_done, skb); |
| 853 | rx_ctx = (struct tipc_crypto_rx_ctx *)ctx; |
| 854 | rx_ctx->aead = aead; |
| 855 | rx_ctx->bearer = b; |
| 856 | |
| 857 | /* Hold bearer */ |
| 858 | if (unlikely(!tipc_bearer_hold(b))) { |
| 859 | rc = -ENODEV; |
| 860 | goto exit; |
| 861 | } |
| 862 | |
| 863 | /* Now, do decrypt */ |
| 864 | rc = crypto_aead_decrypt(req); |
| 865 | if (rc == -EINPROGRESS || rc == -EBUSY) |
| 866 | return rc; |
| 867 | |
| 868 | tipc_bearer_put(b); |
| 869 | |
| 870 | exit: |
| 871 | kfree(ctx); |
| 872 | TIPC_SKB_CB(skb)->crypto_ctx = NULL; |
| 873 | return rc; |
| 874 | } |
| 875 | |
| 876 | static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err) |
| 877 | { |
| 878 | struct sk_buff *skb = base->data; |
| 879 | struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx; |
| 880 | struct tipc_bearer *b = rx_ctx->bearer; |
| 881 | struct tipc_aead *aead = rx_ctx->aead; |
| 882 | struct tipc_crypto_stats __percpu *stats = aead->crypto->stats; |
| 883 | struct net *net = aead->crypto->net; |
| 884 | |
| 885 | switch (err) { |
| 886 | case 0: |
| 887 | this_cpu_inc(stats->stat[STAT_ASYNC_OK]); |
| 888 | break; |
| 889 | case -EINPROGRESS: |
| 890 | return; |
| 891 | default: |
| 892 | this_cpu_inc(stats->stat[STAT_ASYNC_NOK]); |
| 893 | break; |
| 894 | } |
| 895 | |
| 896 | kfree(rx_ctx); |
| 897 | tipc_crypto_rcv_complete(net, aead, b, &skb, err); |
| 898 | if (likely(skb)) { |
| 899 | if (likely(test_bit(0, &b->up))) |
| 900 | tipc_rcv(net, skb, b); |
| 901 | else |
| 902 | kfree_skb(skb); |
| 903 | } |
| 904 | |
| 905 | tipc_bearer_put(b); |
| 906 | } |
| 907 | |
| 908 | static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr) |
| 909 | { |
| 910 | return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE; |
| 911 | } |
| 912 | |
| 913 | /** |
| 914 | * tipc_ehdr_validate - Validate an encryption message |
| 915 | * @skb: the message buffer |
| 916 | * |
| 917 | * Returns "true" if this is a valid encryption message, otherwise "false" |
| 918 | */ |
| 919 | bool tipc_ehdr_validate(struct sk_buff *skb) |
| 920 | { |
| 921 | struct tipc_ehdr *ehdr; |
| 922 | int ehsz; |
| 923 | |
| 924 | if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE))) |
| 925 | return false; |
| 926 | |
| 927 | ehdr = (struct tipc_ehdr *)skb->data; |
| 928 | if (unlikely(ehdr->version != TIPC_EVERSION)) |
| 929 | return false; |
| 930 | ehsz = tipc_ehdr_size(ehdr); |
| 931 | if (unlikely(!pskb_may_pull(skb, ehsz))) |
| 932 | return false; |
| 933 | if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE)) |
| 934 | return false; |
| 935 | if (unlikely(!ehdr->tx_key)) |
| 936 | return false; |
| 937 | |
| 938 | return true; |
| 939 | } |
| 940 | |
| 941 | /** |
| 942 | * tipc_ehdr_build - Build TIPC encryption message header |
| 943 | * @net: struct net |
| 944 | * @aead: TX AEAD key to be used for the message encryption |
| 945 | * @tx_key: key id used for the message encryption |
| 946 | * @skb: input/output message skb |
| 947 | * @__rx: RX crypto handle if dest is "known" |
| 948 | * |
| 949 | * Return: the header size if the building is successful, otherwise < 0 |
| 950 | */ |
| 951 | static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead, |
| 952 | u8 tx_key, struct sk_buff *skb, |
| 953 | struct tipc_crypto *__rx) |
| 954 | { |
| 955 | struct tipc_msg *hdr = buf_msg(skb); |
| 956 | struct tipc_ehdr *ehdr; |
| 957 | u32 user = msg_user(hdr); |
| 958 | u64 seqno; |
| 959 | int ehsz; |
| 960 | |
| 961 | /* Make room for encryption header */ |
| 962 | ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE; |
| 963 | WARN_ON(skb_headroom(skb) < ehsz); |
| 964 | ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz); |
| 965 | |
| 966 | /* Obtain a seqno first: |
| 967 | * Use the key seqno (= cluster wise) if dest is unknown or we're in |
| 968 | * cluster key mode, otherwise it's better for a per-peer seqno! |
| 969 | */ |
| 970 | if (!__rx || aead->mode == CLUSTER_KEY) |
| 971 | seqno = atomic64_inc_return(&aead->seqno); |
| 972 | else |
| 973 | seqno = atomic64_inc_return(&__rx->sndnxt); |
| 974 | |
| 975 | /* Revoke the key if seqno is wrapped around */ |
| 976 | if (unlikely(!seqno)) |
| 977 | return tipc_crypto_key_revoke(net, tx_key); |
| 978 | |
| 979 | /* Word 1-2 */ |
| 980 | ehdr->seqno = cpu_to_be64(seqno); |
| 981 | |
| 982 | /* Words 0, 3- */ |
| 983 | ehdr->version = TIPC_EVERSION; |
| 984 | ehdr->user = 0; |
| 985 | ehdr->keepalive = 0; |
| 986 | ehdr->tx_key = tx_key; |
| 987 | ehdr->destined = (__rx) ? 1 : 0; |
| 988 | ehdr->rx_key_active = (__rx) ? __rx->key.active : 0; |
| 989 | ehdr->reserved_1 = 0; |
| 990 | ehdr->reserved_2 = 0; |
| 991 | |
| 992 | switch (user) { |
| 993 | case LINK_CONFIG: |
| 994 | ehdr->user = LINK_CONFIG; |
| 995 | memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN); |
| 996 | break; |
| 997 | default: |
| 998 | if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) { |
| 999 | ehdr->user = LINK_PROTOCOL; |
| 1000 | ehdr->keepalive = msg_is_keepalive(hdr); |
| 1001 | } |
| 1002 | ehdr->addr = hdr->hdr[3]; |
| 1003 | break; |
| 1004 | } |
| 1005 | |
| 1006 | return ehsz; |
| 1007 | } |
| 1008 | |
| 1009 | static inline void tipc_crypto_key_set_state(struct tipc_crypto *c, |
| 1010 | u8 new_passive, |
| 1011 | u8 new_active, |
| 1012 | u8 new_pending) |
| 1013 | { |
| 1014 | #ifdef TIPC_CRYPTO_DEBUG |
| 1015 | struct tipc_key old = c->key; |
| 1016 | char buf[32]; |
| 1017 | #endif |
| 1018 | |
| 1019 | c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) | |
| 1020 | ((new_active & KEY_MASK) << (KEY_BITS)) | |
| 1021 | ((new_pending & KEY_MASK)); |
| 1022 | |
| 1023 | #ifdef TIPC_CRYPTO_DEBUG |
| 1024 | pr_info("%s(%s): key changing %s ::%pS\n", |
| 1025 | (c->node) ? "RX" : "TX", |
| 1026 | (c->node) ? tipc_node_get_id_str(c->node) : |
| 1027 | tipc_own_id_string(c->net), |
| 1028 | tipc_key_change_dump(old, c->key, buf), |
| 1029 | __builtin_return_address(0)); |
| 1030 | #endif |
| 1031 | } |
| 1032 | |
| 1033 | /** |
| 1034 | * tipc_crypto_key_init - Initiate a new user / AEAD key |
| 1035 | * @c: TIPC crypto to which new key is attached |
| 1036 | * @ukey: the user key |
| 1037 | * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY) |
| 1038 | * |
| 1039 | * A new TIPC AEAD key will be allocated and initiated with the specified user |
| 1040 | * key, then attached to the TIPC crypto. |
| 1041 | * |
| 1042 | * Return: new key id in case of success, otherwise: < 0 |
| 1043 | */ |
| 1044 | int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey, |
| 1045 | u8 mode) |
| 1046 | { |
| 1047 | struct tipc_aead *aead = NULL; |
| 1048 | int rc = 0; |
| 1049 | |
| 1050 | /* Initiate with the new user key */ |
| 1051 | rc = tipc_aead_init(&aead, ukey, mode); |
| 1052 | |
| 1053 | /* Attach it to the crypto */ |
| 1054 | if (likely(!rc)) { |
| 1055 | rc = tipc_crypto_key_attach(c, aead, 0); |
| 1056 | if (rc < 0) |
| 1057 | tipc_aead_free(&aead->rcu); |
| 1058 | } |
| 1059 | |
| 1060 | pr_info("%s(%s): key initiating, rc %d!\n", |
| 1061 | (c->node) ? "RX" : "TX", |
| 1062 | (c->node) ? tipc_node_get_id_str(c->node) : |
| 1063 | tipc_own_id_string(c->net), |
| 1064 | rc); |
| 1065 | |
| 1066 | return rc; |
| 1067 | } |
| 1068 | |
| 1069 | /** |
| 1070 | * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto |
| 1071 | * @c: TIPC crypto to which the new AEAD key is attached |
| 1072 | * @aead: the new AEAD key pointer |
| 1073 | * @pos: desired slot in the crypto key array, = 0 if any! |
| 1074 | * |
| 1075 | * Return: new key id in case of success, otherwise: -EBUSY |
| 1076 | */ |
| 1077 | static int tipc_crypto_key_attach(struct tipc_crypto *c, |
| 1078 | struct tipc_aead *aead, u8 pos) |
| 1079 | { |
| 1080 | u8 new_pending, new_passive, new_key; |
| 1081 | struct tipc_key key; |
| 1082 | int rc = -EBUSY; |
| 1083 | |
| 1084 | spin_lock_bh(&c->lock); |
| 1085 | key = c->key; |
| 1086 | if (key.active && key.passive) |
| 1087 | goto exit; |
| 1088 | if (key.passive && !tipc_aead_users(c->aead[key.passive])) |
| 1089 | goto exit; |
| 1090 | if (key.pending) { |
| 1091 | if (pos) |
| 1092 | goto exit; |
| 1093 | if (tipc_aead_users(c->aead[key.pending]) > 0) |
| 1094 | goto exit; |
| 1095 | /* Replace it */ |
| 1096 | new_pending = key.pending; |
| 1097 | new_passive = key.passive; |
| 1098 | new_key = new_pending; |
| 1099 | } else { |
| 1100 | if (pos) { |
| 1101 | if (key.active && pos != key_next(key.active)) { |
| 1102 | new_pending = key.pending; |
| 1103 | new_passive = pos; |
| 1104 | new_key = new_passive; |
| 1105 | goto attach; |
| 1106 | } else if (!key.active && !key.passive) { |
| 1107 | new_pending = pos; |
| 1108 | new_passive = key.passive; |
| 1109 | new_key = new_pending; |
| 1110 | goto attach; |
| 1111 | } |
| 1112 | } |
| 1113 | new_pending = key_next(key.active ?: key.passive); |
| 1114 | new_passive = key.passive; |
| 1115 | new_key = new_pending; |
| 1116 | } |
| 1117 | |
| 1118 | attach: |
| 1119 | aead->crypto = c; |
| 1120 | tipc_crypto_key_set_state(c, new_passive, key.active, new_pending); |
| 1121 | tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock); |
| 1122 | |
| 1123 | c->working = 1; |
| 1124 | c->timer1 = jiffies; |
| 1125 | c->timer2 = jiffies; |
| 1126 | rc = new_key; |
| 1127 | |
| 1128 | exit: |
| 1129 | spin_unlock_bh(&c->lock); |
| 1130 | return rc; |
| 1131 | } |
| 1132 | |
| 1133 | void tipc_crypto_key_flush(struct tipc_crypto *c) |
| 1134 | { |
| 1135 | int k; |
| 1136 | |
| 1137 | spin_lock_bh(&c->lock); |
| 1138 | c->working = 0; |
| 1139 | tipc_crypto_key_set_state(c, 0, 0, 0); |
| 1140 | for (k = KEY_MIN; k <= KEY_MAX; k++) |
| 1141 | tipc_crypto_key_detach(c->aead[k], &c->lock); |
| 1142 | atomic_set(&c->peer_rx_active, 0); |
| 1143 | atomic64_set(&c->sndnxt, 0); |
| 1144 | spin_unlock_bh(&c->lock); |
| 1145 | } |
| 1146 | |
| 1147 | /** |
| 1148 | * tipc_crypto_key_try_align - Align RX keys if possible |
| 1149 | * @rx: RX crypto handle |
| 1150 | * @new_pending: new pending slot if aligned (= TX key from peer) |
| 1151 | * |
| 1152 | * Peer has used an unknown key slot, this only happens when peer has left and |
| 1153 | * rejoned, or we are newcomer. |
| 1154 | * That means, there must be no active key but a pending key at unaligned slot. |
| 1155 | * If so, we try to move the pending key to the new slot. |
| 1156 | * Note: A potential passive key can exist, it will be shifted correspondingly! |
| 1157 | * |
| 1158 | * Return: "true" if key is successfully aligned, otherwise "false" |
| 1159 | */ |
| 1160 | static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending) |
| 1161 | { |
| 1162 | struct tipc_aead *tmp1, *tmp2 = NULL; |
| 1163 | struct tipc_key key; |
| 1164 | bool aligned = false; |
| 1165 | u8 new_passive = 0; |
| 1166 | int x; |
| 1167 | |
| 1168 | spin_lock(&rx->lock); |
| 1169 | key = rx->key; |
| 1170 | if (key.pending == new_pending) { |
| 1171 | aligned = true; |
| 1172 | goto exit; |
| 1173 | } |
| 1174 | if (key.active) |
| 1175 | goto exit; |
| 1176 | if (!key.pending) |
| 1177 | goto exit; |
| 1178 | if (tipc_aead_users(rx->aead[key.pending]) > 0) |
| 1179 | goto exit; |
| 1180 | |
| 1181 | /* Try to "isolate" this pending key first */ |
| 1182 | tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock); |
| 1183 | if (!refcount_dec_if_one(&tmp1->refcnt)) |
| 1184 | goto exit; |
| 1185 | rcu_assign_pointer(rx->aead[key.pending], NULL); |
| 1186 | |
| 1187 | /* Move passive key if any */ |
| 1188 | if (key.passive) { |
Paul E. McKenney | 1a271eb | 2019-12-09 19:13:45 -0800 | [diff] [blame] | 1189 | tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock)); |
Tuong Lien | fc1b6d6 | 2019-11-08 12:05:11 +0700 | [diff] [blame] | 1190 | x = (key.passive - key.pending + new_pending) % KEY_MAX; |
| 1191 | new_passive = (x <= 0) ? x + KEY_MAX : x; |
| 1192 | } |
| 1193 | |
| 1194 | /* Re-allocate the key(s) */ |
| 1195 | tipc_crypto_key_set_state(rx, new_passive, 0, new_pending); |
| 1196 | rcu_assign_pointer(rx->aead[new_pending], tmp1); |
| 1197 | if (new_passive) |
| 1198 | rcu_assign_pointer(rx->aead[new_passive], tmp2); |
| 1199 | refcount_set(&tmp1->refcnt, 1); |
| 1200 | aligned = true; |
| 1201 | pr_info("RX(%s): key is aligned!\n", tipc_node_get_id_str(rx->node)); |
| 1202 | |
| 1203 | exit: |
| 1204 | spin_unlock(&rx->lock); |
| 1205 | return aligned; |
| 1206 | } |
| 1207 | |
| 1208 | /** |
| 1209 | * tipc_crypto_key_pick_tx - Pick one TX key for message decryption |
| 1210 | * @tx: TX crypto handle |
| 1211 | * @rx: RX crypto handle (can be NULL) |
| 1212 | * @skb: the message skb which will be decrypted later |
| 1213 | * |
| 1214 | * This function looks up the existing TX keys and pick one which is suitable |
| 1215 | * for the message decryption, that must be a cluster key and not used before |
| 1216 | * on the same message (i.e. recursive). |
| 1217 | * |
| 1218 | * Return: the TX AEAD key handle in case of success, otherwise NULL |
| 1219 | */ |
| 1220 | static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx, |
| 1221 | struct tipc_crypto *rx, |
| 1222 | struct sk_buff *skb) |
| 1223 | { |
| 1224 | struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb); |
| 1225 | struct tipc_aead *aead = NULL; |
| 1226 | struct tipc_key key = tx->key; |
| 1227 | u8 k, i = 0; |
| 1228 | |
| 1229 | /* Initialize data if not yet */ |
| 1230 | if (!skb_cb->tx_clone_deferred) { |
| 1231 | skb_cb->tx_clone_deferred = 1; |
| 1232 | memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx)); |
| 1233 | } |
| 1234 | |
| 1235 | skb_cb->tx_clone_ctx.rx = rx; |
| 1236 | if (++skb_cb->tx_clone_ctx.recurs > 2) |
| 1237 | return NULL; |
| 1238 | |
| 1239 | /* Pick one TX key */ |
| 1240 | spin_lock(&tx->lock); |
| 1241 | do { |
| 1242 | k = (i == 0) ? key.pending : |
| 1243 | ((i == 1) ? key.active : key.passive); |
| 1244 | if (!k) |
| 1245 | continue; |
| 1246 | aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock); |
| 1247 | if (!aead) |
| 1248 | continue; |
| 1249 | if (aead->mode != CLUSTER_KEY || |
| 1250 | aead == skb_cb->tx_clone_ctx.last) { |
| 1251 | aead = NULL; |
| 1252 | continue; |
| 1253 | } |
| 1254 | /* Ok, found one cluster key */ |
| 1255 | skb_cb->tx_clone_ctx.last = aead; |
| 1256 | WARN_ON(skb->next); |
| 1257 | skb->next = skb_clone(skb, GFP_ATOMIC); |
| 1258 | if (unlikely(!skb->next)) |
| 1259 | pr_warn("Failed to clone skb for next round if any\n"); |
| 1260 | WARN_ON(!refcount_inc_not_zero(&aead->refcnt)); |
| 1261 | break; |
| 1262 | } while (++i < 3); |
| 1263 | spin_unlock(&tx->lock); |
| 1264 | |
| 1265 | return aead; |
| 1266 | } |
| 1267 | |
| 1268 | /** |
| 1269 | * tipc_crypto_key_synch: Synch own key data according to peer key status |
| 1270 | * @rx: RX crypto handle |
| 1271 | * @new_rx_active: latest RX active key from peer |
| 1272 | * @hdr: TIPCv2 message |
| 1273 | * |
| 1274 | * This function updates the peer node related data as the peer RX active key |
| 1275 | * has changed, so the number of TX keys' users on this node are increased and |
| 1276 | * decreased correspondingly. |
| 1277 | * |
| 1278 | * The "per-peer" sndnxt is also reset when the peer key has switched. |
| 1279 | */ |
| 1280 | static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active, |
| 1281 | struct tipc_msg *hdr) |
| 1282 | { |
| 1283 | struct net *net = rx->net; |
| 1284 | struct tipc_crypto *tx = tipc_net(net)->crypto_tx; |
| 1285 | u8 cur_rx_active; |
| 1286 | |
| 1287 | /* TX might be even not ready yet */ |
| 1288 | if (unlikely(!tx->key.active && !tx->key.pending)) |
| 1289 | return; |
| 1290 | |
| 1291 | cur_rx_active = atomic_read(&rx->peer_rx_active); |
| 1292 | if (likely(cur_rx_active == new_rx_active)) |
| 1293 | return; |
| 1294 | |
| 1295 | /* Make sure this message destined for this node */ |
| 1296 | if (unlikely(msg_short(hdr) || |
| 1297 | msg_destnode(hdr) != tipc_own_addr(net))) |
| 1298 | return; |
| 1299 | |
| 1300 | /* Peer RX active key has changed, try to update owns' & TX users */ |
| 1301 | if (atomic_cmpxchg(&rx->peer_rx_active, |
| 1302 | cur_rx_active, |
| 1303 | new_rx_active) == cur_rx_active) { |
| 1304 | if (new_rx_active) |
| 1305 | tipc_aead_users_inc(tx->aead[new_rx_active], INT_MAX); |
| 1306 | if (cur_rx_active) |
| 1307 | tipc_aead_users_dec(tx->aead[cur_rx_active], 0); |
| 1308 | |
| 1309 | atomic64_set(&rx->sndnxt, 0); |
| 1310 | /* Mark the point TX key users changed */ |
| 1311 | tx->timer1 = jiffies; |
| 1312 | |
| 1313 | #ifdef TIPC_CRYPTO_DEBUG |
| 1314 | pr_info("TX(%s): key users changed %d-- %d++, peer RX(%s)\n", |
| 1315 | tipc_own_id_string(net), cur_rx_active, |
| 1316 | new_rx_active, tipc_node_get_id_str(rx->node)); |
| 1317 | #endif |
| 1318 | } |
| 1319 | } |
| 1320 | |
| 1321 | static int tipc_crypto_key_revoke(struct net *net, u8 tx_key) |
| 1322 | { |
| 1323 | struct tipc_crypto *tx = tipc_net(net)->crypto_tx; |
| 1324 | struct tipc_key key; |
| 1325 | |
| 1326 | spin_lock(&tx->lock); |
| 1327 | key = tx->key; |
| 1328 | WARN_ON(!key.active || tx_key != key.active); |
| 1329 | |
| 1330 | /* Free the active key */ |
| 1331 | tipc_crypto_key_set_state(tx, key.passive, 0, key.pending); |
| 1332 | tipc_crypto_key_detach(tx->aead[key.active], &tx->lock); |
| 1333 | spin_unlock(&tx->lock); |
| 1334 | |
| 1335 | pr_warn("TX(%s): key is revoked!\n", tipc_own_id_string(net)); |
| 1336 | return -EKEYREVOKED; |
| 1337 | } |
| 1338 | |
| 1339 | int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net, |
| 1340 | struct tipc_node *node) |
| 1341 | { |
| 1342 | struct tipc_crypto *c; |
| 1343 | |
| 1344 | if (*crypto) |
| 1345 | return -EEXIST; |
| 1346 | |
| 1347 | /* Allocate crypto */ |
| 1348 | c = kzalloc(sizeof(*c), GFP_ATOMIC); |
| 1349 | if (!c) |
| 1350 | return -ENOMEM; |
| 1351 | |
| 1352 | /* Allocate statistic structure */ |
| 1353 | c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC); |
| 1354 | if (!c->stats) { |
| 1355 | kzfree(c); |
| 1356 | return -ENOMEM; |
| 1357 | } |
| 1358 | |
| 1359 | c->working = 0; |
| 1360 | c->net = net; |
| 1361 | c->node = node; |
| 1362 | tipc_crypto_key_set_state(c, 0, 0, 0); |
| 1363 | atomic_set(&c->peer_rx_active, 0); |
| 1364 | atomic64_set(&c->sndnxt, 0); |
| 1365 | c->timer1 = jiffies; |
| 1366 | c->timer2 = jiffies; |
| 1367 | spin_lock_init(&c->lock); |
| 1368 | *crypto = c; |
| 1369 | |
| 1370 | return 0; |
| 1371 | } |
| 1372 | |
| 1373 | void tipc_crypto_stop(struct tipc_crypto **crypto) |
| 1374 | { |
| 1375 | struct tipc_crypto *c, *tx, *rx; |
| 1376 | bool is_rx; |
| 1377 | u8 k; |
| 1378 | |
| 1379 | if (!*crypto) |
| 1380 | return; |
| 1381 | |
| 1382 | rcu_read_lock(); |
| 1383 | /* RX stopping? => decrease TX key users if any */ |
| 1384 | is_rx = !!((*crypto)->node); |
| 1385 | if (is_rx) { |
| 1386 | rx = *crypto; |
| 1387 | tx = tipc_net(rx->net)->crypto_tx; |
| 1388 | k = atomic_read(&rx->peer_rx_active); |
| 1389 | if (k) { |
| 1390 | tipc_aead_users_dec(tx->aead[k], 0); |
| 1391 | /* Mark the point TX key users changed */ |
| 1392 | tx->timer1 = jiffies; |
| 1393 | } |
| 1394 | } |
| 1395 | |
| 1396 | /* Release AEAD keys */ |
| 1397 | c = *crypto; |
| 1398 | for (k = KEY_MIN; k <= KEY_MAX; k++) |
| 1399 | tipc_aead_put(rcu_dereference(c->aead[k])); |
| 1400 | rcu_read_unlock(); |
| 1401 | |
| 1402 | pr_warn("%s(%s) has been purged, node left!\n", |
| 1403 | (is_rx) ? "RX" : "TX", |
| 1404 | (is_rx) ? tipc_node_get_id_str((*crypto)->node) : |
| 1405 | tipc_own_id_string((*crypto)->net)); |
| 1406 | |
| 1407 | /* Free this crypto statistics */ |
| 1408 | free_percpu(c->stats); |
| 1409 | |
| 1410 | *crypto = NULL; |
| 1411 | kzfree(c); |
| 1412 | } |
| 1413 | |
| 1414 | void tipc_crypto_timeout(struct tipc_crypto *rx) |
| 1415 | { |
| 1416 | struct tipc_net *tn = tipc_net(rx->net); |
| 1417 | struct tipc_crypto *tx = tn->crypto_tx; |
| 1418 | struct tipc_key key; |
| 1419 | u8 new_pending, new_passive; |
| 1420 | int cmd; |
| 1421 | |
| 1422 | /* TX key activating: |
| 1423 | * The pending key (users > 0) -> active |
| 1424 | * The active key if any (users == 0) -> free |
| 1425 | */ |
| 1426 | spin_lock(&tx->lock); |
| 1427 | key = tx->key; |
| 1428 | if (key.active && tipc_aead_users(tx->aead[key.active]) > 0) |
| 1429 | goto s1; |
| 1430 | if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0) |
| 1431 | goto s1; |
| 1432 | if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_LIM)) |
| 1433 | goto s1; |
| 1434 | |
| 1435 | tipc_crypto_key_set_state(tx, key.passive, key.pending, 0); |
| 1436 | if (key.active) |
| 1437 | tipc_crypto_key_detach(tx->aead[key.active], &tx->lock); |
| 1438 | this_cpu_inc(tx->stats->stat[STAT_SWITCHES]); |
| 1439 | pr_info("TX(%s): key %d is activated!\n", tipc_own_id_string(tx->net), |
| 1440 | key.pending); |
| 1441 | |
| 1442 | s1: |
| 1443 | spin_unlock(&tx->lock); |
| 1444 | |
| 1445 | /* RX key activating: |
| 1446 | * The pending key (users > 0) -> active |
| 1447 | * The active key if any -> passive, freed later |
| 1448 | */ |
| 1449 | spin_lock(&rx->lock); |
| 1450 | key = rx->key; |
| 1451 | if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0) |
| 1452 | goto s2; |
| 1453 | |
| 1454 | new_pending = (key.passive && |
| 1455 | !tipc_aead_users(rx->aead[key.passive])) ? |
| 1456 | key.passive : 0; |
| 1457 | new_passive = (key.active) ?: ((new_pending) ? 0 : key.passive); |
| 1458 | tipc_crypto_key_set_state(rx, new_passive, key.pending, new_pending); |
| 1459 | this_cpu_inc(rx->stats->stat[STAT_SWITCHES]); |
| 1460 | pr_info("RX(%s): key %d is activated!\n", |
| 1461 | tipc_node_get_id_str(rx->node), key.pending); |
| 1462 | goto s5; |
| 1463 | |
| 1464 | s2: |
| 1465 | /* RX key "faulty" switching: |
| 1466 | * The faulty pending key (users < -30) -> passive |
| 1467 | * The passive key (users = 0) -> pending |
| 1468 | * Note: This only happens after RX deactivated - s3! |
| 1469 | */ |
| 1470 | key = rx->key; |
| 1471 | if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -30) |
| 1472 | goto s3; |
| 1473 | if (!key.passive || tipc_aead_users(rx->aead[key.passive]) != 0) |
| 1474 | goto s3; |
| 1475 | |
| 1476 | new_pending = key.passive; |
| 1477 | new_passive = key.pending; |
| 1478 | tipc_crypto_key_set_state(rx, new_passive, key.active, new_pending); |
| 1479 | goto s5; |
| 1480 | |
| 1481 | s3: |
| 1482 | /* RX key deactivating: |
| 1483 | * The passive key if any -> pending |
| 1484 | * The active key -> passive (users = 0) / pending |
| 1485 | * The pending key if any -> passive (users = 0) |
| 1486 | */ |
| 1487 | key = rx->key; |
| 1488 | if (!key.active) |
| 1489 | goto s4; |
| 1490 | if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM)) |
| 1491 | goto s4; |
| 1492 | |
| 1493 | new_pending = (key.passive) ?: key.active; |
| 1494 | new_passive = (key.passive) ? key.active : key.pending; |
| 1495 | tipc_aead_users_set(rx->aead[new_pending], 0); |
| 1496 | if (new_passive) |
| 1497 | tipc_aead_users_set(rx->aead[new_passive], 0); |
| 1498 | tipc_crypto_key_set_state(rx, new_passive, 0, new_pending); |
| 1499 | pr_info("RX(%s): key %d is deactivated!\n", |
| 1500 | tipc_node_get_id_str(rx->node), key.active); |
| 1501 | goto s5; |
| 1502 | |
| 1503 | s4: |
| 1504 | /* RX key passive -> freed: */ |
| 1505 | key = rx->key; |
| 1506 | if (!key.passive || !tipc_aead_users(rx->aead[key.passive])) |
| 1507 | goto s5; |
| 1508 | if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM)) |
| 1509 | goto s5; |
| 1510 | |
| 1511 | tipc_crypto_key_set_state(rx, 0, key.active, key.pending); |
| 1512 | tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock); |
| 1513 | pr_info("RX(%s): key %d is freed!\n", tipc_node_get_id_str(rx->node), |
| 1514 | key.passive); |
| 1515 | |
| 1516 | s5: |
| 1517 | spin_unlock(&rx->lock); |
| 1518 | |
| 1519 | /* Limit max_tfms & do debug commands if needed */ |
| 1520 | if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM)) |
| 1521 | return; |
| 1522 | |
| 1523 | cmd = sysctl_tipc_max_tfms; |
| 1524 | sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF; |
| 1525 | tipc_crypto_do_cmd(rx->net, cmd); |
| 1526 | } |
| 1527 | |
| 1528 | /** |
| 1529 | * tipc_crypto_xmit - Build & encrypt TIPC message for xmit |
| 1530 | * @net: struct net |
| 1531 | * @skb: input/output message skb pointer |
| 1532 | * @b: bearer used for xmit later |
| 1533 | * @dst: destination media address |
| 1534 | * @__dnode: destination node for reference if any |
| 1535 | * |
| 1536 | * First, build an encryption message header on the top of the message, then |
| 1537 | * encrypt the original TIPC message by using the active or pending TX key. |
| 1538 | * If the encryption is successful, the encrypted skb is returned directly or |
| 1539 | * via the callback. |
| 1540 | * Otherwise, the skb is freed! |
| 1541 | * |
| 1542 | * Return: |
| 1543 | * 0 : the encryption has succeeded (or no encryption) |
| 1544 | * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made |
| 1545 | * -ENOKEK : the encryption has failed due to no key |
| 1546 | * -EKEYREVOKED : the encryption has failed due to key revoked |
| 1547 | * -ENOMEM : the encryption has failed due to no memory |
| 1548 | * < 0 : the encryption has failed due to other reasons |
| 1549 | */ |
| 1550 | int tipc_crypto_xmit(struct net *net, struct sk_buff **skb, |
| 1551 | struct tipc_bearer *b, struct tipc_media_addr *dst, |
| 1552 | struct tipc_node *__dnode) |
| 1553 | { |
| 1554 | struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode); |
| 1555 | struct tipc_crypto *tx = tipc_net(net)->crypto_tx; |
| 1556 | struct tipc_crypto_stats __percpu *stats = tx->stats; |
| 1557 | struct tipc_key key = tx->key; |
| 1558 | struct tipc_aead *aead = NULL; |
| 1559 | struct sk_buff *probe; |
| 1560 | int rc = -ENOKEY; |
| 1561 | u8 tx_key; |
| 1562 | |
| 1563 | /* No encryption? */ |
| 1564 | if (!tx->working) |
| 1565 | return 0; |
| 1566 | |
| 1567 | /* Try with the pending key if available and: |
| 1568 | * 1) This is the only choice (i.e. no active key) or; |
| 1569 | * 2) Peer has switched to this key (unicast only) or; |
| 1570 | * 3) It is time to do a pending key probe; |
| 1571 | */ |
| 1572 | if (unlikely(key.pending)) { |
| 1573 | tx_key = key.pending; |
| 1574 | if (!key.active) |
| 1575 | goto encrypt; |
| 1576 | if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key) |
| 1577 | goto encrypt; |
| 1578 | if (TIPC_SKB_CB(*skb)->probe) |
| 1579 | goto encrypt; |
| 1580 | if (!__rx && |
| 1581 | time_after(jiffies, tx->timer2 + TIPC_TX_PROBE_LIM)) { |
| 1582 | tx->timer2 = jiffies; |
| 1583 | probe = skb_clone(*skb, GFP_ATOMIC); |
| 1584 | if (probe) { |
| 1585 | TIPC_SKB_CB(probe)->probe = 1; |
| 1586 | tipc_crypto_xmit(net, &probe, b, dst, __dnode); |
| 1587 | if (probe) |
| 1588 | b->media->send_msg(net, probe, b, dst); |
| 1589 | } |
| 1590 | } |
| 1591 | } |
| 1592 | /* Else, use the active key if any */ |
| 1593 | if (likely(key.active)) { |
| 1594 | tx_key = key.active; |
| 1595 | goto encrypt; |
| 1596 | } |
| 1597 | goto exit; |
| 1598 | |
| 1599 | encrypt: |
| 1600 | aead = tipc_aead_get(tx->aead[tx_key]); |
| 1601 | if (unlikely(!aead)) |
| 1602 | goto exit; |
| 1603 | rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx); |
| 1604 | if (likely(rc > 0)) |
| 1605 | rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode); |
| 1606 | |
| 1607 | exit: |
| 1608 | switch (rc) { |
| 1609 | case 0: |
| 1610 | this_cpu_inc(stats->stat[STAT_OK]); |
| 1611 | break; |
| 1612 | case -EINPROGRESS: |
| 1613 | case -EBUSY: |
| 1614 | this_cpu_inc(stats->stat[STAT_ASYNC]); |
| 1615 | *skb = NULL; |
| 1616 | return rc; |
| 1617 | default: |
| 1618 | this_cpu_inc(stats->stat[STAT_NOK]); |
| 1619 | if (rc == -ENOKEY) |
| 1620 | this_cpu_inc(stats->stat[STAT_NOKEYS]); |
| 1621 | else if (rc == -EKEYREVOKED) |
| 1622 | this_cpu_inc(stats->stat[STAT_BADKEYS]); |
| 1623 | kfree_skb(*skb); |
| 1624 | *skb = NULL; |
| 1625 | break; |
| 1626 | } |
| 1627 | |
| 1628 | tipc_aead_put(aead); |
| 1629 | return rc; |
| 1630 | } |
| 1631 | |
| 1632 | /** |
| 1633 | * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer |
| 1634 | * @net: struct net |
| 1635 | * @rx: RX crypto handle |
| 1636 | * @skb: input/output message skb pointer |
| 1637 | * @b: bearer where the message has been received |
| 1638 | * |
| 1639 | * If the decryption is successful, the decrypted skb is returned directly or |
| 1640 | * as the callback, the encryption header and auth tag will be trimed out |
| 1641 | * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete(). |
| 1642 | * Otherwise, the skb will be freed! |
| 1643 | * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX |
| 1644 | * cluster key(s) can be taken for decryption (- recursive). |
| 1645 | * |
| 1646 | * Return: |
| 1647 | * 0 : the decryption has successfully completed |
| 1648 | * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made |
| 1649 | * -ENOKEY : the decryption has failed due to no key |
| 1650 | * -EBADMSG : the decryption has failed due to bad message |
| 1651 | * -ENOMEM : the decryption has failed due to no memory |
| 1652 | * < 0 : the decryption has failed due to other reasons |
| 1653 | */ |
| 1654 | int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx, |
| 1655 | struct sk_buff **skb, struct tipc_bearer *b) |
| 1656 | { |
| 1657 | struct tipc_crypto *tx = tipc_net(net)->crypto_tx; |
| 1658 | struct tipc_crypto_stats __percpu *stats; |
| 1659 | struct tipc_aead *aead = NULL; |
| 1660 | struct tipc_key key; |
| 1661 | int rc = -ENOKEY; |
| 1662 | u8 tx_key = 0; |
| 1663 | |
| 1664 | /* New peer? |
| 1665 | * Let's try with TX key (i.e. cluster mode) & verify the skb first! |
| 1666 | */ |
| 1667 | if (unlikely(!rx)) |
| 1668 | goto pick_tx; |
| 1669 | |
| 1670 | /* Pick RX key according to TX key, three cases are possible: |
| 1671 | * 1) The current active key (likely) or; |
| 1672 | * 2) The pending (new or deactivated) key (if any) or; |
| 1673 | * 3) The passive or old active key (i.e. users > 0); |
| 1674 | */ |
| 1675 | tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key; |
| 1676 | key = rx->key; |
| 1677 | if (likely(tx_key == key.active)) |
| 1678 | goto decrypt; |
| 1679 | if (tx_key == key.pending) |
| 1680 | goto decrypt; |
| 1681 | if (tx_key == key.passive) { |
| 1682 | rx->timer2 = jiffies; |
| 1683 | if (tipc_aead_users(rx->aead[key.passive]) > 0) |
| 1684 | goto decrypt; |
| 1685 | } |
| 1686 | |
| 1687 | /* Unknown key, let's try to align RX key(s) */ |
| 1688 | if (tipc_crypto_key_try_align(rx, tx_key)) |
| 1689 | goto decrypt; |
| 1690 | |
| 1691 | pick_tx: |
| 1692 | /* No key suitable? Try to pick one from TX... */ |
| 1693 | aead = tipc_crypto_key_pick_tx(tx, rx, *skb); |
| 1694 | if (aead) |
| 1695 | goto decrypt; |
| 1696 | goto exit; |
| 1697 | |
| 1698 | decrypt: |
| 1699 | rcu_read_lock(); |
| 1700 | if (!aead) |
| 1701 | aead = tipc_aead_get(rx->aead[tx_key]); |
| 1702 | rc = tipc_aead_decrypt(net, aead, *skb, b); |
| 1703 | rcu_read_unlock(); |
| 1704 | |
| 1705 | exit: |
| 1706 | stats = ((rx) ?: tx)->stats; |
| 1707 | switch (rc) { |
| 1708 | case 0: |
| 1709 | this_cpu_inc(stats->stat[STAT_OK]); |
| 1710 | break; |
| 1711 | case -EINPROGRESS: |
| 1712 | case -EBUSY: |
| 1713 | this_cpu_inc(stats->stat[STAT_ASYNC]); |
| 1714 | *skb = NULL; |
| 1715 | return rc; |
| 1716 | default: |
| 1717 | this_cpu_inc(stats->stat[STAT_NOK]); |
| 1718 | if (rc == -ENOKEY) { |
| 1719 | kfree_skb(*skb); |
| 1720 | *skb = NULL; |
| 1721 | if (rx) |
| 1722 | tipc_node_put(rx->node); |
| 1723 | this_cpu_inc(stats->stat[STAT_NOKEYS]); |
| 1724 | return rc; |
| 1725 | } else if (rc == -EBADMSG) { |
| 1726 | this_cpu_inc(stats->stat[STAT_BADMSGS]); |
| 1727 | } |
| 1728 | break; |
| 1729 | } |
| 1730 | |
| 1731 | tipc_crypto_rcv_complete(net, aead, b, skb, rc); |
| 1732 | return rc; |
| 1733 | } |
| 1734 | |
| 1735 | static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead, |
| 1736 | struct tipc_bearer *b, |
| 1737 | struct sk_buff **skb, int err) |
| 1738 | { |
| 1739 | struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb); |
| 1740 | struct tipc_crypto *rx = aead->crypto; |
| 1741 | struct tipc_aead *tmp = NULL; |
| 1742 | struct tipc_ehdr *ehdr; |
| 1743 | struct tipc_node *n; |
| 1744 | u8 rx_key_active; |
| 1745 | bool destined; |
| 1746 | |
| 1747 | /* Is this completed by TX? */ |
| 1748 | if (unlikely(!rx->node)) { |
| 1749 | rx = skb_cb->tx_clone_ctx.rx; |
| 1750 | #ifdef TIPC_CRYPTO_DEBUG |
| 1751 | pr_info("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n", |
| 1752 | (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead, |
| 1753 | (*skb)->next, skb_cb->flags); |
| 1754 | pr_info("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n", |
| 1755 | skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last, |
| 1756 | aead->crypto->aead[1], aead->crypto->aead[2], |
| 1757 | aead->crypto->aead[3]); |
| 1758 | #endif |
| 1759 | if (unlikely(err)) { |
| 1760 | if (err == -EBADMSG && (*skb)->next) |
| 1761 | tipc_rcv(net, (*skb)->next, b); |
| 1762 | goto free_skb; |
| 1763 | } |
| 1764 | |
| 1765 | if (likely((*skb)->next)) { |
| 1766 | kfree_skb((*skb)->next); |
| 1767 | (*skb)->next = NULL; |
| 1768 | } |
| 1769 | ehdr = (struct tipc_ehdr *)(*skb)->data; |
| 1770 | if (!rx) { |
| 1771 | WARN_ON(ehdr->user != LINK_CONFIG); |
| 1772 | n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0, |
| 1773 | true); |
| 1774 | rx = tipc_node_crypto_rx(n); |
| 1775 | if (unlikely(!rx)) |
| 1776 | goto free_skb; |
| 1777 | } |
| 1778 | |
| 1779 | /* Skip cloning this time as we had a RX pending key */ |
| 1780 | if (rx->key.pending) |
| 1781 | goto rcv; |
| 1782 | if (tipc_aead_clone(&tmp, aead) < 0) |
| 1783 | goto rcv; |
| 1784 | if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key) < 0) { |
| 1785 | tipc_aead_free(&tmp->rcu); |
| 1786 | goto rcv; |
| 1787 | } |
| 1788 | tipc_aead_put(aead); |
| 1789 | aead = tipc_aead_get(tmp); |
| 1790 | } |
| 1791 | |
| 1792 | if (unlikely(err)) { |
| 1793 | tipc_aead_users_dec(aead, INT_MIN); |
| 1794 | goto free_skb; |
| 1795 | } |
| 1796 | |
| 1797 | /* Set the RX key's user */ |
| 1798 | tipc_aead_users_set(aead, 1); |
| 1799 | |
| 1800 | rcv: |
| 1801 | /* Mark this point, RX works */ |
| 1802 | rx->timer1 = jiffies; |
| 1803 | |
| 1804 | /* Remove ehdr & auth. tag prior to tipc_rcv() */ |
| 1805 | ehdr = (struct tipc_ehdr *)(*skb)->data; |
| 1806 | destined = ehdr->destined; |
| 1807 | rx_key_active = ehdr->rx_key_active; |
| 1808 | skb_pull(*skb, tipc_ehdr_size(ehdr)); |
| 1809 | pskb_trim(*skb, (*skb)->len - aead->authsize); |
| 1810 | |
| 1811 | /* Validate TIPCv2 message */ |
| 1812 | if (unlikely(!tipc_msg_validate(skb))) { |
| 1813 | pr_err_ratelimited("Packet dropped after decryption!\n"); |
| 1814 | goto free_skb; |
| 1815 | } |
| 1816 | |
| 1817 | /* Update peer RX active key & TX users */ |
| 1818 | if (destined) |
| 1819 | tipc_crypto_key_synch(rx, rx_key_active, buf_msg(*skb)); |
| 1820 | |
| 1821 | /* Mark skb decrypted */ |
| 1822 | skb_cb->decrypted = 1; |
| 1823 | |
| 1824 | /* Clear clone cxt if any */ |
| 1825 | if (likely(!skb_cb->tx_clone_deferred)) |
| 1826 | goto exit; |
| 1827 | skb_cb->tx_clone_deferred = 0; |
| 1828 | memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx)); |
| 1829 | goto exit; |
| 1830 | |
| 1831 | free_skb: |
| 1832 | kfree_skb(*skb); |
| 1833 | *skb = NULL; |
| 1834 | |
| 1835 | exit: |
| 1836 | tipc_aead_put(aead); |
| 1837 | if (rx) |
| 1838 | tipc_node_put(rx->node); |
| 1839 | } |
| 1840 | |
| 1841 | static void tipc_crypto_do_cmd(struct net *net, int cmd) |
| 1842 | { |
| 1843 | struct tipc_net *tn = tipc_net(net); |
| 1844 | struct tipc_crypto *tx = tn->crypto_tx, *rx; |
| 1845 | struct list_head *p; |
| 1846 | unsigned int stat; |
| 1847 | int i, j, cpu; |
| 1848 | char buf[200]; |
| 1849 | |
| 1850 | /* Currently only one command is supported */ |
| 1851 | switch (cmd) { |
| 1852 | case 0xfff1: |
| 1853 | goto print_stats; |
| 1854 | default: |
| 1855 | return; |
| 1856 | } |
| 1857 | |
| 1858 | print_stats: |
| 1859 | /* Print a header */ |
| 1860 | pr_info("\n=============== TIPC Crypto Statistics ===============\n\n"); |
| 1861 | |
| 1862 | /* Print key status */ |
| 1863 | pr_info("Key status:\n"); |
| 1864 | pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net), |
| 1865 | tipc_crypto_key_dump(tx, buf)); |
| 1866 | |
| 1867 | rcu_read_lock(); |
| 1868 | for (p = tn->node_list.next; p != &tn->node_list; p = p->next) { |
| 1869 | rx = tipc_node_crypto_rx_by_list(p); |
| 1870 | pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node), |
| 1871 | tipc_crypto_key_dump(rx, buf)); |
| 1872 | } |
| 1873 | rcu_read_unlock(); |
| 1874 | |
| 1875 | /* Print crypto statistics */ |
| 1876 | for (i = 0, j = 0; i < MAX_STATS; i++) |
| 1877 | j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]); |
| 1878 | pr_info("\nCounter %s", buf); |
| 1879 | |
| 1880 | memset(buf, '-', 115); |
| 1881 | buf[115] = '\0'; |
| 1882 | pr_info("%s\n", buf); |
| 1883 | |
| 1884 | j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net)); |
| 1885 | for_each_possible_cpu(cpu) { |
| 1886 | for (i = 0; i < MAX_STATS; i++) { |
| 1887 | stat = per_cpu_ptr(tx->stats, cpu)->stat[i]; |
| 1888 | j += scnprintf(buf + j, 200 - j, "|%11d ", stat); |
| 1889 | } |
| 1890 | pr_info("%s", buf); |
| 1891 | j = scnprintf(buf, 200, "%12s", " "); |
| 1892 | } |
| 1893 | |
| 1894 | rcu_read_lock(); |
| 1895 | for (p = tn->node_list.next; p != &tn->node_list; p = p->next) { |
| 1896 | rx = tipc_node_crypto_rx_by_list(p); |
| 1897 | j = scnprintf(buf, 200, "RX(%7.7s) ", |
| 1898 | tipc_node_get_id_str(rx->node)); |
| 1899 | for_each_possible_cpu(cpu) { |
| 1900 | for (i = 0; i < MAX_STATS; i++) { |
| 1901 | stat = per_cpu_ptr(rx->stats, cpu)->stat[i]; |
| 1902 | j += scnprintf(buf + j, 200 - j, "|%11d ", |
| 1903 | stat); |
| 1904 | } |
| 1905 | pr_info("%s", buf); |
| 1906 | j = scnprintf(buf, 200, "%12s", " "); |
| 1907 | } |
| 1908 | } |
| 1909 | rcu_read_unlock(); |
| 1910 | |
| 1911 | pr_info("\n======================== Done ========================\n"); |
| 1912 | } |
| 1913 | |
| 1914 | static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf) |
| 1915 | { |
| 1916 | struct tipc_key key = c->key; |
| 1917 | struct tipc_aead *aead; |
| 1918 | int k, i = 0; |
| 1919 | char *s; |
| 1920 | |
| 1921 | for (k = KEY_MIN; k <= KEY_MAX; k++) { |
| 1922 | if (k == key.passive) |
| 1923 | s = "PAS"; |
| 1924 | else if (k == key.active) |
| 1925 | s = "ACT"; |
| 1926 | else if (k == key.pending) |
| 1927 | s = "PEN"; |
| 1928 | else |
| 1929 | s = "-"; |
| 1930 | i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s); |
| 1931 | |
| 1932 | rcu_read_lock(); |
| 1933 | aead = rcu_dereference(c->aead[k]); |
| 1934 | if (aead) |
| 1935 | i += scnprintf(buf + i, 200 - i, |
| 1936 | "{\"%s...\", \"%s\"}/%d:%d", |
| 1937 | aead->hint, |
| 1938 | (aead->mode == CLUSTER_KEY) ? "c" : "p", |
| 1939 | atomic_read(&aead->users), |
| 1940 | refcount_read(&aead->refcnt)); |
| 1941 | rcu_read_unlock(); |
| 1942 | i += scnprintf(buf + i, 200 - i, "\n"); |
| 1943 | } |
| 1944 | |
| 1945 | if (c->node) |
| 1946 | i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n", |
| 1947 | atomic_read(&c->peer_rx_active)); |
| 1948 | |
| 1949 | return buf; |
| 1950 | } |
| 1951 | |
| 1952 | #ifdef TIPC_CRYPTO_DEBUG |
| 1953 | static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new, |
| 1954 | char *buf) |
| 1955 | { |
| 1956 | struct tipc_key *key = &old; |
| 1957 | int k, i = 0; |
| 1958 | char *s; |
| 1959 | |
| 1960 | /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */ |
| 1961 | again: |
| 1962 | i += scnprintf(buf + i, 32 - i, "["); |
| 1963 | for (k = KEY_MIN; k <= KEY_MAX; k++) { |
| 1964 | if (k == key->passive) |
| 1965 | s = "pas"; |
| 1966 | else if (k == key->active) |
| 1967 | s = "act"; |
| 1968 | else if (k == key->pending) |
| 1969 | s = "pen"; |
| 1970 | else |
| 1971 | s = "-"; |
| 1972 | i += scnprintf(buf + i, 32 - i, |
| 1973 | (k != KEY_MAX) ? "%s " : "%s", s); |
| 1974 | } |
| 1975 | if (key != &new) { |
| 1976 | i += scnprintf(buf + i, 32 - i, "] -> "); |
| 1977 | key = &new; |
| 1978 | goto again; |
| 1979 | } |
| 1980 | i += scnprintf(buf + i, 32 - i, "]"); |
| 1981 | return buf; |
| 1982 | } |
| 1983 | #endif |